Malaysian Journal of Analytical Sciences Vol 21 No 6 (2017): 1373 - 1379

DOI: 10.17576/mjas-2017-2106-19

 

 

 

SURFACE PLASMON RESONANCE SENSOR FOR DETECTION OF PARATHION METHYL IN WATER

 

(Sensor Permukaan Plasmon Resonan bagi Pengesanan Parathion Metil di dalam Air)

 

Baisheng Chen1, Douglas Chiang Yon Chong1, Xiamin Cheng2, 3, Bin Liu3, Sam Fong Yau Li1, 2*

 

1Department of Chemistry,

National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore

2NUS Environmental Research Institute (NERI),

#02-01, T-Lab Building (TL), 5A Engineering Drive 1, Singapore 117411, Singapore

3Department of Chemical & Biomolecular Engineering,

National University of Singapore, 4 Engineering Drive 4, Block E5 #02-17, 117585, Singapore

 

*Corresponding author:  chmlifys@nus.edu.sg

 

 

Received: 7 November 2016; Accepted: 18 September 2017

 

 

Abstract

A surface plasmon resonance (SPR) sensor based on molecularly imprinted polymer (MIP) was developed for fast detection of chemical threat agents (CTAs) in water. A portable SPR platform provided a very compact-size (L*W*H of 8.5*4.5*4.5 inch) system and the SPR sensor chip was fabricated by a facile process with an inexpensive coating of silver as the SPR material, making possible the sensor chip as a disposal sensor. Using methyl parathion as the simulant of CTA, the developed SPR sensor with the recognition site showed apparent SPR signal than Non-imprinted polymer (NIP) counterpart, suggesting the excellent recognition of the targeted molecules. It also provided a fast responding within 5 minutes with the limit of detection of sub-ppm level.

 

Keywords:  molecularly imprinted polymer, surface plasmon resonance, organophosphorus pesticide, chemical threat agents

 

Abstrak

Sensor permukaan plasmon resonans (SPR) berdasarkan polimer molekul tercetak (MIP) telah dibangunkan bagi pengesanan pantas ejen ancaman kimia (CTAs) di dalam air. Sistem platform SPR mudah alih bersaiz padat disediakan (L*W*H 8.5*4.5*4.5 inci) dan cip sensor SPR telah diubahsuai melalui proses mudah dengan salutan murah perak sebagai bahan SPR, menjadikan cip sensor sebagai sensor mudah dilupuskan. Menggunakan parathion metil sebagai sasaran CTA, sensor SPR yang telah dibangunkan dengan bahagian yang dikenalpasti itu menunjukkan isyarat jelas daripada SPR berbanding polimer tak tercetak (NIP), menunjukkan pengenalpastian baik bagi molekul yang disasarkan. Ia juga memberi respons yang cepat dalam masa 5 minit dengan had pengesanan pada aras sub-ppm.

 

Kata kunci:    polimer molekul tercetak, permukaan plasmon resonans, racun perosak organofosforus, agen kimia berbahaya

 

References

1.       Chenau, J., Fenaille, F., Simon, S., Filali, S., Volland, H., Junot, C., Carniel, E. and Becher, F. (2014). Detection of Yersinia pestis in environmental and food samples by intact cell immunocapture and liquid chromatography–tandem mass spectrometry. Analytical Chemistry, 86(12): 6144 – 6152.

2.       Green, U., Kremer, J. H., Zillmer, M. and Moldaenke, C. (2003). Detection of chemical threat agents in drinking water by an early warning real‐time biomonitor. Environmental Toxicology, 18(6): 368 – 374.

3.       Zhang, J. and Lee, H. K. (2006). Application of liquid-phase microextraction and on-column derivatization combined with gas chromatography–mass spectrometry to the determination of carbamate pesticides. Journal of Chromatography A, 1117(1): 31 – 37.

4.       Sanagi, M. M., Mokhtar, S. U., Wan Ibrahim, W. A. and Miskam, M. (2011). Determination of organophosphorus pesticides by dispersive liquid-liquid microextraction coupled with gas chromatography-electron capture detection. Malaysian Journal of Analytical Sciences, 15(2): 232 – 239.

5.       Chang, S. Y., Tseng, W. L., Mallipattu, S. and Chang, H. T. (2005). Determination of small phosphorus-containing compounds by capillary electrophoresis. Talanta, 66(2): 411 – 421.

6.       Tankiewicz, M., Fenik, J. and Biziuk, M. (2011). Solventless and solvent-minimized sample preparation techniques for determining currently used pesticides in water samples: A review. Talanta, 86: 8 – 22.

7.       Homola J. and Piliarik M. (2006) Surface plasmon resonance (SPR) sensors. In: Homola J. (eds) Surface plasmon resonance based sensors. Springer Series on Chemical Sensors and Biosensors. Springer, Berlin, Heidelberg.

8.       Abdulhalim, I., Zourob, M. and Lakhtakia, A. (2008). Surface plasmon resonance for biosensing: A mini-review. Electromagnetics, 28(3): 214 – 242.

9.       Yao, G. H., Liang, R. P., Huang, C. F., Wang, Y. and Qiu, J. D. (2013). Surface plasmon resonance sensor based on magnetic molecularly imprinted polymers amplification for pesticide recognition. Analytical Chemistry, 85(24): 11944 – 11951.

10.    Zhang, P., Chen, Y. P., Wang, W., Shen, Y. and Guo, J. S. (2016). Surface plasmon resonance for water pollutant detection and water process analysis. TrAC Trends in Analytical Chemistry, 85: 153 – 165.

11.    Olaru, A., Bala, C., Jaffrezic-Renault, N. and Aboul-Enein, H. Y. (2015). Surface plasmon resonance (SPR) biosensors in pharmaceutical analysis. Critical Reviews in Analytical Chemistry, 45(2): 97 – 105.

12.    Shrivastav, A. M., Usha, S. P. and Gupta, B. D. (2016). Fiber optic profenofos sensor based on surface plasmon resonance technique and molecular imprinting. Biosensors and Bioelectronics, 79: 150 – 157.

13.    Altintas, Z., Abdin, M. J., Tothill, A. M., Karim, K. and Tothill, I. E. (2016). Ultrasensitive detection of endotoxins using computationally designed nanoMIPs. Analytica Chimica Acta, 935: 239 – 248.

14.    Altintas, Z., Gittens, M., Guerreiro, A., Thompson, K. A., Walker, J., Piletsky, S. and Tothill, I. E. (2015). Detection of waterborne viruses using high affinity molecularly imprinted polymers. Analytical Chemistry, 87(13): 6801 – 6807.

15.    Dong, J., Peng, Y., Gao, N., Bai, J., Ning, B., Liu, M. and Gao, Z. (2012). A novel polymerization of ultrathin sensitive imprinted film on surface plasmon resonance sensor. Analyst, 137(19): 4571 – 4576.

16.    Becker, J. (2012). Plasmons as sensors. Springer Science & Business Media.

17.    Lee, K. S. and El-Sayed, M. A. (2006). Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition. The Journal of Physical Chemistry B, 110(39): 19220 – 19225.

18.    Isaacs, S. and Abdulhalim, I. (2015). Long range surface plasmon resonance with ultra-high penetration depth for self-referenced sensing and ultra-low detection limit using diverging beam approach. Applied Physics Letters, 106(19): 193701.

19.    Karabchevsky, A., Tsapovsky, L., Marks, R. S. and Abdulhalim, I. (2013). Study of immobilization procedure on silver nanolayers and detection of estrone with diverged beam surface plasmon resonance (SPR) imaging. Biosensors, 3(1): 157 – 170.

20.    Karabchevsky, A., Karabchevsky, S. and Abdulhalim, I. (2011). Fast surface plasmon resonance imaging sensor using Radon transform. Sensors and Actuators B: Chemical, 155(1): 361 – 365.

21.    Karabchevsky, A., Karabchevsky, S. and Abdulhalim, I. (2011). Nanoprecision algorithm for surface plasmon resonance determination from images with low contrast for improved sensor resolution. Journal of Nanophotonics, 5(1): 051813 – 051813.

22.    PhotoicSys (2015). SPR system user manual (Version 1.0).

 




Previous                    Content                    Next