Malaysian Journal of
Analytical Sciences Vol 21 No 6 (2017): 1327 - 1334
DOI:
10.17576/mjas-2017-2106-14
MOLECULARLY IMPRINTED POLYMER-COATED
QUARTZ CRYSTAL MICROBALANCE FOR DETECTION OF PARATHION
(Polimer Molekul
Tercetak Saduran Kristal Kuarza Penimbang Mikro bagi Penentuan Parathion)
Xiamin Cheng1,
3, Qihui Zhang2, Sam Fong Yau Li1, 2*, Bin Liu3
1NUS Environmental Research Institute,
5A
Engineering Drive 1, T-Lab Building, 117411, Singapore
2Department of Chemistry,
National
University of Singapore, 3 Science Drive 3, 117543, Singapore
3Department of Chemical & Biomolecular Engineering,
National
University of Singapore, Engineering Drive 4, Blk E5 #02-17, 117585, Singapore
*Corresponding author: chmlifys@nus.edu.sg
Received: 7
November 2016; Accepted: 18 September 2017
Abstract
Organophosphorus compounds (OPs) as important components
of insecticides, pesticides, and chemical threat agents (CTA), have become more
and more serious threats to the environment. Real-time monitoring of the
threats is an urgent demand for environmental safety. The molecular imprinting
polymer (MIP) technique is an attractive method for the generation of
polymer-based molecular “memory” for a present target or group of target
molecules. In this work, we integrate a novel MIP with quartz crystal
microbalance (QCM) to build a simple sensor to selectively monitor OP in water
samples in real-time. The MIP system was built up by polymerization of methacryalic
acid (MAA) with divinylbenzene (DVB), initiated with
2,2’-azobis(2-methylpropionitrile) (AIBN) in presence of target. The polymer
was characterized with FT-IR. Using parathion as a representative template, the
MIP was coated on QCM by casting a semi-polymerized solution. The sensor could
detect parathion in wide range from 290 ppb to 29 ppm. This sensor is stable, easy
to prepare which can be reused and has the potential to be applied other analytes,
which are threats to the environment.
Keywords: organophosphorus compounds, molecular
imprinting polymer, quartz crystal microbalance, parathion
Abstrak
Sebatian organofosforus (OPs) adalah
kompenen penting bagi racun serangga, racun mahkluk perosak dan agen kimia
berbahaya yang telah menjadi ancaman kepada alam sekitar. Pemantauan terhadap
ancaman ini telah meningkat berdasarkan kepada keselamatan alam sekitar. Teknik
polimer molekul tercetak (MIP) adalah kaedah yang menarik molekul berasaskan
polimer yang mempunyai sasaran terhadap molekul tertentu. Dalam kajian ini, MIP
tulen bersama penimbang mikro kristal kuarza (QCM) telah disepadu untuk menghasilkan
sensor mudah bagi pemantauan terpilih kehadiran OP di dalam sampel air bagi
siutuasi sebenar. Sistem MIP telah dibangunkan berdasarkan pempolimeran asid
metakrialik (MAA) dan divinilbenzena (DVD), dimulakan dengan kehadiran
2,2’-azobis(2-metilpropionitril)(AIBN) sebagai sasaran. Polimer telah dicirikan
menggunakan FT-IR. Menggunakan parathion sebagai templat, MIP disadur ke atas
QCM melalui teknik saduran larutan separa polimer. Sensor berupaya mengesan
parathio pada julat yang besar dari 290 ppb hingga 29 ppm. Sensor ini adalah
stabil, mudah disediakan, dimana boleh diguna semula dan berpotensi untuk
diaplikasi terhadap analit lain yang mengancam alam sekitar.
Kata kunci: sebatian organofosforus, polimer molekul
tercetak, penimbang mikro kristal kuarza, parathion
References
1.
Colovic,
M. B., Krstic, D. Z., Lazarevic-Pasti, T. D., Bondzic, A. M. and Vasic, V. M.
(2013). Acetylcholinesterase inhibitors: Pharmacology and toxicology. Current
Neuropharmacology, 11(3): 315 – 335.
2.
Namba,
T. (1971). Cholinesterase inhibition by organophosphorus compounds and its
clinical effects. Bulletin World Health Organization, 44(1-3): 289 –
307.
3.
Delfino,
R. T., Ribeiro, T. S. and Figueroa-Villar, J. D. (2009). Organophosphorus
compounds as chemical warfare agents: A review. Journal of the Brazilian
Chemical Society, 20(3): 407 – 428.
4.
Obare,
S. O., De, C., Guo, W., Haywood, T. L., Samuels, T. A., Adams, C. P., Masika,
N. O., Murray, D. H., Anderson, G. A., Campbell, K. and Fletcher, K. (2010).
Fluorescent chemosensors for toxic organophosphorus pesticides: A review. Sensors,
10(7): 7018 – 7043.
5.
Chang,
P. L., Hsieh, M. M. and Chiu, T. C. (2016). Recent advances in the
determination of pesticides in environmental samples by capillary
electrophoresis. International Journal of Environmental Research and Public
Health, 13(4), 409.
6.
Hiramatsu,
K., Miura, H., Kamei, S., Iwasaki, K. and Kawakita, M. (1998). Development of a
sensitive and accurate enzyme-linked immunosorbent assay (ELISA) system that
can replace HPLC analysis for the determination of N 1, N 12-diacetylspermine
in human urine. Journal of Biochemistry,
124(1): 231 – 236.
7.
Wang,
X., Qiao, X., Ma, Y., Zhao, T. and Xu, Z. (2013). Simultaneous determination of
nine trace organophosphorous pesticide residues in fruit samples using
molecularly imprinted matrix solid-phase dispersion followed by gas
chromatography. Journal of Agricultural
and Food Chemistry, 61(16): 3821 – 3827.
8.
Pico,
Y., Louter, A. J., Vreuls, J. J. and Udo, A. T. (1994). On-line trace-level
enrichment gas chromatography of triazine herbicides, organophosphorus
pesticides, and organosulfur compounds from drinking and surface waters. Analyst, 119(9): 2025 – 2031.
9.
Cheong,
W. J., Yang, S. H. and Ali, F. (2013). Molecular imprinted polymers for
separation science: A review of reviews. Journal
of Separation Science, 36(3): 609 – 628.
10.
Algieri,
C., Drioli, E., Guzzo, L. and Donato, L. (2014). Bio-mimetic sensors based on
molecularly imprinted membranes. Sensors,
14(8): 13863 – 13912.
11.
Baggiani,
C., Anfossi, L. and Giovannoli, C. (2013). MIP-based immunoassays: State of the
art, limitations and perspectives. Molecular
Imprinting, 1: 41 – 54.
12.
Haginaka,
J., Tabo, H. and Matsunaga, H. (2012). Preparation of molecularly imprinted
polymers for organophosphates and their application to the recognition of
organophosphorus compounds and phosphopeptides. Analytica Chimica Acta, 748: 1 – 8.
13.
Xin, J., Qiao, X., Ma, Y. and Xu, Z. (2012). Simultaneous
separation and determination of eight organophosphorous pesticide residues in
vegetables through molecularly imprinted solid‐phase extraction coupled to gas chromatography. Journal 0f Separation Science, 35(24),
3501 – 3508.
14.
Zhang, D., Yu, D., Zhao, W., Yang, Q., Kajiura, H., Li, Y.,
Zhou, T. and Shi, G. (2012). A molecularly imprinted polymer based on
functionalized multiwalled carbon nanotubes for the electrochemical detection
of parathion-methyl. Analyst, 137(11):
2629 – 2636.
15.
Yan, M. (2004). Molecularly imprinted materials: Science and
technology. CRC press.
16.
Ye, L. (2013). Molecular imprinting: Principles and
applications of micro-and nanostructure polymers. CRC press.
17.
Ward, M. D. and Buttry, D. A. (1990). In situ interfacial
mass detection wi piezoelectric transducers. Science, 249(4972): 1000 – 1007.
18.
Cooper,
M. A. and Singleton, V. T. (2007). A survey of the 2001 to 2005 quartz crystal
microbalance biosensor literature: Applications of acoustic physics to the
analysis of biomolecular interactions. Journal
of Molecular Recognition, 20(3): 154 – 184.
19.
Vashist, S. K. and Vashist, P. (2011). Recent advances in
quartz crystal microbalance-based sensors. Journal
of Sensors, 2011: 1 – 13.
20.
Hong, S. R., Kim, M. S., Jeong, H. D. and Hong, S. (2017).
Development of real - time and quantitative QCM immunosensor for the rapid
diagnosis of Aeromonas hydrophila infection. Aquaculture Research, 48(5): 2055 – 2063.
21. Vethanayagam, A. V. A. (1962). Folidol (parathion) poisoning. British Medical Journal, 1962): 986 –
987.