Malaysian Journal of Analytical Sciences Vol 21 No 6 (2017): 1327 - 1334

DOI: 10.17576/mjas-2017-2106-14

 

 

 

MOLECULARLY IMPRINTED POLYMER-COATED QUARTZ CRYSTAL MICROBALANCE FOR DETECTION OF PARATHION

 

(Polimer Molekul Tercetak Saduran Kristal Kuarza Penimbang Mikro bagi Penentuan Parathion)

 

Xiamin Cheng1, 3, Qihui Zhang2, Sam Fong Yau Li1, 2*, Bin Liu3

 

1NUS Environmental Research Institute,

5A Engineering Drive 1, T-Lab Building, 117411, Singapore

2Department of Chemistry,

National University of Singapore, 3 Science Drive 3, 117543, Singapore

3Department of Chemical & Biomolecular Engineering,

National University of Singapore, Engineering Drive 4, Blk E5 #02-17, 117585, Singapore

 

*Corresponding author:  chmlifys@nus.edu.sg

 

 

Received: 7 November 2016; Accepted: 18 September 2017

 

 

Abstract

Organophosphorus compounds (OPs) as important components of insecticides, pesticides, and chemical threat agents (CTA), have become more and more serious threats to the environment. Real-time monitoring of the threats is an urgent demand for environmental safety. The molecular imprinting polymer (MIP) technique is an attractive method for the generation of polymer-based molecular “memory” for a present target or group of target molecules. In this work, we integrate a novel MIP with quartz crystal microbalance (QCM) to build a simple sensor to selectively monitor OP in water samples in real-time. The MIP system was built up by polymerization of methacryalic acid (MAA) with divinylbenzene (DVB), initiated with 2,2’-azobis(2-methylpropionitrile) (AIBN) in presence of target. The polymer was characterized with FT-IR. Using parathion as a representative template, the MIP was coated on QCM by casting a semi-polymerized solution. The sensor could detect parathion in wide range from 290 ppb to 29 ppm. This sensor is stable, easy to prepare which can be reused and has the potential to be applied other analytes, which are threats to the environment.

 

Keywords:  organophosphorus compounds, molecular imprinting polymer, quartz crystal microbalance, parathion

 

Abstrak

Sebatian organofosforus (OPs) adalah kompenen penting bagi racun serangga, racun mahkluk perosak dan agen kimia berbahaya yang telah menjadi ancaman kepada alam sekitar. Pemantauan terhadap ancaman ini telah meningkat berdasarkan kepada keselamatan alam sekitar. Teknik polimer molekul tercetak (MIP) adalah kaedah yang menarik molekul berasaskan polimer yang mempunyai sasaran terhadap molekul tertentu. Dalam kajian ini, MIP tulen bersama penimbang mikro kristal kuarza (QCM) telah disepadu untuk menghasilkan sensor mudah bagi pemantauan terpilih kehadiran OP di dalam sampel air bagi siutuasi sebenar. Sistem MIP telah dibangunkan berdasarkan pempolimeran asid metakrialik (MAA) dan divinilbenzena (DVD), dimulakan dengan kehadiran 2,2’-azobis(2-metilpropionitril)(AIBN) sebagai sasaran. Polimer telah dicirikan menggunakan FT-IR. Menggunakan parathion sebagai templat, MIP disadur ke atas QCM melalui teknik saduran larutan separa polimer. Sensor berupaya mengesan parathio pada julat yang besar dari 290 ppb hingga 29 ppm. Sensor ini adalah stabil, mudah disediakan, dimana boleh diguna semula dan berpotensi untuk diaplikasi terhadap analit lain yang mengancam alam sekitar.

 

Kata kunci:  sebatian organofosforus, polimer molekul tercetak, penimbang mikro kristal kuarza, parathion

 

References

1.       Colovic, M. B., Krstic, D. Z., Lazarevic-Pasti, T. D., Bondzic, A. M. and Vasic, V. M. (2013). Acetylcholinesterase inhibitors: Pharmacology and toxicology. Current Neuropharmacology, 11(3): 315 – 335.

2.       Namba, T. (1971). Cholinesterase inhibition by organophosphorus compounds and its clinical effects. Bulletin World Health Organization, 44(1-3): 289 – 307.

3.       Delfino, R. T., Ribeiro, T. S. and Figueroa-Villar, J. D. (2009). Organophosphorus compounds as chemical warfare agents: A review. Journal of the Brazilian Chemical Society, 20(3): 407 – 428.

4.       Obare, S. O., De, C., Guo, W., Haywood, T. L., Samuels, T. A., Adams, C. P., Masika, N. O., Murray, D. H., Anderson, G. A., Campbell, K. and Fletcher, K. (2010). Fluorescent chemosensors for toxic organophosphorus pesticides: A review. Sensors, 10(7): 7018 – 7043.

5.       Chang, P. L., Hsieh, M. M. and Chiu, T. C. (2016). Recent advances in the determination of pesticides in environmental samples by capillary electrophoresis. International Journal of Environmental Research and Public Health, 13(4), 409.

6.       Hiramatsu, K., Miura, H., Kamei, S., Iwasaki, K. and Kawakita, M. (1998). Development of a sensitive and accurate enzyme-linked immunosorbent assay (ELISA) system that can replace HPLC analysis for the determination of N 1, N 12-diacetylspermine in human urine. Journal of Biochemistry, 124(1): 231 – 236.

7.       Wang, X., Qiao, X., Ma, Y., Zhao, T. and Xu, Z. (2013). Simultaneous determination of nine trace organophosphorous pesticide residues in fruit samples using molecularly imprinted matrix solid-phase dispersion followed by gas chromatography. Journal of Agricultural and Food Chemistry, 61(16): 3821 – 3827.

8.       Pico, Y., Louter, A. J., Vreuls, J. J. and Udo, A. T. (1994). On-line trace-level enrichment gas chromatography of triazine herbicides, organophosphorus pesticides, and organosulfur compounds from drinking and surface waters. Analyst, 119(9): 2025 – 2031.

9.       Cheong, W. J., Yang, S. H. and Ali, F. (2013). Molecular imprinted polymers for separation science: A review of reviews. Journal of Separation Science, 36(3): 609 – 628.

10.    Algieri, C., Drioli, E., Guzzo, L. and Donato, L. (2014). Bio-mimetic sensors based on molecularly imprinted membranes. Sensors, 14(8): 13863 – 13912.

11.    Baggiani, C., Anfossi, L. and Giovannoli, C. (2013). MIP-based immunoassays: State of the art, limitations and perspectives. Molecular Imprinting, 1: 41 – 54.

12.    Haginaka, J., Tabo, H. and Matsunaga, H. (2012). Preparation of molecularly imprinted polymers for organophosphates and their application to the recognition of organophosphorus compounds and phosphopeptides. Analytica Chimica Acta, 748: 1 – 8.

13.    Xin, J., Qiao, X., Ma, Y. and Xu, Z. (2012). Simultaneous separation and determination of eight organophosphorous pesticide residues in vegetables through molecularly imprinted solidphase extraction coupled to gas chromatography. Journal 0f Separation Science, 35(24), 3501 – 3508.

14.    Zhang, D., Yu, D., Zhao, W., Yang, Q., Kajiura, H., Li, Y., Zhou, T. and Shi, G. (2012). A molecularly imprinted polymer based on functionalized multiwalled carbon nanotubes for the electrochemical detection of parathion-methyl. Analyst, 137(11): 2629 – 2636.

15.    Yan, M. (2004). Molecularly imprinted materials: Science and technology. CRC press.

16.    Ye, L. (2013). Molecular imprinting: Principles and applications of micro-and nanostructure polymers. CRC press.

17.    Ward, M. D. and Buttry, D. A. (1990). In situ interfacial mass detection wi piezoelectric transducers. Science, 249(4972): 1000 – 1007.

18.    Cooper, M. A. and Singleton, V. T. (2007). A survey of the 2001 to 2005 quartz crystal microbalance biosensor literature: Applications of acoustic physics to the analysis of biomolecular interactions. Journal of Molecular Recognition, 20(3): 154 – 184.

19.    Vashist, S. K. and Vashist, P. (2011). Recent advances in quartz crystal microbalance-based sensors. Journal of Sensors, 2011: 1 – 13.

20.    Hong, S. R., Kim, M. S., Jeong, H. D. and Hong, S. (2017). Development of real - time and quantitative QCM immunosensor for the rapid diagnosis of Aeromonas hydrophila infection. Aquaculture Research, 48(5): 2055 – 2063.

21.  Vethanayagam, A. V. A. (1962). Folidol (parathion) poisoning. British Medical Journal, 1962): 986 – 987.

 




Previous                    Content                    Next