Malaysian Journal of Analytical Sciences Vol 21 No 6 (2017): 1423 - 1431

DOI: 10.17576/mjas-2017-2106-25

 

 

 

CHEMICAL MODIFICATION OF EPOXIDIZED PALM OIL FOR BIOLUBRICANT APPLICATION

 

(Pengubahsuaian Kimia Minyak Sawit Terepoksida Untuk Aplikasi Biopelincir)

 

Nurazira Mohd Nor, Darfizzi Derawi, Jumat Salimon*

 

School of Chemical Sciences and Food Technology,

Faculty of Science and Technology,

Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

 

*Corresponding author:  jumat@ukm.edu.my

 

 

Received: 28 September 2016; Accepted: 6 March 2017

 

 

Abstract

Refined, bleached and deodorized (RBD) palm oil is one of the interesting renewable resources in biolubricant application. It is due to some advantages such as biodegradable, non-toxic, excellent lubricity and high viscosity index properties. However, direct application of RBD palm oil as biolubricant is restricted due to its poor low temperature property, which limits its use at low operating temperature. This drawback can be overcome by molecule structural redesign through chemical modification process. To produce palm oil based biolubricant with good pour point, epoxidized palm oil (EPO) was chemically modified via ring opening process. EPO was reacted with oleic acid in the presence of p-toluenesulfonic acid (PTSA) as catalyst. The molecular structure confirmation of ring opening product which is palm oil hydroxy oleate (POHO) was proven through the oxirane oxygen content (OOC) value, iodin value, hydroxyl value, Fourier transformation infra-red (FTIR), proton and carbon nuclear magnetic resonance (1H-NMR and 13C-NMR) spectroscopy analysis. The physicochemical properties of POHO were determined through its pour point and flash point values. The results showed that the ring opening process for putting bending and branching molecule structures of the oil have improved the pour point (-8.5 oC) and increased the flash point of the biolubricant (255 oC).

 

Keywords:  epoxidized palm oil, oleic acid, ring opening, pour point

 

Abstrak

Minyak sawit tertapis, terluntur dan terbau (RBD) merupakan salah satu sumber boleh diperbaharui yang menarik dalam penghasilan biopelincir. Ini adalah disebabkan oleh kelebihannya seperti boleh dibiodegradasikan, tidak bersifat toksik, mempunyai kebolehpelinciran yang cemerlang dan indeks kelikatan yang tinggi. Walau bagaimanapun, penggunaan secara terus  mintak masa RBD sebagai biopelincir adalah terhad disebabkan oleh sifat suhu rendah yang lemah, yang telah mengehadkan penggunaannya dalam operasi bersuhu rendah. Kelemahan ini boleh diatasi dengan melakukan ubahsuai struktur molekul melalui pengubahsuaian kimia. Dalam usaha untuk menghasilkan biopelincir berasaskan minyak sawit dengan nilai takat tuang yang baik, minyak sawit terepoksida telah diubahsuai secara kimia melalui proses pembukaan gelang epoksida. Minyak sawit terepoksida  ditindakbalaskan dengan asid oleik dengan kehadiran asid p-toluenasulfonik (PTSA) sebagai mangkin. Pengecaman struktur molekul hasil pembukaan gelang epoksida iaitu hidroksi oleate minyak sawit (POHO) dibuktikan melalui nilai kandungan oksigen oksiran, nilai iodin, nilai hidroksil, spektroskopi Infra merah transformasi Fourier (FTIR), proton dan karbon resonans magnetik nuklear (1H-NMR dan 13C-NMR). Sifat fiziko-kimia POHO ditentukan melalui nilai takat tuang dan takat kilat. Hasil kajian menunjukkan proses pembukaan gelang epoksida dengan penambahan struktur molekul bercabang dan bengkok minyak telah memperbaiki nilai takat tuang (-8.5 oC) dan meningkatkan nilai takat kilat biopelincir (255 oC).

 

Kata kunci:  minyak sawit terepoksida, asid oleik, pembukaan gelang, takat tuang

 

References

1.       Salimon, J. and Salih, N. (2010). Modification of epoxidized ricinoleic acid for biolubricant base oil with improved flash and pour points. Asian Journal of Chemistry, 22(7): 5468 – 5476.

2.       Salimon, J. and Salih, N. (2009). Substituted esters of octadecanoic acid as potential biolubricants. European Journal of Scientific Research, 31(2): 273 – 227.

3.       Salimon, J. and Salih, N. (2009). Oleic acid diesters: Synthesis, characterization and low temperature properties. European Journal of Scientific Research, 32(2): 216 – 222.

4.       Cerretani, L.A., Bendini, M.T.R., Estrada, E., Vittadini. and Chiavaro, E. (2009). Microwave heating of different commercial categories of olive oil: part I. effect on chemical oxidative stability indices and phenolic compounds. Food Chemistry, 115: 1381 – 1388.

5.       Salimon, J., Salih, N. and Yousif, E. (2011). Chemically modified biolubricant basestocks from epoxidized oleic acid: Improved low temperature properties and oxidative stability. Journal of Saudi Chemical Society, 15: 195 – 201.

6.       Njoku, P. C., Egbukole, M. O. and Enenebeaku, C. K. (2010). Physio-chemical characteristics and dietary metal levels of oil from Elaeis guineensis species. Pakistan Journal of Nutrition, 9(2): 137 – 140.

7.       Yunus, R., Razi, A. F., Iyuke T. L. and Idris, A. (2003). Preparation and characterization of trimethylolpropane esters from palm kernel oil methyl esters. Journal of Oil Palm Research, 15(2): 42 – 49.

8.       Sharma, B. K., Doll, K. M. and Erhan, S. Z. (2008). Ester hydroxy derivatives of methyl oleate: tribological, oxidation and low temperature properties. Bioresource Technology, 99: 7333 – 7340.

9.       Salimon, J., Abdullah, B. M., Yusop, R. M., Salih, N. and Yousif, E. (2013). Synthesis and optimization ring opening of monoepoxide linoleic acid using p-toluenesulfonic acid. SpringerPlus, 2: 429.

10.    Lathi, P. and Mattiasson, B. (2007). Green approach for the preparation of biodegradable lubricant base stock from epoxidized vegetable oil. Applied Catalysis B: Environmental, 69(3-4): 207 – 212.

11.    Wang, R. and Schuman, T.P. (2013). Vegetable oil-derived epoxy monomers and polymer blends: A comparative study with review. Express Polymer Letters, 7(3): 272 – 292.

12.    Salimon, J., Salih, N. and Abdullah, B. M. (2011). Improvement of physicochemical characteristics of monoepoxide linoleic acid ring opening for biolubricant base oil. Journal of Biomedicine and Biotechnology, 10: 1155

13.    Baumann, H., Buehler, M., Fochem, H., Hirsinger, F., Zoebelein, H. and Falbe, J. (1988). Natural fats and oils – renewable raw materials for the chemical industry. Angewandte Chemie, 27(1): 41 – 62.

14.    Schuster, H., Rios, L. A., Weckes, P. P. and Hoelderich, W. F. (2008). Heterogeneous catalysts for the production of new lubricants with unique properties. Applied Catalysis A, 348(2): 266 – 270.

15.    American Oil Chemists Society (1998). Official methods and recommended practices of the American Oil Chemists Society. AOCS Press.

16.    Kuntom, A., Lin, S. W., Ai, T. Y., Idris, N. A., Yusof, M., Sue, T. T. and Ibrahim, N. A. (2004). MPOB test methods – a compendium of test on palm oil products, palm kernel products, fatty acids, food related products and others. Bangi: MPOB.

17.    American Society for Testing and Materials (2006). Annual Book of ASTM Standards. West Conshohocken. ASTM International.

18.    Hwang, H. S. and Erhan, S. Z. (2001). Modification of epoxidized soybean oil for lubricant formulation with improved oxidative stability and low pour point. Journal of the American Oil Chemist Society, 78(12): 1179 – 1184.

19.    Pavia, D. L., Lampman, G. M., Kriz, G. S. and Vyvyan, J. R. (2001). Introduction of spectroscopy. fourth edition. Nelson Education, Ltd, Canada.

20.    Sharma, A., Adhvaryu, A., Liu, Z. and Erhan, S. Z. (2006). Chemical modification of vegetable oils for lubricant applications. Journal of the American Oil Chemist Society, 83: 129 – 136.

 




Previous                    Content                    Next