Malaysian Journal of Analytical Sciences Vol 21 No 6 (2017): 1389 - 1398
DOI:
10.17576/mjas-2017-2106-21
ISOLATION OF TWO BOTRYANES FROM Hypoxylon rickii AND IDENTIFICATION OF
THE ENCODING GENES
(Pemencilan Sebatian Botrien dari Hypoxylon rickii dan Pengenalpastian
Pengekodan Gen)
Afnani Alwi1, Andi Rifki Rosandy2, Farah Diba Abu Bakar1, Rozida Mohd Khalid2*
1School of Biology and Biological Sciences, Faculty of Science and
Technology
2School of Chemical Sciences and Food Technology, Faculty of Science and
Technology
Universiti Kebangsaan Malaysia, 43600
UKM Bangi, Selangor, Malaysia
*Corresponding author: rozidakhalid@ukm.edu.my
Received: 28
September 2016; Accepted: 6 March 2017
Abstract
10-oxodehydrobotrydial (1) and 4β-Acetoxy-9β,10β,15α-trihydroxyprobotrydial (2) have been isolated from Hypoxylon
rickii mycelia extract. Compound 2
is probably an intermediate of botrydial, which is a known sesquiterpene
phytotoxin. Cluster Omega and Artemis software analysis suggested that HRT6, a possible botrydial-like gene
cluster with four genes shows more than 50% similarities compared to Botrytis cinerea botrydial gene cluster,
BcBOT. A comparison between proposed
4β-Acetoxy-9β,10β,15α- trihydroxyprobotrydial (2) producing pathway and BcBOT
proposed pathway shows compatible function of each gene prediction. Further
confirmation using RNA gene knock-outs is on-going.
Keywords: Hypoxylon rickii, botryane, terpene
synthase
Abstrak
10-oksodehidrobotridial (1) dan 4β-Asetoksi-9β,10β,15α-trihidroksiprobotridial (2) telah dipencilkan dari ekstrak miselia Hypoxylon rickii. Sebatian 2
dijangkakan sebagai sebatian perantara dalam pembentukkan botridial iaitu sejenis
fitotoksin sesquiterpena. Penggunaan dua perisian Cluster Omega dan Artemis
telah berjaya mengenalpasti gen kelompok yang berkemungkinan dari H. rickii sebagai HRT6 dengan empat gen menunjukkan persamaan lebih daripada 50% berbanding
gen kelompok Botrytis cinerea, BcBOT. Perbandingan antara dengan cadangan laluan biosintesis 4β-Asetoksi-9β,10β,15α-trihidroksiprobotridial (2) dengan BcBOT menunjukkan
persamaan fungsi – fungsi gen. Pengesahan lanjut menggunakan RNA (mendiamkan
gen) sedang dijalankan.
Kata kunci: Hypoxylon rickii, botrien, terpene sintes
References
1. Breitmaier, E. (2006). General Structure: The isoprene
rule. In Terpenes : Importance,
general structure, and biosynthesis. Wiley-VCH Verlag GmbH & Co,
Weinheim: pp. 1 – 9.
2. George, D. T., Kuenstner, E. J. and Pronin, S. V.
(2015). A concise approach to paxilline indole diterpenes. Journal of the
American Chemical Society, 137(49):
15410 – 15413.
3. Kuca, K., Dohnal,
V., Jezkova, A. and Jun, D. (2008). Metabolic
pathways of T-2 toxin. Current Drug
Metabolism, 9(1): 77 – 82.
4. Colmenares, A. J., Dura, R. M. and Collado, I. G. (2002). Four new lactones from Botrytis cinerea,. Journal of
Natural Products, 65(11): 1724 – 1726.
5. Yuan, Y., Feng, Y.,
Ren, F., Niu, S., Liu, X. and Che, Y. (2013). A botryane metabolite with a new hexacyclic skeleton from an entomogenous
fungus hypocrea sp. Organic
Letters, 15(23): 6050 – 6053.
6. Collado, I. G., Sánchez, A. J. M. and
Hanson, J. R. (2007). Fungal terpene metabolites: Biosynthetic relationships
and the control of the phytopathogenic fungus Botrytis cinerea. Natural
Product Review, 24(4): 674 –
686.
7. Ju, Y. M.,
& Rogers, J. D. (1996). A revision of the genus Hypoxylon. The Mycological
Society of America Mycologia Memoir, 20: 174.
8. Stadler, M., Quang, D. N., Tomita,
A., Hashimoto, T. and Asakawa, Y. (2006). Changes in secondary metabolism
during stromatal ontogeny of Hypoxylon
fragiforme. Mycological Research, 110(7): 811 –820.
9. Quang, D. N., Hashimoto, T., Stadler,
M. and Asakawa Y. (2005). Dimeric azaphilones from the xylariaceous
ascomycete Hypoxylon rutilum. Tetrahedron, 61(35): 8451 – 8455.
10. Surup, F.,
Kuhnert, E., Liscinskij, E. and Stadler, M. (2015). Silphiperfolene-type
terpenoids and other metabolites from cultures of the tropical ascomycete Hypoxylon rickii (Xylariaceae). Natural
Products and Bioprospecting, 5(3):
167 – 173.
11. Kuhnert, E., Surup, F., Wiebach, V., Bernecker, S. and Stadler,
M. 2015. Botryane, noreudesmane and abietane terpenoids from the ascomycete Hypoxylon rickii. Phytochemistry,
117: 116 – 122.
12. Brakhage, A. A. (2013). Regulation of fungal
secondary metabolism. Nature Reviews Microbiology, 11(1): 21 – 32.
13. Smith, D. J., Burnham, M. K., Bull, J. H., Hodgson, J.
E., Ward, J. M., Browne, P., Brown, J., Barton, B., Earl, A. J. and Turner, G.
(1990). Beta-lactam antibiotic biosynthetic genes have been conserved in
clusters in prokaryotes and eukaryotes. The EMBO Journal, 9(3): 741 – 747.
14. Pinedo, C., Wang, C. M., Pradier, J. M., Dalmais, B.,
Choquer, M., Le Pêcheur, P., Morgant, G., Collado, I. G., Cane, D. E. and
Viaud, M. (2008). Sesquiterpene synthase from the botrydial biosynthetic gene
cluster of the phytopathogen Botrytis cinerea. ACS Chemical Biology, 3(12), 791 – 801.
15. Moraga, J., Dalmais, B., Izquierdo-Bueno, I., Aleu, J.,
Hanson, J. R., Hernández-Galán, R., Viaud, M., and Collado, I. G. (2016).
Genetic and molecular basis of botrydial biosynthesis: Connecting cytochrome
P450-encoding genes to biosynthetic intermediates. ACS Chemical Biology,
11(10): 2838 – 2846.