Malaysian
Journal of Analytical Sciences Vol 21 No 6 (2017): 1373 - 1379
DOI:
10.17576/mjas-2017-2106-19
SURFACE PLASMON RESONANCE SENSOR FOR DETECTION OF PARATHION
METHYL IN WATER
(Sensor
Permukaan Plasmon Resonan bagi Pengesanan Parathion Metil di dalam Air)
Baisheng Chen1, Douglas Chiang Yon Chong1,
Xiamin Cheng2, 3, Bin Liu3, Sam Fong Yau Li1, 2*
1Department of
Chemistry,
National University of Singapore, 3 Science Drive 3,
Singapore 117543, Singapore
2NUS Environmental
Research Institute (NERI),
#02-01, T-Lab Building (TL), 5A Engineering Drive 1,
Singapore 117411, Singapore
3Department of Chemical & Biomolecular Engineering,
National University of Singapore, 4 Engineering Drive
4, Block E5 #02-17, 117585, Singapore
*Corresponding author: chmlifys@nus.edu.sg
Received: 7
November 2016; Accepted: 18 September 2017
Abstract
A
surface plasmon resonance (SPR) sensor based on molecularly imprinted polymer
(MIP) was developed for fast detection of chemical threat agents (CTAs) in
water. A portable SPR platform provided a very compact-size (L*W*H of
8.5*4.5*4.5 inch) system and the SPR sensor chip was fabricated by a facile process
with an inexpensive coating of silver as the SPR material, making possible the
sensor chip as a disposal sensor. Using methyl parathion as the simulant of
CTA, the developed SPR sensor with the recognition site showed apparent SPR
signal than Non-imprinted polymer (NIP) counterpart, suggesting the excellent
recognition of the targeted molecules. It also provided a fast responding
within 5 minutes with the limit of detection of sub-ppm level.
Keywords: molecularly imprinted polymer, surface plasmon
resonance, organophosphorus pesticide, chemical threat agents
Abstrak
Sensor
permukaan plasmon resonans (SPR) berdasarkan polimer molekul tercetak (MIP)
telah dibangunkan bagi pengesanan pantas ejen ancaman kimia (CTAs) di dalam
air. Sistem platform SPR mudah alih bersaiz padat disediakan (L*W*H 8.5*4.5*4.5
inci) dan cip sensor SPR telah diubahsuai melalui proses mudah dengan salutan
murah perak sebagai bahan SPR, menjadikan cip sensor sebagai sensor mudah
dilupuskan. Menggunakan parathion metil sebagai sasaran CTA, sensor SPR yang telah
dibangunkan dengan bahagian yang dikenalpasti itu menunjukkan isyarat jelas
daripada SPR berbanding polimer tak tercetak (NIP), menunjukkan pengenalpastian
baik bagi molekul yang disasarkan. Ia juga memberi respons yang cepat dalam
masa 5 minit dengan had pengesanan pada aras sub-ppm.
Kata kunci: polimer molekul tercetak, permukaan plasmon
resonans, racun perosak organofosforus, agen kimia berbahaya
References
1.
Chenau,
J., Fenaille, F., Simon, S., Filali, S., Volland, H., Junot, C., Carniel, E.
and Becher, F. (2014). Detection of Yersinia
pestis in environmental and food samples by intact cell immunocapture and
liquid chromatography–tandem mass spectrometry. Analytical Chemistry, 86(12): 6144 – 6152.
2.
Green,
U., Kremer, J. H., Zillmer, M. and Moldaenke, C. (2003). Detection of chemical
threat agents in drinking water by an early warning real‐time biomonitor. Environmental Toxicology, 18(6): 368 – 374.
3.
Zhang,
J. and Lee, H. K. (2006). Application of liquid-phase microextraction and
on-column derivatization combined with gas chromatography–mass spectrometry to
the determination of carbamate pesticides. Journal
of Chromatography A, 1117(1): 31 – 37.
4.
Sanagi,
M. M., Mokhtar, S. U., Wan Ibrahim, W. A. and Miskam, M. (2011). Determination
of organophosphorus pesticides by dispersive liquid-liquid microextraction
coupled with gas chromatography-electron capture detection. Malaysian Journal of Analytical Sciences,
15(2): 232 – 239.
5.
Chang,
S. Y., Tseng, W. L., Mallipattu, S. and Chang, H. T. (2005). Determination of
small phosphorus-containing compounds by capillary electrophoresis. Talanta, 66(2): 411 – 421.
6.
Tankiewicz,
M., Fenik, J. and Biziuk, M. (2011). Solventless and solvent-minimized sample
preparation techniques for determining currently used pesticides in water
samples: A review. Talanta, 86: 8 – 22.
7.
Homola
J. and Piliarik M. (2006) Surface plasmon resonance (SPR) sensors. In: Homola
J. (eds) Surface plasmon resonance based sensors. Springer Series on Chemical
Sensors and Biosensors. Springer, Berlin, Heidelberg.
8.
Abdulhalim,
I., Zourob, M. and Lakhtakia, A. (2008). Surface plasmon resonance for
biosensing: A mini-review. Electromagnetics,
28(3): 214 – 242.
9.
Yao,
G. H., Liang, R. P., Huang, C. F., Wang, Y. and Qiu, J. D. (2013). Surface
plasmon resonance sensor based on magnetic molecularly imprinted polymers
amplification for pesticide recognition. Analytical
Chemistry, 85(24): 11944 – 11951.
10.
Zhang,
P., Chen, Y. P., Wang, W., Shen, Y. and Guo, J. S. (2016). Surface plasmon
resonance for water pollutant detection and water process analysis. TrAC Trends in Analytical Chemistry, 85:
153 – 165.
11.
Olaru, A., Bala,
C., Jaffrezic-Renault, N. and Aboul-Enein, H. Y. (2015). Surface plasmon
resonance (SPR) biosensors in pharmaceutical analysis. Critical Reviews in Analytical Chemistry, 45(2): 97 – 105.
12.
Shrivastav,
A. M., Usha, S. P. and Gupta, B. D. (2016). Fiber optic profenofos sensor based
on surface plasmon resonance technique and molecular imprinting. Biosensors and Bioelectronics, 79: 150 –
157.
13.
Altintas,
Z., Abdin, M. J., Tothill, A. M., Karim, K. and Tothill, I. E. (2016).
Ultrasensitive detection of endotoxins using computationally designed nanoMIPs.
Analytica Chimica Acta, 935: 239 – 248.
14.
Altintas,
Z., Gittens, M., Guerreiro, A., Thompson, K. A., Walker, J., Piletsky, S. and Tothill,
I. E. (2015). Detection of waterborne viruses using high affinity molecularly
imprinted polymers. Analytical Chemistry,
87(13): 6801 – 6807.
15.
Dong,
J., Peng, Y., Gao, N., Bai, J., Ning, B., Liu, M. and Gao, Z. (2012). A novel
polymerization of ultrathin sensitive imprinted film on surface plasmon
resonance sensor. Analyst, 137(19): 4571
– 4576.
16.
Becker,
J. (2012). Plasmons as sensors. Springer Science & Business Media.
17.
Lee,
K. S. and El-Sayed, M. A. (2006). Gold and silver nanoparticles in sensing and
imaging: sensitivity of plasmon response to size, shape, and metal composition.
The Journal of Physical Chemistry B,
110(39): 19220 – 19225.
18.
Isaacs,
S. and Abdulhalim, I. (2015). Long range surface plasmon resonance with
ultra-high penetration depth for self-referenced sensing and ultra-low
detection limit using diverging beam approach. Applied Physics Letters, 106(19): 193701.
19.
Karabchevsky,
A., Tsapovsky, L., Marks, R. S. and Abdulhalim, I. (2013). Study of
immobilization procedure on silver nanolayers and detection of estrone with
diverged beam surface plasmon resonance (SPR) imaging. Biosensors, 3(1): 157 – 170.
20.
Karabchevsky,
A., Karabchevsky, S. and Abdulhalim, I. (2011). Fast surface plasmon resonance
imaging sensor using Radon transform. Sensors
and Actuators B: Chemical, 155(1): 361 – 365.
21.
Karabchevsky,
A., Karabchevsky, S. and Abdulhalim, I. (2011). Nanoprecision algorithm for
surface plasmon resonance determination from images with low contrast for
improved sensor resolution. Journal of
Nanophotonics, 5(1): 051813 – 051813.
22.
PhotoicSys
(2015). SPR system user manual (Version 1.0).