Malaysian Journal of Analytical Sciences Vol 21 No 6 (2017): 1342 - 1351

DOI: 10.17576/mjas-2017-2106-16

 

 

 

FLUORESCENCE QUENCHING ON MESOPOROUS CARBON NITRIDE BY PHENOL AND ANILINE

 

(Pelindapan Pendarfluor pada Karbon Nitrida Mesoliang oleh Fenol dan Anilina)

 

Leny Yuliati1,2,3*, Ahmad Hanami Abd Kadir4, Siew Ling Lee3,4, Hendrik O. Lintang1,2,3

 

1Ma Chung Research Center for Photosynthetic Pigments

2Department of Chemistry, Faculty of Science and Technology

Universitas Ma Chung, Villa Puncak Tidar N-01, Malang 65151, East Java, Indonesia

3Centre for Sustainable Nanomaterials, Ibnu Sina Institute for Scientific and Industrial Research

4Department of Chemistry, Faculty of Science

Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia

 

*Corresponding author:  leny.yuliati@machung.ac.id

 

 

Received: 7 November 2016; Accepted: 18 September 2017

 

 

Abstract

In this study, fluorescence quenching on mesoporous carbon nitride (MCN) was examined in the presence of phenol and aniline. The MCN was synthesized by thermal polymerization of cyanamide using nanocolloidal silica (7 nm) as a hard template and characterized by X-ray diffractometer (XRD), Fourier transform infrared (FTIR), transmission electron microscope (TEM), specific surface area, pore size distribution, and fluorescence spectrophotometer. The MCN showed two excitation wavelengths at 275 and 370 nm, owing to the presence of N=C and N-C terminal groups, respectively. These two excitation wavelengths gave only one emission peak at around 460 nm. Either in the presence of phenol or aniline, the emission intensity of the MCN was confirmed to be quenched in a linear function towards the concentration of phenol or aniline as the quencher molecule. N-C terminal groups were found to have slightly better interactions to phenol and aniline as compared to the N=C groups. Since the emission intensity of MCN was more quenched by phenol molecules than the aniline, it was proposed that the MCN would have stronger interaction to phenol than aniline. This result was also supported by the adsorption data, in which the MCN gave higher adsorption towards phenol than the aniline.

 

Keywords:  mesoporous carbon nitride, phenol, aniline, fluorescence quenching, adsorption

 

Abstrak

Dalam kajian ini, pelindapan pendarfluor pada karbon nitrida mesoliang (MCN) telah diperiksa dengan kehadiran fenol dan anilina. MCN telah disintesis secara pempolimeran haba sianamida menggunakan silika nanokoloid (7 nm) sebagai templat keras dan telah dicirikan dengan pembelauan sinar-X (XRD), inframerah transformasi Fourier (FTIR), mikroskop elektron transmisi (TEM), luas permukaan, taburan saiz liang, dan spektroskopi pendafluor. MCN menunjukkan dua panjang gelombang pengujaan pada 275 dan 370 nm oleh kerana kehadiran masing – masing N=C dan N-C sebagai kumpulan terminal. Kedua-dua panjang gelombang pengujaan memberikan hanya satu puncak pelepasan pada kira-kira 460 nm.Sama ada dengan kehadiran fenol atau anilina, keamatan pemancaran daripada MCN disahkan mengalami pelindapan dalam fungsi linear terhadap kepekatan fenol atau anilina sebagai molekul pelindap. Kumpulan terminal N-C didapati mempunyai interaksi lebih baik sedikit untuk fenol dan anilina berbanding dengan kumpulan N=C. Oleh kerana keamatan pemancaran MCN didapati lebih terlindap oleh molekul fenol berbanding dengan anilina, adalah dicadangkan bahawa MCN berinteraksi lebih kuat dengan fenol dibandingkan dengan anilina. Keputusan ini juga disokong oleh data penjerapan, dengan MCN memberikan penjerapan yang lebih tinggi terhadap fenol dibandingkan dengan anilina.

 

Kata kunci:  karbon nitrida mesoliang, fenol, anilina, pelindapan pendarfluor, penjerapan

 

References

1.       Vinu, A. (2008). Two-dimensional hexagonally-ordered mesoporous carbon nitrides with tunable pore diameter, surface area and nitrogen content. Advanced Functional Materials, 18(5): 816 827.

2.       Teter, D. M. and Hemley R. J. (1996). Low-compressibility carbon nitride. Science, 271(5245): 53 55.

3.       Corkill, J. L.  and  Cohen,  M. L. (1993).  Calculated  quasiparticle  band  gap of β-C3N4. Physical Review B,  48(23): 17622 17624.

4.       Goettmann, F., Fischer, A., Antonietti, M. and Thomas, A. (2006). Chemical synthesis of  mesoporous  carbon nitrides  using  hard  templates  and  their  use  as  a  metal-free  catalyst for Friedel-Craft reaction of benzene. Angewandte Chemie International Edition, 45(27): 4467 4471.

5.       Gillan, E. G. (2000).   Synthesis of  nitrogen-rich  carbon  nitride  networks  from an energetic molecular azide precursor. Chemistry of Materials, 12(12): 3906 3912.

6.       Komatsu, T. (2001).   Attempted  chemical  synthesis  of  graphite-like  carbon  nitride.  Journal  of  Materials Chemistry, 11: 799 801.

7.       Sam, M. S.,  Lintang, H. O.,  Sanagi, M. M.,  Lee, S. L. and  Yuliati, L. (2014).  Mesoporous carbon nitride for adsorption  and fluorescence sensor of N-nitrosopyrrolidine.  Spectrochimica Acta  Part A: Molecular and Bio-molecular Spectroscopy, 124: 357 364.

8.       Sam, M. S., Lintang, H. O., Sanagi, M. M., Lee, S. L. and Yuliati, L. (2014). Adsorption of aniline using novel mesoporous carbon nitride. Advanced Materials Research, 95: 135139.

9.       Sam, M. S., Tiong, P.,  Lintang, H. O.,  Sanagi, M. M.,  Lee, S. L. and Yuliati, L. (2015).  Mesoporous  carbon nitride as a metal-free catalyst for the removal of aniline. RSC Advances, 5: 44578 – 44586.

10.    Lee, S.C., Lintang, H.O. and Yuliati, L. (2012). A urea precursor to synthesize carbon nitride with mesoporosity for enhanced activity in the photocatalytic removal of phenol. Chemistry An Asian Journal, 7(9): 2139 2144.

11.    Cui, Y.,  Zhang, J., Zhang, G., Huang, J.,  Liu, P.,  Antonietti, M. and  Wang X. (2011).  Synthesis of bulk and nanoporous  carbon nitride  polymers  from  ammonium  thiocyanate  for  photocatalytic  hydrogen  evolution. Journal of Materials Chemistry, 21: 13032 13039.

12.    Wang, X., Maeda, K., Chen, X., Takanabe, K., Domen, K., Hou, Y., Fu, X. and Antonietti, M. (2009). Polymer semiconductors for artificial photosynthesis: hydrogen evolution by mesoporous graphitic  carbon  nitride with visible light. Journal of the American Chemical Society, 131(5): 1680 1681.

13.    Wang, Y., Wang, X. and Antonietti, M. (2012). Polymeric graphitic carbon nitrides as a heterogeneous organo-catalyst: from  photochemistry  to  multipurpose catalysis  to sustainable chemistry. Angewandte Chemie Inter-national Edition, 51(1): 68 89.

14.    Thomas, A.,  Fischer, A., Goettmann, F., Antonietti, M., Müller, J.-O., Schlögl, R. and Carlsson, J. M. (2008). Graphitic carbon nitride materials:  Variation  of structure and morphology and their use as metal-free catalyst. Journal of Materials Chemistry, 18(41): 4893 4908.

15.    Zhang, Y., Mori, T. and Ye, J. (2012).  Polymeric  carbon  nitrides:  Semiconducting  properties  and emerging applications  in photocatalysis  and  photoelectrochemical  energy conversion. Science of Advanced Materials, 4(2): 282 291.

16.    Lee, E. Z., Jun, Y. S., Hong, W. H., Thomas, A. and Jin, M. M. (2010). Cubic mesoporous graphitic carbon(IV) nitride: an all-in-one chemosensor for selective optical sensing of metal ions. Angewandte Chemie International Edition, 49 (50): 9706 9710.

17.    Lee, E. Z., Lee, S. U., Heo, N. S., Stucky, G. D., Jun, Y. S. and Hong, W. H. (2012).  A fluorescent  sensor  for selective  detection  of  cyanide  using  mesoporous  graphitic  carbon(IV) nitride.  Chemical Communications, 48(33): 3942 3944.

18.    Tian, J., Liu, Q., Asiri, A. M., Al Youbi, A. O. and Sun, X. (2013). Ultrathin graphitic carbon nitride nanosheet: a highly efficient fluorosensor for rapid, ultrasensitive detection of Cu2+. Analytical Chemistry, 85(11): 5595 5599.

19.    Alim, N. S., Lintang, H. O. and Yuliati, L. (2015).  Fabricated  metal-free  carbon  nitride  characterizations for fluorescence chemical sensor of nitrate ions. Jurnal Teknologi, 76(13): 1 – 6.

20.    Dąbrowski, A., Podkościelny, P., Hubicki, Z. and Barczak, M. (2005).  Adsorption  of phenolic compounds by activated carbon - A critical review. Chemosphere, 58(8): 1049 1070.

21.    Busca, G., Berardinelli, S., Resini, C. and Arrighi, L. (2008). Technologies for the removal of phenol from fluid streams: A short review of recent developments. Journal of Hazardous Materials, 160(2-3): 265 288.

22.    Ahmed, S., Rasul, M. G., Martens, W. N., Brown, R. and Hashib, M.A. (2010).  Heterogeneous photocatalytic degradation  of  phenols  in  wastewater: a review on current status and developments. Desalination, 261(1–2): 3 – 18.

23.    Soares, B. G.,  Amorim, G. S.,  Souza Jr, F. G., Oliveira M. G. and da Silva, J. E. P. (2006).  The in situ  poly-merization of aniline in nitrile rubber. Synthetic Metals, 156 (24): 91 98.

24.    Zhao, R., Tan, C., Xie, Y., Gao, C., Liu, H. and Jiang, Y. (2011).  One  step synthesis  of azo compounds from nitroaromatics and anilines, Tetrahedron Letter, 52(29): 3805 3809.

25.    Puig, A., Ormad, P., Roche, P., Sarasa, J., Gimeno, E. and Ovelleiro, J. L. (1996).  Wastewater  from the manu-facture of rubber vulcanization accelerators: Characterization, downstream monitoring and chemical treatment. Journal of Chromatography A, 733 (1–2): 511 522.

26.    Haque, E.,  Jun, J. W., Talapaneni, S. N., Vinu, A. and Jhung, S. H. (2010).  Superior  adsorption  capacity  of mesoporous  carbon  nitride  with  basic  CN  framework  for  phenol. Journal of Materials Chemistry, 20(48): 10801 10803.

27.    Miller, D. R.,  Wang, J.  and  Gillan, E. G.  (2002).   Rapid,  facile  synthesis  of  nitrogen-rich  carbon   nitride powders. Journals of Materials Chemistry, 12(8): 2463 2469.

 




Previous                    Content                    Next