Malaysian
Journal of Analytical Sciences Vol 21 No 6 (2017): 1423 - 1431
DOI:
10.17576/mjas-2017-2106-25
CHEMICAL MODIFICATION OF EPOXIDIZED PALM OIL FOR BIOLUBRICANT
APPLICATION
(Pengubahsuaian
Kimia Minyak Sawit Terepoksida Untuk Aplikasi Biopelincir)
Nurazira
Mohd Nor, Darfizzi Derawi, Jumat Salimon*
School of
Chemical Sciences and Food Technology,
Faculty of
Science and Technology,
Universiti
Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
*Corresponding author: jumat@ukm.edu.my
Received: 28
September 2016; Accepted: 6 March 2017
Abstract
Refined,
bleached and deodorized (RBD) palm oil is one of the interesting renewable
resources in biolubricant application. It is due to some advantages such as
biodegradable, non-toxic, excellent lubricity and high viscosity index
properties. However, direct application of RBD palm oil as biolubricant is
restricted due to its poor low temperature property, which limits its use at
low operating temperature. This drawback can be overcome by molecule structural
redesign through chemical modification process. To produce palm oil based
biolubricant with good pour point, epoxidized palm oil (EPO) was chemically
modified via ring opening process. EPO was reacted with oleic acid in the
presence of p-toluenesulfonic acid
(PTSA) as catalyst. The molecular structure confirmation of ring opening product
which is palm oil hydroxy oleate (POHO) was proven through the oxirane oxygen
content (OOC) value, iodin value, hydroxyl value, Fourier transformation
infra-red (FTIR), proton and carbon nuclear magnetic resonance (1H-NMR
and 13C-NMR) spectroscopy analysis. The physicochemical properties
of POHO were determined through its pour point and flash point values. The
results showed that the ring opening process for putting bending and branching
molecule structures of the oil have improved the pour point (-8.5 oC)
and increased the flash point of the biolubricant (255 oC).
Keywords: epoxidized palm oil, oleic acid, ring opening,
pour point
Abstrak
Minyak sawit tertapis,
terluntur dan terbau (RBD) merupakan salah satu sumber boleh diperbaharui yang
menarik dalam penghasilan biopelincir. Ini adalah disebabkan oleh kelebihannya
seperti boleh dibiodegradasikan, tidak bersifat toksik, mempunyai
kebolehpelinciran yang cemerlang dan indeks kelikatan yang tinggi. Walau
bagaimanapun, penggunaan secara terus
mintak masa RBD sebagai biopelincir adalah terhad disebabkan oleh sifat
suhu rendah yang lemah, yang telah mengehadkan penggunaannya dalam operasi
bersuhu rendah. Kelemahan ini boleh diatasi dengan melakukan ubahsuai struktur
molekul melalui pengubahsuaian kimia. Dalam usaha untuk menghasilkan
biopelincir berasaskan minyak sawit dengan nilai takat tuang yang baik, minyak
sawit terepoksida telah diubahsuai secara kimia melalui proses pembukaan gelang
epoksida. Minyak sawit terepoksida
ditindakbalaskan dengan asid oleik dengan kehadiran asid p-toluenasulfonik (PTSA) sebagai
mangkin. Pengecaman struktur molekul hasil pembukaan gelang epoksida iaitu
hidroksi oleate minyak sawit (POHO) dibuktikan melalui nilai kandungan oksigen
oksiran, nilai iodin, nilai hidroksil, spektroskopi Infra merah transformasi
Fourier (FTIR), proton dan karbon resonans magnetik nuklear (1H-NMR
dan 13C-NMR). Sifat fiziko-kimia POHO ditentukan melalui nilai takat
tuang dan takat kilat. Hasil kajian menunjukkan proses pembukaan gelang
epoksida dengan penambahan struktur molekul bercabang dan bengkok minyak telah
memperbaiki nilai takat tuang (-8.5 oC) dan meningkatkan nilai takat
kilat biopelincir (255 oC).
Kata kunci: minyak sawit terepoksida, asid oleik,
pembukaan gelang, takat tuang
References
1.
Salimon,
J. and Salih, N. (2010). Modification of epoxidized ricinoleic acid for
biolubricant base oil with improved flash and pour points. Asian Journal of Chemistry, 22(7): 5468 – 5476.
2.
Salimon,
J. and Salih, N. (2009). Substituted esters of octadecanoic acid as potential
biolubricants. European Journal of
Scientific Research, 31(2): 273 – 227.
3.
Salimon,
J. and Salih, N. (2009). Oleic acid diesters: Synthesis, characterization and
low temperature properties. European
Journal of Scientific Research, 32(2): 216 – 222.
4.
Cerretani,
L.A., Bendini, M.T.R., Estrada, E., Vittadini. and Chiavaro, E. (2009). Microwave
heating of different commercial categories of olive oil: part I. effect on
chemical oxidative stability indices and phenolic compounds. Food Chemistry, 115: 1381 – 1388.
5.
Salimon,
J., Salih, N. and Yousif, E. (2011). Chemically modified biolubricant
basestocks from epoxidized oleic acid: Improved low temperature properties and
oxidative stability. Journal of Saudi
Chemical Society, 15: 195 – 201.
6.
Njoku,
P. C., Egbukole, M. O. and Enenebeaku, C. K. (2010). Physio-chemical
characteristics and dietary metal levels of oil from Elaeis guineensis
species. Pakistan Journal of Nutrition,
9(2): 137 – 140.
7.
Yunus,
R., Razi, A. F., Iyuke T. L. and Idris, A. (2003). Preparation and
characterization of trimethylolpropane esters from palm kernel oil methyl
esters. Journal of Oil Palm Research,
15(2): 42 – 49.
8.
Sharma,
B. K., Doll, K. M. and Erhan, S. Z. (2008). Ester hydroxy derivatives of methyl
oleate: tribological, oxidation and low temperature properties. Bioresource Technology, 99: 7333 – 7340.
9.
Salimon,
J., Abdullah, B. M., Yusop, R. M., Salih, N. and Yousif, E. (2013). Synthesis and
optimization ring opening of monoepoxide linoleic acid using p-toluenesulfonic
acid. SpringerPlus, 2: 429.
10.
Lathi,
P. and Mattiasson, B. (2007). Green approach for the preparation of
biodegradable lubricant base stock from epoxidized vegetable oil. Applied Catalysis B: Environmental,
69(3-4): 207 – 212.
11.
Wang,
R. and Schuman, T.P. (2013). Vegetable oil-derived epoxy monomers and polymer
blends: A comparative study with review. Express
Polymer Letters, 7(3): 272 – 292.
12.
Salimon,
J., Salih, N. and Abdullah, B. M. (2011). Improvement of physicochemical
characteristics of monoepoxide linoleic acid ring opening for biolubricant base
oil. Journal of Biomedicine and
Biotechnology, 10: 1155
13.
Baumann,
H., Buehler, M., Fochem, H., Hirsinger, F., Zoebelein, H. and Falbe, J. (1988).
Natural fats and oils – renewable raw materials for the chemical industry. Angewandte Chemie, 27(1): 41 – 62.
14.
Schuster,
H., Rios, L. A., Weckes, P. P. and Hoelderich, W. F. (2008). Heterogeneous catalysts
for the production of new lubricants with unique properties. Applied Catalysis A, 348(2): 266 – 270.
15.
American
Oil Chemists Society (1998). Official methods and recommended practices of the
American Oil Chemists Society. AOCS
Press.
16.
Kuntom,
A., Lin, S. W., Ai, T. Y., Idris, N. A., Yusof, M., Sue, T. T. and Ibrahim, N.
A. (2004). MPOB test methods – a compendium of test on palm oil products, palm
kernel products, fatty acids, food related products and others. Bangi: MPOB.
17.
American
Society for Testing and Materials (2006). Annual Book of ASTM Standards. West
Conshohocken. ASTM International.
18.
Hwang,
H. S. and Erhan, S. Z. (2001). Modification of epoxidized soybean oil for
lubricant formulation with improved oxidative stability and low pour point. Journal of the American Oil Chemist Society,
78(12): 1179 – 1184.
19.
Pavia,
D. L., Lampman, G. M., Kriz, G. S. and Vyvyan, J. R. (2001). Introduction of
spectroscopy. fourth edition. Nelson Education, Ltd, Canada.
20.
Sharma,
A., Adhvaryu, A., Liu, Z. and Erhan, S. Z. (2006). Chemical modification of
vegetable oils for lubricant applications. Journal
of the American Oil Chemist Society, 83: 129 – 136.