Malaysian Journal of Analytical Sciences Vol 22 No 3 (2018): 441 - 445

DOI: 10.17576/mjas-2018-2203-09

 

 

 

SUPERCONDUCTING PROPERTIES OF Y2Ba5Cu8Oδ (Y258) POROUS AND NON-POROUS STRUCTURE

 

(Sifat Superkonduktor Y2Ba5Cu8Oδ (Y258) Struktur Berliang dan Tidak Berliang)

 

Suazlina Mat Ali1, Syamsyir Akmal Senawi2, Azhan Hashim2*, Azman Kasim2, Wan Aizuddin Wan Razali2, Hartini Ahmad Rafaie2, Norihan Yahya2

 

1Faculty of Applied Sciences,

Universiti Teknologi MARA Shah Alam, 40450 Shah Alam, Selangor, Malaysia

2Faculty of Applied Sciences,

Universiti Teknologi MARA Pahang, 26400 Bandar Jengka, Pahang, Malaysia

 

*Corresponding author:  dazhan@pahang.uitm.edu.my

 

 

Received: 4 December 2016; Accepted: 1 December 2017

 

 

Abstract

Solid state reaction method was applied to produce porous and non-porous ceramic materials through a series of heating and grinding. This study revealed the distinguish properties of Y258 in terms of their porous and non-porous structure. The bulk material usually loses its high temperature features due to increase in critical current density. Therefore, it is essential to investigate the porous structure that influences the superconducting properties. The electrical properties of superconductor due to critical temperature, Tc and critical current density, Jc were determined using Resistivity Measurement System (RMS). The morphological structure of superconductor material was analysed by using Scanning Electron Microscopy (SEM). The grain boundary of porous structure is significant to induce higher conductivity without detriment the critical temperature of the superconductor. The higher Jc recorded for porous Y258 was 1.59 A/cm2 at 50 K. The Jc value was higher compared to non-porous optimal structure which is 1.42 A/cm2. The Tc zero for porous and non-porous sample gives the same value which is 78 K for both samples. Results of Y247 doped with Ca were determined for comparison.

 

Keywords:  porous, non-porous, critical temperature, current density, morphology

 

Abstrak

Kaedah tindak balas keadaan pepejal telah diaplikasikan bagi menghasilkan seramik berliang dan tidak berliang melalui siri-siri pembakaran dan kisaran. Kajian yang telah dilakukan adalah berkisar kepada perbandingan  sifat superkonduktor Y258 berliang dan tidak berliang. Bahan pukal kebiasaannya hilang bersifat suhu tinggi disebabkan peningkatan dalam ketumpatan arus. Oleh yang demikian, adalah satu keperluan bagi mengkaji sifat struktur berliang dalam mempengaruhi sesuatu sifat superkonduktor. Sifat elektrik superkonduktor melalui suhu genting dan ketumpatan arus genting adalah ditentukan menggunakan Sistem Pengukuran Rintangan (RMS). Struktur permukaan superkonduktor dianalisis melalui Mikroskop Imbasan Elektron (SEM). Sempadan butiran bagi struktur berliang adalah penting bagi mempengaruhi kekonduksian yang lebih tinggi tanpa menjejaskan nilai suhu genting superkonduktor. Dapatan tertinggi Jc melibatkan Y258 berliang adalah 1.59 A/cm2 pada suhu 50 K. Nilai Jc adalah tinggi dibandingkan dengan struktur optimum tidak berliang sekitar 1.42 A/cm2. Tc sifar bagi sampel berliang dan tidak berliang memberikan nilai suhu yang setara pada 78 K melibatkan kedua-dua sampel. Dapatan Y247 yang di dopkan Ca turut dijadikan sebagai rujukan serta perbandingan bagi teras kajian yang dilakukan.

 

Kata kunci:  berliang, tidak berliang, suhu genting, ketumpatan arus, morfologi

 

References

1.       Petrov, M. I., Tetyeva, T. N., Kveglis, L. I., Efremov, A. A., Zeer, G. M., Balaev, D. A., Shaikhutdinov, K. A., Popkov S. I. and Ovchinnikov. S. G. (2005). The synthesis, microstructure, transport and magnetic properties of Bi-based low density HTSC. Journal of Materials Processing Technology, 161: 58–61.

2.       Terent’ev, K. Yu., Gokhfel’d, D. M., Popkov, S. I., Shaikhutdinov K. A. and Petrov, M. I. (2011). Pinning in a porous high-temperature superconductor Bi-2223. Physics of the Solid State, 53(12): 2409–2414.

3.       Studart, A. R., Gonzenbach, Urs T., Tervoort, E. and Gauckler, L. J. (2006). Processing routes to macroporous ceramics: A review. Journal of the American Ceramic Society, 89(6): 1771–1789.

4.       Gokhfeld, D. M., Balaev, D. A., Popkov, S. I., Shaykhutdinov, K. A. and Petrov, M.  I.  (2006). Magnetization loop and critical current of porous Bi-based HTSC. Physica C, 434: 135-137.

5.       Schwartz, R. W., Noudem, J. G. and Reddy, E. S. (2006). Single grain YBa2Cu3Oy, porous ceramic superconductors. Electroceramic Materials and Applications: Ceramic Transactions Series, 196: 33–43.

6.       Fiertek, P. and Sadowski, W. (2006). Processing of porous structures of YBa2Cu3O7–δ high-temperature superconductor. Materials Science, 24: 1103-1108.

7.       Norazidah, A. W., Azhan, H., Azman, K., Hidayah, H. N. and Hawa, J. S. (2014). Effect of heat treatment on Ca substitution in a porous Y(Ba1-xCax)2Cu3O7-δ superconductor. Advanced Materials Research, 895: 71–74.

8.       Shlyk, L., Krabbes, G., Fuchs, G. and Nenkov, K. (2002). Melt-processed YBCO doped with Ca and Cd: Comparison of superconducting properties. Physica C, 383: 175-182.

9.       Norazidah, A. W., Azhan, H., Azman, K., Hidayah, H. N. and Hawa, J. S. (2012).  Superconducting properties of calcium substitution in barium site of porous YBa2Cu3O7 ceramics. Advanced Materials Research, 501: 294–298.

10.    Noel A. R., John, H. D., Sibe, H. M., Mark, G. B. and Judith, L. M. (2005). Transport properties of Ca-doped YBCO coated conductors. IEEE Transactions on Applied Superconductivity, 15: 2570-2573.

11.    Roaa F. A. and Emad K. A. (2015). New high temperature superconductor phase of Y-Ba-Cu-O system. International Journal of Advanced Research in Physical Science, 2 (7): 33-39.

12.    Pimentel Jr, J. L., Martinez Buitrago, D., Supelano, I., Parra Vargas, C. A., Mesquita, F. R. and Pureur, P. (2015). Synthesis and characterization of the superconductors Y3Ba5Cu8−x FexO18(0.0597 ≤ x ≤ 0.1255). Journal of Superconductivity and Novel Magnetism, 28: 509–512.

13.    Khalida, S.. Fariesha, F.. Azhan, H. and Yusainee, S. Y. (2013). Influence of heat treatments on electrical properties and microstructure of 10% mass fraction of sucrose YBCO superconductor. Malaysian Journal of Analytical Sciences, 17(1): 1 – 10.

14.    Shalaby, M. S., Hashem, H. M., Hammad, T. R., Wahab, L. A., Marzouk, K. H. and Soltan, S. (2016). Higher critical current density achieved in Bi-2223 High-TC superconductors. Journal of Radiation Research and Applied Sciences, 9: 345–351.

 




Previous                    Content                    Next