Malaysian Journal of Analytical Sciences Vol 22 No 5 (2018): 768 - 774

DOI: 10.17576/mjas-2018-2205-04

 

 

 

SYNTHESIS AND PHYSICOCHEMICAL PROPERTIES OF MAGNETITE NANOPARTICLES (Fe3O4) AS POTENTIAL SOLID SUPPORT FOR HOMOGENEOUS CATALYSTS

 

(Sintesis dan Sifat Fizikokimia Nanopartikel Magnetit (Fe3O4) Sebagai Sokongan Padu Berpotensi Bagi Mangkin Homogen)

 

Wan Fatihah Khairunisa Wan Nor1, Siti Kamilah Che Soh1*, Alyza Azzura Abd Rahman Azmi1, Mohd Sukeri Mohd Yusof 2, Mustaffa Shamsuddin3

 

1School of Marine and Environmental Sciences

2School of Fundamental Sciences

Universiti Malaysia Terengganu,21030 Kuala Nerus, Terengganu, Malaysia

3Department of Chemistry, Faculty of Science,

Universiti Teknologi Malaysia, 81310 Skudai, Johor Bahru, Johor, Malaysia

 

*Corresponding author:  sitikamilah@umt.edu.my

 

 

Received: 3 May 2018; Accepted: 13 September 2018

 

 

Abstract

Black and dark magnetite nanoparticles (MNPs) were successfully synthesised through a co-precipitation method as a crucial material to support palladium(II) complexes as they have the potential to become a stable solid support for homogeneous systems. The two-hour synthesis was done by mixing FeCl3.6H2O and FeCl2.4H2O in an alkaline medium. To improve the properties of iron oxide nanoparticles, the process was done under inert conditions. The physicochemical properties of this support was then characterised using various spectroscopic techniques such as Fourier Transform Infrared (FTIR) spectroscopy that shows the X-ray diffraction analysis (XRD), Thermogravimetric analysis (TGA), Field Emission Scanning Electron Microscope (FESEM), and Vibrating Sample Magnetometer (VSM). The pore size distribution and the specific BET surface area were measured by N2 adsorption-desorption isotherms. The FTIR absorption spectroscopy was used to confirm the formation of Fe-O bond. The most intense peak correspond to the (311) crystallographic orientation of the spinel cubic phase of MNPs shown by XRD pattern result. The particle size of magnetite was successfully controlled in the range of 20-40 nm. All of the MNPs showed the superparamagnetic behaviour with high saturation magnetization.

 

Keywords:  magnetite nanoparticles, catalyst support, homogeneous catalysis, heterogeneous catalysis

 

Abstrak

Nanopartikel magnetit hitam legap telah berjaya disintesis dengan kaedah pemendakan kerana ianya penting untuk menyokong kompleks paladium(II) dan berpotensi menjadi penyokong padu yang stabil bagi sistem homogen. Sintesis selama dua jam dilakukan dengan mencampurkan FeCl3.6H2O dan FeCl2.4H2O dalam medium beralkali. Bagi meningkatkan sifat nanopartikel oksida besi, persekitaran proses perlu dilakukan dalam keadaan lengai. Sifat fizikokimia penyokong ini telah dicirikan oleh pelbagai teknik spektroskopi seperti Spektroskopi Inframerah (FTIR), Pembelauan Sinar-X (XRD), Analisis Gravimetri Terma (TGA), Mikroskopi Elektron Pengimbasan Pancaran Medan (FESEM), dan  Magnetometer Getaran Sampel (VSM). Sebaran saiz liang dan luas permukaan BET yang tertentu diukur menggunakan teknik penjerapan dan penyahjerapan N2 isoterma. Serapan FTIR spektroskopi digunakan untuk menentukan pembentukan ikatan Fe-O. Puncak yang paling tinggi merujuk kepada fasa kubik spinel dengan orientasi kristalografik (311) ditunjukkan oleh keputusan corak XRD. Saiz zarah magnetit berjaya dikawal dalam linkungan 20-40 nm. Keseluruhan MNPs menunjukkan sifat ketepuan pemagnetan yang tinggi.

 

Kata kunci:  nanopartikel magnetit, sokongan mangkin, pemangkinan homogen, pemangkinan heterogen

 

References

1.       Lv, D. and Zhang, M. (2017). O-carboxymethyl chitosan supported heterogeneous palladium and Ni catalysts for heck reaction. Molecules, 22:150.

2.       Lim, C. W. and Lee, I. S. (2010).  Magnetically recyclable nanocatalyst systems for the organic reactions.  Nano Today, 5: 412-434.

3.       Jin, X., Zhang, K., Sun, J., Wang, J., Dong, Z., and Li, R. (2012). Magnetite nanoparticles immobilized salen Pd(II) as a green catalyst for Suzuki reaction. Catalysis Communications, 26: 199-203.

4.       Jusin, J. W., Aziz, M., Sean, G. P. and Jaafar, J. (2016). Preparation and characterization of graphene-based magnetic hybrid nanocomposite. Malaysian Journal of Analytical Sciences, 20(1): 149-156.

5.       Alp, E. and Aydogan, N. (2016). A comparative study: Synthesis of superparamagnetic iron oxide nanoparticles in air and N2 atmosphere. Colloids and Surface a: Physicochem. Eng. Aspects, 510: 205-212.

6.       Peternele, W. S., Fuentes, V. M., Fascineli, M. L., Silva, J. R. D., Silva, R. C., Lucci, C. M. and Azevedo, R. B. D. (2014). Experimental investigation of the coprecipitation method: An approach to obtain magnetite and maghemite nanoparticles with improved properties. Journal of Nanoparticles, 2014:1-10.

7.       Hariani, P. L., Faizal, M., Ridwan, M. and Setiabudidaya, D. (2013). Synthesis and properties of Fe3O4 nanoparticles by co-precipitation method to removal procion dye. International Journal of Environmental Science and Development, 4(3): 336-340.

8.       Petcharoen, K. and Sirivat, A. (2012). Synthesis and characterization of magnetite nanoparticles via the chemical co-precipitation method. Material Science and Engineering, 177: 421-427.

9.       Khalil, M. I. (2015). Co-precipitation in aqueous solution synthesis of magnetite nanoparticles using iron(III) salts as precursors. Arabian Journal of Chemistry, 8: 279-284.

10.    Yazdani, F. and Seddigh, M. (2016).  Magnetite nanoparticles synthesised by co-precipitation method: The effects of various iron anions on specifications. Materials Chemistry and Physics, 184: 318-323.

11.    Miri, S. S., Khoobi, M., Ashouri, F., Jafarpour, F., Ranjar, P. R. and Shaffiee, A. (2015). Efficient C-C Cross-coupling reaction by (Isatin)-Schiff base functionalized magnetic nanoparticle-supported Cu(II) acetate as a magnetically recoverable catalyst. Turkish Journal of Chemistry, 39: 1232-1246.

12.    Maity, D. and Agrawal, D. C. (2007). Synthesis of iron oxide nanoparticles under oxidizing environment and their stabilization in aqueous and non-aqueous media. Journal of Magnetism and Magnetic Materials, 308: 46-55.

13.    Mahdavi, M., Namvar, F., Ahmad, M. B. and Mohamad, R. (2013). Green biosynthesis and characterization of magnetic iron oxide (Fe3O4) nanoparticles using seaweed (Sargassum muticum) aqueous extract. Molecules,18: 5954-5964.

14.    Mamani, J. B., Costa-Filho, A. J., Cornejo, D. R., Vieira, E. D. and Gamarra, L. F. (2013). Synthesis and characterization of magnetite nanoparticles coated with lauric acid. Materials Characterization, 81: 28-36.

15.    Ma, J., Wang, L., Wu, Y., Dong, X., Ma, Q., Qiao, C., Zhang, Q. and Zhang, J. (2014). Facile synthesis of Fe3O4 nanoparticles with a high specific surface area. Materials Transactions, 55(12): 1900-1902.

16.    Liu, X., Kaminski, M.D., Guan, Y., Chen, H., Liu, H. and Rosengart, A.J. (2006). Preparation and characterization of hydrophobic superparamagnetic magnetite gel. Journal of Magnetism and Magnetic Materials, 306: 248-253.

17.    Murbe, J., Rechtenbach, A. and Topfer, J. (2008). Synthesis and physical characterization of magnetite nanoparticles for biomedical applications. Materials Chemistry and Physics, 110: 426-433.

18.    Urus, S. (2016). Synthesis of Fe3O4@SiO2@OSi(CH2)3NHRN(CH2PPh2)2PdCl2 type nanocomposite complexes: Highly efficient and magnetically-recoverable catalysts in vitamin K3 synthesis. Food Chemistry, 213: 336-343.

19.    Shen, M., Yu, Y., Fan, G., Chen, G., Jin, Y. M., Tang, W. and Jia, W. (2014). The synthesis and characterization of monodispersed chitosan-coated Fe3O4 nanoparticles via a facile one-step solvothermal process for adsorption of bovine serum albumin. Nanoscale Research Letters, 9: 296.

20.    Yuan, P., Fan, M., Yang, D., He, H., Liu, D., Yuan, A., Zhu, J.X. and Chen, T.H. (2009). Montmorillonite-supported magnetite nanoparticles for the removal of hexavalent chromium [Cr (VI)] from aqueous solutions. Journal of Hazardous Materials, 166: 821–829.

21.    Esmaeilpour, M., Javidi, J., Dodeji, F. N. and Abarghoui M. M. (2014). Facile synthesis of 1- and 5-substituted 1H-tetrazoles catalyzed by recyclable ligand complex of copper(II) supported on superparamagnetic Fe3O4@SiO2 nanoparticles. Journal of Molecular Catalysis A: Chemical, 393: 18-29.

22.    Chen, S., Pan, X., Miao, C., Xie, H., Zhou, G., Jiao, Z., Zhang, X. (2017). Study of catalytic hydrodeoxygenation performance for the Ni/KIT-6 catalysts. Journal of Saudi Chemical Society, 22: 614-627.

23.    Esmaeilpour, M., Javidi, J., Dodeji, F. N., Abarghoui, M. M. (2014). M(II) schiff base complexes (M= zinc, manganese, cadmium, cobalt, nickel, iron, and palladium) supported on superparamagnetic Fe3O4@SiO2 nanoparticles: Synthesis, characterization and catalytic activity for Sonogashira-Hagihara coupling reactions. Transition Metal Chemistry, 39: 797-809.

24.    Ruslimie, C. A., Razali, M. H. and Khairul, W. M. (2010). Effect of HTAB concentration on the synthesis of nanostructured TiO2 towards its catalytic activities. Malaysian Journal of Analytical Sciences, 14(1): 41-49.

 




Previous                    Content                    Next