Malaysian Journal of Analytical Sciences Vol 21 No 6 (2017): 1389 - 1398

DOI: 10.17576/mjas-2017-2106-21

 

 

 

ISOLATION OF TWO BOTRYANES FROM Hypoxylon rickii AND IDENTIFICATION OF THE ENCODING GENES

 

(Pemencilan Sebatian Botrien dari Hypoxylon rickii dan Pengenalpastian Pengekodan Gen)

 

Afnani Alwi1, Andi Rifki Rosandy2, Farah Diba Abu Bakar1, Rozida Mohd Khalid2*

 

1School of Biology and Biological Sciences, Faculty of Science and Technology

2School of Chemical Sciences and Food Technology, Faculty of Science and Technology

Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

 

*Corresponding author:  rozidakhalid@ukm.edu.my

 

 

Received: 28 September 2016; Accepted: 6 March 2017

 

 

Abstract

10-oxodehydrobotrydial (1) and 4β-Acetoxy-9β,10β,15α-trihydroxyprobotrydial (2) have been isolated from Hypoxylon rickii mycelia extract. Compound 2 is probably an intermediate of botrydial, which is a known sesquiterpene phytotoxin. Cluster Omega and Artemis software analysis suggested that HRT6, a possible botrydial-like gene cluster with four genes shows more than 50% similarities compared to Botrytis cinerea botrydial gene cluster, BcBOT. A comparison between proposed 4β-Acetoxy-9β,10β,15α- trihydroxyprobotrydial (2) producing pathway and BcBOT proposed pathway shows compatible function of each gene prediction. Further confirmation using RNA gene knock-outs is on-going.

 

Keywords:  Hypoxylon rickii, botryane, terpene synthase

 

Abstrak

10-oksodehidrobotridial (1) dan 4β-Asetoksi-9β,10β,15α-trihidroksiprobotridial (2) telah dipencilkan dari ekstrak miselia Hypoxylon rickii. Sebatian 2 dijangkakan sebagai sebatian perantara dalam pembentukkan botridial iaitu sejenis fitotoksin sesquiterpena. Penggunaan dua perisian Cluster Omega dan Artemis telah berjaya mengenalpasti gen kelompok yang berkemungkinan dari H. rickii sebagai HRT6 dengan empat gen menunjukkan persamaan lebih daripada 50% berbanding gen kelompok Botrytis cinerea, BcBOT. Perbandingan antara dengan cadangan laluan biosintesis 4β-Asetoksi-9β,10β,15α-trihidroksiprobotridial (2) dengan BcBOT menunjukkan persamaan fungsi – fungsi gen. Pengesahan lanjut menggunakan RNA (mendiamkan gen) sedang dijalankan.

 

Kata kunci:  Hypoxylon rickii, botrien, terpene sintes

 

References

1.       Breitmaier, E. (2006). General Structure: The isoprene rule. In Terpenes : Importance, general structure, and biosynthesis. Wiley-VCH Verlag GmbH & Co, Weinheim: pp. 1 – 9.

2.       George, D. T., Kuenstner, E. J. and Pronin, S. V. (2015). A concise approach to paxilline indole diterpenes. Journal of the American Chemical Society, 137(49): 15410 – 15413.

3.       Kuca, K., Dohnal, V., Jezkova, A. and Jun, D. (2008). Metabolic pathways of T-2 toxin. Current Drug Metabolism, 9(1): 77 – 82.

4.       Colmenares, A. J., Dura, R. M. and Collado, I. G. (2002). Four new lactones from Botrytis cinerea,. Journal of Natural Products, 65(11): 1724 – 1726.

5.       Yuan, Y., Feng, Y., Ren, F., Niu, S., Liu, X. and Che, Y. (2013). A botryane metabolite with a new hexacyclic skeleton from an entomogenous fungus hypocrea sp. Organic Letters, 15(23): 6050 – 6053.

6.       Collado, I. G., Sánchez, A. J. M. and Hanson, J. R. (2007). Fungal terpene metabolites: Biosynthetic relationships and the control of the phytopathogenic fungus Botrytis cinerea. Natural Product Review, 24(4): 674 – 686.

7.       Ju, Y. M., & Rogers, J. D. (1996). A revision of the genus Hypoxylon. The Mycological Society of America Mycologia Memoir, 20: 174.

8.       Stadler, M., Quang, D. N., Tomita, A., Hashimoto, T. and Asakawa, Y. (2006). Changes in secondary metabolism during stromatal ontogeny of Hypoxylon fragiforme. Mycological Research, 110(7): 811 –820.

9.       Quang, D. N., Hashimoto, T., Stadler, M. and Asakawa Y. (2005). Dimeric azaphilones from the xylariaceous ascomycete Hypoxylon rutilum. Tetrahedron, 61(35): 8451 – 8455.

10.    Surup, F., Kuhnert, E., Liscinskij, E. and Stadler, M. (2015). Silphiperfolene-type terpenoids and other metabolites from cultures of the tropical ascomycete Hypoxylon rickii (Xylariaceae). Natural Products and Bioprospecting, 5(3): 167 – 173.

11.    Kuhnert, E., Surup, F., Wiebach, V., Bernecker, S. and Stadler, M. 2015. Botryane, noreudesmane and abietane terpenoids from the ascomycete Hypoxylon rickii. Phytochemistry, 117: 116 – 122.

12.    Brakhage, A. A. (2013).  Regulation  of  fungal secondary metabolism. Nature Reviews Microbiology, 11(1): 21 – 32.

13.    Smith, D. J., Burnham, M. K., Bull, J. H., Hodgson, J. E., Ward, J. M., Browne, P., Brown, J., Barton, B., Earl, A. J. and Turner, G. (1990). Beta-lactam antibiotic biosynthetic genes have been conserved in clusters in prokaryotes and eukaryotes. The EMBO Journal, 9(3): 741 – 747.

14.    Pinedo, C., Wang, C. M., Pradier, J. M., Dalmais, B., Choquer, M., Le Pêcheur, P., Morgant, G., Collado, I. G., Cane, D. E. and Viaud, M. (2008). Sesquiterpene synthase from the botrydial biosynthetic gene cluster of the phytopathogen Botrytis cinerea. ACS Chemical Biology, 3(12), 791 – 801.

15.    Moraga, J., Dalmais, B., Izquierdo-Bueno, I., Aleu, J., Hanson, J. R., Hernández-Galán, R., Viaud, M., and Collado, I. G. (2016). Genetic and molecular basis of botrydial biosynthesis: Connecting cytochrome P450-encoding genes to biosynthetic intermediates. ACS Chemical Biology, 11(10): 2838 – 2846.

 




Previous                    Content                    Next