Malaysian Journal of Analytical Sciences Vol 21 No 6
(2017): 1342 - 1351
DOI:
10.17576/mjas-2017-2106-16
FLUORESCENCE
QUENCHING ON MESOPOROUS CARBON NITRIDE BY PHENOL AND ANILINE
(Pelindapan Pendarfluor pada Karbon Nitrida Mesoliang
oleh Fenol dan Anilina)
Leny Yuliati1,2,3*, Ahmad Hanami Abd
Kadir4, Siew Ling Lee3,4, Hendrik O. Lintang1,2,3
1Ma Chung Research Center for Photosynthetic Pigments
2Department of Chemistry, Faculty of Science and
Technology
Universitas
Ma Chung, Villa Puncak Tidar N-01, Malang 65151, East Java, Indonesia
3Centre for Sustainable Nanomaterials, Ibnu Sina
Institute for Scientific and Industrial Research
4Department of Chemistry, Faculty of Science
Universiti
Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
*Corresponding author: leny.yuliati@machung.ac.id
Received: 7
November 2016; Accepted: 18 September 2017
Abstract
In
this study, fluorescence quenching on mesoporous carbon nitride (MCN) was
examined in the presence of phenol and aniline. The MCN was synthesized by
thermal polymerization of cyanamide using nanocolloidal silica (7 nm) as a hard
template and characterized by X-ray diffractometer (XRD), Fourier transform
infrared (FTIR), transmission electron microscope (TEM), specific surface area,
pore size distribution, and fluorescence spectrophotometer. The MCN showed two
excitation wavelengths at 275 and 370 nm, owing to the presence of N=C and N-C
terminal groups, respectively. These two excitation wavelengths gave only one
emission peak at around 460 nm. Either in the presence of phenol or aniline,
the emission intensity of the MCN was confirmed to be quenched in a linear
function towards the concentration of phenol or aniline as the quencher
molecule. N-C terminal groups were found to have slightly better interactions
to phenol and aniline as compared to the N=C groups. Since the emission
intensity of MCN was more quenched by phenol molecules than the aniline, it was
proposed that the MCN would have stronger interaction to phenol than aniline.
This result was also supported by the adsorption data, in which the MCN gave higher
adsorption towards phenol than the aniline.
Keywords: mesoporous
carbon nitride,
phenol, aniline, fluorescence quenching, adsorption
Abstrak
Dalam kajian
ini, pelindapan pendarfluor pada karbon nitrida mesoliang (MCN) telah diperiksa
dengan kehadiran fenol dan anilina. MCN telah disintesis secara pempolimeran
haba sianamida menggunakan silika nanokoloid (7 nm) sebagai templat keras dan
telah dicirikan dengan pembelauan sinar-X (XRD), inframerah transformasi
Fourier (FTIR), mikroskop elektron transmisi (TEM), luas permukaan, taburan
saiz liang, dan spektroskopi pendafluor. MCN menunjukkan dua panjang gelombang
pengujaan pada 275 dan 370 nm oleh kerana kehadiran masing – masing N=C dan N-C
sebagai kumpulan terminal. Kedua-dua panjang gelombang pengujaan memberikan
hanya satu puncak pelepasan pada kira-kira 460 nm.Sama ada dengan kehadiran
fenol atau anilina, keamatan pemancaran daripada MCN disahkan mengalami
pelindapan dalam fungsi linear terhadap kepekatan fenol atau anilina sebagai
molekul pelindap. Kumpulan terminal N-C didapati mempunyai interaksi lebih baik
sedikit untuk fenol dan anilina berbanding dengan kumpulan N=C. Oleh kerana keamatan
pemancaran MCN didapati lebih terlindap oleh molekul fenol berbanding dengan
anilina, adalah dicadangkan bahawa MCN berinteraksi lebih kuat dengan fenol
dibandingkan dengan anilina. Keputusan ini juga disokong oleh data penjerapan, dengan
MCN memberikan penjerapan yang lebih tinggi terhadap fenol dibandingkan dengan
anilina.
Kata kunci: karbon nitrida mesoliang, fenol, anilina, pelindapan pendarfluor, penjerapan
References
1.
Vinu, A. (2008). Two-dimensional hexagonally-ordered mesoporous
carbon nitrides with tunable pore diameter, surface area and nitrogen content. Advanced Functional Materials, 18(5):
816 – 827.
2.
Teter, D. M. and Hemley R. J. (1996). Low-compressibility carbon
nitride. Science, 271(5245): 53 – 55.
3.
Corkill, J. L. and Cohen, M.
L. (1993). Calculated quasiparticle band gap
of β-C3N4. Physical Review B, 48(23): 17622 – 17624.
4.
Goettmann, F., Fischer, A., Antonietti, M. and Thomas, A. (2006).
Chemical synthesis of mesoporous carbon nitrides using hard
templates and their use
as a metal-free
catalyst for Friedel-Craft reaction of
benzene. Angewandte Chemie International
Edition, 45(27): 4467 –
4471.
5.
Gillan, E. G. (2000). Synthesis
of nitrogen-rich carbon nitride networks from an energetic molecular azide precursor. Chemistry of Materials, 12(12): 3906 – 3912.
6.
Komatsu, T. (2001). Attempted
chemical synthesis of graphite-like
carbon nitride. Journal of Materials
Chemistry, 11: 799 – 801.
7.
Sam, M. S., Lintang, H. O.,
Sanagi, M. M., Lee, S. L. and Yuliati, L. (2014). Mesoporous carbon nitride for adsorption and fluorescence sensor of
N-nitrosopyrrolidine. Spectrochimica Acta Part A: Molecular and Bio-molecular
Spectroscopy, 124: 357 – 364.
8.
Sam, M. S., Lintang, H. O., Sanagi, M. M., Lee, S. L. and Yuliati,
L. (2014). Adsorption of aniline using novel mesoporous carbon nitride. Advanced Materials Research, 95: 135–139.
9.
Sam, M. S., Tiong, P., Lintang,
H. O., Sanagi, M. M., Lee, S. L. and Yuliati, L. (2015). Mesoporous carbon nitride as a metal-free catalyst for
the removal of aniline. RSC Advances,
5: 44578 – 44586.
10.
Lee, S.C., Lintang, H.O. and Yuliati, L. (2012). A urea precursor
to synthesize carbon nitride with mesoporosity for enhanced activity in the
photocatalytic removal of phenol. Chemistry
An Asian Journal, 7(9): 2139 – 2144.
11.
Cui, Y., Zhang, J., Zhang,
G., Huang, J., Liu, P., Antonietti, M. and Wang X. (2011). Synthesis of bulk and nanoporous carbon nitride polymers from ammonium
thiocyanate for photocatalytic hydrogen evolution. Journal
of Materials Chemistry, 21: 13032 – 13039.
12.
Wang, X., Maeda, K., Chen, X., Takanabe, K., Domen, K., Hou, Y.,
Fu, X. and Antonietti, M. (2009). Polymer semiconductors for artificial photosynthesis:
hydrogen evolution by mesoporous graphitic carbon nitride with visible light. Journal of the American Chemical Society,
131(5): 1680 – 1681.
13.
Wang, Y., Wang, X. and Antonietti, M. (2012). Polymeric graphitic carbon nitrides as a heterogeneous
organo-catalyst: from photochemistry to multipurpose
catalysis to sustainable chemistry. Angewandte Chemie Inter-national Edition,
51(1): 68 – 89.
14.
Thomas, A., Fischer, A.,
Goettmann, F., Antonietti, M., Müller, J.-O., Schlögl, R. and Carlsson, J. M.
(2008). Graphitic carbon nitride materials: Variation of structure and morphology and their use as
metal-free catalyst. Journal of Materials
Chemistry, 18(41): 4893 – 4908.
15.
Zhang, Y., Mori, T. and Ye, J. (2012). Polymeric carbon nitrides: Semiconducting properties and emerging applications in photocatalysis and photoelectrochemical
energy conversion. Science of Advanced Materials, 4(2): 282 – 291.
16.
Lee, E. Z., Jun, Y. S., Hong, W. H., Thomas, A. and Jin, M. M.
(2010). Cubic mesoporous graphitic carbon(IV) nitride: an all-in-one
chemosensor for selective optical sensing of metal ions. Angewandte Chemie International Edition, 49 (50): 9706 – 9710.
17.
Lee, E. Z., Lee, S. U., Heo, N. S., Stucky, G. D., Jun, Y. S. and
Hong, W. H. (2012). A fluorescent sensor for selective detection of cyanide
using mesoporous graphitic carbon(IV) nitride. Chemical
Communications, 48(33): 3942 – 3944.
18.
Tian, J., Liu, Q., Asiri, A. M., Al Youbi, A. O. and Sun, X.
(2013). Ultrathin graphitic carbon nitride nanosheet: a highly efficient
fluorosensor for rapid, ultrasensitive detection of Cu2+. Analytical Chemistry, 85(11): 5595 – 5599.
19.
Alim, N. S., Lintang, H. O. and Yuliati, L. (2015). Fabricated metal-free carbon nitride
characterizations for fluorescence
chemical sensor of nitrate ions. Jurnal
Teknologi, 76(13): 1 – 6.
20.
Dąbrowski, A., Podkościelny, P., Hubicki, Z. and Barczak, M.
(2005). Adsorption of phenolic compounds by activated carbon - A
critical review. Chemosphere, 58(8):
1049 – 1070.
21.
Busca,
G., Berardinelli, S., Resini, C. and Arrighi, L. (2008). Technologies
for the removal of phenol from fluid streams: A short review of recent
developments. Journal of Hazardous
Materials, 160(2-3): 265 – 288.
22.
Ahmed, S., Rasul, M. G., Martens, W. N., Brown, R. and Hashib,
M.A. (2010). Heterogeneous
photocatalytic degradation of phenols in wastewater:
a review on current status and developments. Desalination, 261(1–2): 3 – 18.
23.
Soares, B. G., Amorim, G.
S., Souza Jr, F. G., Oliveira M. G. and
da Silva, J. E. P. (2006). The in situ poly-merization of aniline in nitrile rubber. Synthetic Metals, 156 (2–4): 91 – 98.
24.
Zhao, R., Tan, C., Xie, Y., Gao, C., Liu, H. and Jiang, Y. (2011).
One step synthesis of azo compounds from nitroaromatics and
anilines, Tetrahedron Letter, 52(29):
3805 – 3809.
25.
Puig, A., Ormad, P., Roche, P., Sarasa, J., Gimeno, E. and
Ovelleiro, J. L. (1996). Wastewater from the manu-facture of rubber vulcanization
accelerators: Characterization, downstream monitoring and chemical treatment. Journal of Chromatography A, 733 (1–2): 511 – 522.
26.
Haque,
E., Jun, J. W., Talapaneni, S. N., Vinu,
A. and Jhung, S. H. (2010). Superior
adsorption capacity of mesoporous carbon nitride
with basic CN
framework for phenol. Journal
of Materials Chemistry, 20(48): 10801 – 10803.
27.
Miller, D. R., Wang, J. and Gillan,
E. G. (2002). Rapid, facile synthesis
of nitrogen-rich carbon nitride powders. Journals of Materials Chemistry, 12(8): 2463 – 2469.