Malaysian Journal of Analytical Sciences Vol 22 No 3 (2018): 391 - 403

DOI: 10.17576/mjas-2018-2203-04

 

 

 

KAJIAN KELIKATAN PELARUT EUTEKTIK RELINA TERHADAP PENGEKSTRAKAN α-TOKOFEROL DARIPADA MINYAK SAWIT MENTAH

 

(Study on Viscosity of Reline Deep Eutectic Solvent on The α-Tocopherol Extraction From Crude Palm Oil)

 

Noor Hasyimah Hussain, Zetty Shafiqa Othman, Edison Eukun Sage, Rozida Mohd Khalid, Nur Hasyareeda Hassan*

 

Pusat Pengajian Sains Kimia dan Teknologi Makanan,

Fakulti Sains dan Teknologi,

Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

 

*Pengarang utama:   syareeda@ukm.edu.my

 

 

Received: 7 June 2017; Accepted: 14 March 2018

 

 

Abstrak

DES Relina diklasifikasikan sebagai pelarut hijau dan serasi untuk digunakan bagi pengekstrakan α-tokoferol (α-T) daripada minyak sawit mentah (CPO) kerana kemampuannya untuk membentuk ikatan hidrogen yang kuat dengan molekul α-T. Kepekatan dan hasil α-T dikuantifikasi menggunakan kromatografi cecair prestasi tinggi fasa berbalik (RP-HPLC). Dua parameter dikaji melalui penggunaan lima siri nisbah CPO: DES relina (1: 1, 1: 2, 1: 3, 1: 4 dan 1: 5) pada 2 dan 3 jam masa pengekstrakan untuk mengenalpasti keadaan optimum bagi pengekstrakan α-T. Kepekatan α-T untuk semua sampel yang diekstrak dibandingkan dengan kawalan (tanpa DES relina) memberikan nisbah 1: 2 (CPO: DES relina) dengan kelikatan pelarut 5.7 ± 0:58 cP pada 3 jam masa pengekstrakan sebagai keadaan pengekstrakan terbaik bagi mendapatkan kepekatan α-T tertinggi iaitu 825.321 ± 74.27 mg / L dengan keberhasilan 0.1554 ± 0.0156 (%). Perkara ini menunjukkan bahawa keadaan tersebut merupakan keadaan yang paling kondusif bagi penyerapan molekul α-T ke dalam ruang kosong dalam struktur pelarut di mana molekul α-T dan DES relina berinteraksi melalui ikatan hidrogen. Ikatan hidrogen yang kuat terbentuk antara kumpulan –OH α-T dengan kumpulan amina –NH2 DES relina merupakan faktor peningkatan keupayaan DES relina untuk mengekstrak sebatian α-T yang tinggi daripada CPO.

 

Kata kunci:  penderma ikatan hidrogen, pelarut eutektik dalam relina, tokoferol, kelikatan

 

Abstract

Reline DES was classified as a green solvent and compatible to be used for α-tocopherol (α-T) extraction from crude palm oil (CPO) due to its ability to form strong hydrogen bond with α-T molecule. The α-T concentration and yield was quantified using reverse phase high performance liquid chromatography (RP-HPLC). Two parameters were studied through utilization of five CPO: Reline DES ratio series (1:1, 1:2, 1:3, 1:4 and 1:5) at 2 and 3 hours extraction time in determining optimize α-T extraction condition. Concentration of α-T for all extracted samples was compared to the control (without reline DES) resulted towards CPO: Reline DES ratio of 1:2 with solvent viscosity of 5.7 ± 0.58 cP at 3 hours extraction time as the best condition to obtain the highest α-T concentration of 825.321 ± 74.27 mg/L with the yield of 0.1554 ± 0.0156 (%). It can be concluded that this condition is the most conducive for α-T molecules diffusion into free space of solvent structure in which molecules of α-T and reline DES interact through hydrogen bond. The strong hydrogen bond formed between –OH group of α-T and -NH2 group of reline DES is the factor enhancing the capability of reline DES to extract higher α-T compound from CPO. 

 

Keywords:  hydrogen bond donor, reline deep eutectic solvent, tocopherol, viscosity

 

References

1.       Mazlan, M., Wan Ngah, W. Z., Mat Top, G. and Then, S. M. (2010). Comparison of the effects of Α- tocopherol and Γ-tocotrienol against oxidative stress in two different neuronal cultures. Sains Malaysiana, 39:145-56.

2.       Top, N. M. H. G. M., Ngan, C. Y. M. M. A., Ma, N. M. H. Y. M. and Wahid, A. N. M. B. (2006). Palm tocols (tocopherols and tocotrienols) as a standard reference materials (MRM 3).  Bangi: Malaysian Palm Oil Board, Ministry of Plantation Industries and Commodities, Malaysia.

3.       Goh, S. H., Choo, Y. M. and Ong, S. H. (1985). Minor constituents of palm oil.  Journal of the American Oil Chemists’ Society, 62(2): 237-240.

4.       Ng, M. H, Choo, Y. M., Ma, A. N., Chuah, C. H. and Hashim, M. A.  (2004). Separation of vitamin E (tocopherol, tocotrienol, and tocomonoenol) in palm oil.  Lipids, 39(10): 1031-1035.

5.       Ng, M. H., Choo Y. M., Ma A. N., Chuah C. H. and Hashim, M. A. (2004). Isolation of palm tocols using supercritical fluid chromatography.  Journal of Chromatographic Science, 42(10):1031-1035.

6.       Choo, Y. M., Ng, M. H., Ma, A. N., Chuah, C. H. and Hashim, M. A. (2005). Application of supercritical fluid chromatography in the quantitative analysis of minor components (carotenes, vitamin e, sterols, and squalene) from palm oil. Lipids, 40(4): 429-432.

7.       Goossens, B. and Marion, J. (2011). Quantifying vitamin E in vegetable oils with reversed-phase high performance liquid chromatography. Journal of Analytical Chemistry, 2: 44-50.

8.       Ruperez, F. J., Martın, D., Herrera, E. and Barbas, C. (2001). Chromatographic Analysis of Αlpha-Tocopherol and Related Compounds in Various Matrices. Journal of chromatography A, 935(1): 45-69.

9.       Sanagi, M. M., See, H. H., Ibrahim, W. A. W., and Naim, A. A. (2005). Determination of carotene, tocopherols and tocotrienols in residue oil from palm pressed fiber using pressurized liquid extraction-normal phase liquid chromatography.  Analytica Chimica Acta, 538(1–2): 71-76.

10.    Johnson, L. A. and Lusas, E. W. (1983). Comparison of alternative solvents for oils extraction.  Journal of the American Oil Chemists’ Society, 60(2): 229-242.

11.    Nam, M. W., Zhao, J., Lee, M. S., Jeong, J. H. and Lee, J. (2015).  Enhanced extraction of bioactive natural products using tailor-made deep eutectic solvents: application to flavonoid extraction from Flos Sophorae. Green Chemistry, 17(3):1718-1727.

12.    Hayyan, M., Mjalli, F. S., Hashim, M. A. and AlNashef, I. M. (2010). A novel technique for separating glycerine from palm oil-based biodiesel using ionic liquids. Fuel Process Technology, 91: 116-120.

13.    Zhang, Q., Vigier, D. O., Royer, K., S. and Jerome, F. (2012). Deep eutectic solvents: Syntheses, properties and applications.  Chemical Society Reviews, 41(21): 7108-7146.

14.    Abbott, A. P., Cullis, P. M., Gibson, M. J. Harris R. C. and Raven E. (2007). Extraction of gylcerine from biodiesel into eutectic based ionic liquid. Green Chemistry, 9: 868-872.

15.    Nu’man, A. H., Ng, M., Choo, Y., Hashim, M. and Jayakumar, N. (2015). Performance of choline-based deep eutectic solvents in the extraction of tocols from crude palm oil.  Journal of American Oil Chemical Society, 92(11-12): 1709-1716.

16.    Cvjetko, B. M., Ćurko, N., Tomašević, M., Kovačević Ganić, K. and Radojčić Redovniković, I.  (2016). Green extraction of grape skin phenolics by using deep eutectic solvents.  Food Chemistry, 200: 159-166.

17.    Pavia, L. D., Lampman, M. G., Kriz, S. G. and Vyvyan, R. J. (2009). Introduction to spectroscopy. Brooks/Cole Cengage Learning, 4rd Ed. Canada: Lisa Lockwood.

18.    Qamar, A. and Leo, B. (2011). Anodic dissolution of refractory metals in choline chloride based binary mixtures. The Electrochemical Society ECS Transactions, 33(30): 57-67.

19.    Zaira, M. (2014). Deep eutectic solvents: Properties and biocatalytic applications. Thesis PhD, University (Rheinisch-Westfälische Technische Hochschule Aachen), Germany.

20.    Lobo, R. H. (2013). Synthesis of novel colorants for dye-sensitized solar cells and use of greener protocols for heterocyclic synthesis. Thesis PhD. Institute of Chemical Technology, India.

21.    D’Agostino, C., Gladden, L. F., Mantle, M. D., Abbott, A. P., Essa, I. A., Al-Murshedi, A. Y. and Harris, R. C. (2015). Molecular and ionic diffusion in aqueous–deep eutectic solvent mixtures: Probing inter-molecular interactions using PFG NMR. Physical Chemistry Chemical Physics, 17(23): 15297-15304.

22.    Yue, D., Jia, Y., Yao, Y., Sun, J. and Jing, Y. (2012). Structure and electrochemical behavior of ionic liquid analogue based on choline chloride and urea.  Electrochimica Acta, 65: 30-36.

23.    Dai, Y., Van S., J., Witkamp, G.-J., Verpoorte, R. and Choi, Y. H.  (2013). Ionic liquids and deep eutectic solvents in natural products research: Mixtures of solids as extraction solvents. Journal of Natural Products, 76(11): 2162-2173.

24.    Durand, E., Lecomte, J. and Villeneuve, P. (2013). Deep eutectic solvents: Synthesis, application, and focus on lipase-catalyzed reactions. European Journal of Lipid Science and Technology, 115(4): 379-385.

25.    Xiaolei, N., Xing, H., Yang, Q., Wang, J., Su, B., Bao, Z. and Ren, Q. (2012). Selective liquid–liquid extraction of natural phenolic compounds using amino acid ionic liquids: a case of α-tocopherol and methyl linoleate separation. Industrial & Engineering Chemistry Research, 51(18): 6480-6488.

26.    Haiying, D. (2013). Low transition- temperature mixtures (LTTMs): New generation of designer solvents. Acess from http://ism2.univ-amu.fr/fichiers_pdf/seminaires-stereo/2013-07-15-biblio-2013-04-08-haiying-DU.pdf [23 March 2016].

27.    Abbott, A. P., Glen, C. and Stephen, G. (2006). Design of improved deep eutectic solvents using hole theory. European Journal of Chemical Physics and Physical Chemistry, 7(4): 803-806.

28.    Dubbs, M. D. and Gupta, R. B. (1998). Solubility of vitamin E (α-tocopherol) and vitamin K3 (menadione) in ethanol− water mixture. Journal of Chemical & Engineering Data43(4): 590-591.

29.    Dai, Y, Van Spronsen, J., Witkamp, G. J., Verpoorte, R. and Choi, Y. H. (2013). Natural deep eutectic solvents as new potential media for green technology. Analytica Chimica Acta, 766: 61-68.

 




Previous                    Content                    Next