Malaysian Journal of Analytical Sciences Vol 23 No 1 (2019): 100 - 108

DOI: 10.17576/mjas-2019-2301-12

 

 

 

SYNTHESIS AND CHARACTERIZATION OF SrSnO3 USING DIFFERENT SYNTHESIS METHODS

 

(Sintesis dan Pencirian SrSnO3 yang Dihasilkan Melalui Kaedah Sintesis Berlainan)

 

Muhammad Arif Riza, Suhaila Sepeai, Norasikin Ahmad Ludin, Mohd Asri Mat Teridi,  Mohd Adib Ibrahim*

 

Solar Energy Research Institute (SERI)

Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

 

*Corresponding author:  mdadib@ukm.edu.my

 

 

Received: 13 April 2017; Accepted: 17 April 2018

 

 

Abstract

Perovskites are materials that have many potential applications, such as humidity sensors, transparent conductive oxides, photocatalysts and capacitors. Strontium stannate (SrSnO3) is a perovskite semi-conductor material with a wide band gap. Several synthesis methods are commonly used to form SrSnO3, including solid-state reaction (SSR), sol-gel and hydrothermal. The SSR method requires high temperature calcination. On the other hand, sol-gel and hydrothermal methods merely need a lower calcination temperature to form perovskite materials. The sol-gel methods were done by adding a surfactant to Sr(NO3)2 and SnCl2 solution in water before calcination. The autoclave approach was used in the hydrothermal method prior to calcination to form SrSnO3. The objective of this study was to determine the morphological and optical properties of SrSnO3 synthesized by sol-gel, hydrothermal and SSR. The band gap was calculated via Kubelka-Munk relations and were found to be 4.05 eV (hydrothermal), 5.50 eV (sol-gel) and 3.95 eV (SSR). Sol-gel methods showed the widest band gap for SrSnO3. Optical results showed that there is a difference in terms of band gap for a perovskite synthesized by the different methods. Mass reduction analysis by TGA showed a sol-gel has mass loss of approximately 58% due to dehydration, which is more than for hydrothermally synthesized SrSnO3. This reduction is higher than for SrSnO3 synthesized by hydrothermal method. It was observed that different synthesis methods impact the optical properties and morphology of SrSnO3 powders.

 

Keywords:  perovskites, hydrothermal, sol-gel, band gap, solid-state reaction

 

Abstrak

Perovskit merupakan bahan yang mempunyai banyak potensi untuk digunakan sebagai penderia kelembapan, oksida konduktif lutsinar, fotomangkin dan kapasitor. Strontium stannat (SrSnO3) adalah bahan separuh konduktif berstruktur perovskit dengan jurang jalur yang besar. Beberapa kaedah sintesis biasanya digunakan untuk membentuk SrSnO3 termasuk tindak balas keadaan pepejal (SSR), sol-gel dan hidroterma. Kaedah SSR memerlukan penalaan suhu yang tinggi, manakala kaedah sol-gel dan hidroterma hanya memerlukan suhu pengkalsinan yang lebih rendah untuk membentuk bahan perovskit. Kaedah sol-gel dilakukan dengan menambah surfaktan pada larutan Sr(NO3)2 dan SnCl2 dalam air sebelum pengkalsinan. Pendekatan autoklaf digunakan dalam kaedah hidroterma sebelum pengkalsinan untuk membentuk SrSnO3. Objektif kajian ini adalah untuk menentukan morfologi dan ciri optik bagi bahan SrSnO3 yang disintesis melalui kaedah sol-gel, hidroterma dan SSR. Jurang jalur telah dikira melalui hubungan Kubelka-Munk dan didapati nilainya adalah 4.05 eV (hidroterma), 5.50 eV (sol-gel) dan 3.95 eV (SSR). Kaedah sol-gel menunjukkan jurang jalur yang terbesar bagi SrSnO3. Ciri optik menunjukkan wujudnya perbezaan antara jurang jalur bagi perovskit yang disintesis melalui kaedah yang berlainan. Analisa pengurangan jisim menggunakan TGA menunjukkan bahawa sol-gel mempunyai pengurangan jisim dianggarkan sebanyak 58% disebabkan penyahhidratan. Pengurangan ini adalah lebih tinggi berbanding dengan SrSnO3 yang disintesis melalui kaedah hidroterma. Ia telah dilihat bahawa kaedah sintesis boleh memberi kesan pada ciri optik dan morfologi pada serbuk SrSnO3.

 

Kata kunci:  perovskit, hidroterma, sol-gel, julang jalur, tindak balas keadaan pepejal

 

References

1.       Chen, H. and Umezawa, N. (2014). Sensitization of perovskite strontium stannate SrSnO3 towards visible-light absorption by doping. International Journal of Photoenergy, 2014: 3–6.

2.       Dohnalová, Ž., Gorodylova, N., Šulcová, P. and Vlček, M. (2014). Synthesis and characterization of terbium-doped SrSnO3 pigments. Ceramics International, 40: 12637–12645.

3.       Liu, Q., Dai, J., Zhang, X., Zhu, G., Liu, Z. and Ding, G. (2011). Perovskite-type transparent and conductive oxide films: Sb- and Nd-doped SrSnO3. Thin Solid Films, 519(18): 6059–6063.

4.       Ecija, A., Vidal, K., Larrañaga, A., Ortega-san-martín, L., Arriortua, M. I., Euskal, V. and Ehu, U. (2012). Synthetic methods for perovskite materials – structure and morphology. Advances in Crystallization Processes, 19: 485–505.

5.       Para, T., Reshi, H. A. and Shelke, V. (2016). Synthesis of ZnSnO3 nanostructure by sol gel method. AIP Conference Proceedings, 1731: 1–4.

6.       Shan, C., Huang, T., Zhang, J., Han, M., Li, Y., Hu, Z., & Chu, J. (2014). Optical and electrical properties of sol − gel derived Ba−LaSnO3 transparent conducting films for potential optoelectronic applications. The Journal of Physical Chemistry C, 118(13): 6994-7001.

7.       Xu, K., Yao, M., Chen, J., Zou, P., Peng, Y., Li, F. and Yao, X. (2015). Effect of crystallization on the band structure and photoelectric property of SrTiO3 sol–gel derived thin film. Journal of Alloys and Compounds, 653: 7–13.

8.       Kumar, A., Quamara, J., Dillip, G., Joo, S. and Kumar, J. (2015). Fe(III) induced structural, optical, and dielectric behavior of cetyltrimethyl ammonium bromide stabilized strontium stannate nanoparticles synthesized by a facile wet chemistry route. RSC Advance, 5(22): 17202–17209.

9.       Chen, C., Cheng, J., Yu, S., Che, L. and Meng, Z. (2006). Hydrothermal synthesis of perovskite bismuth ferrite crystallites. Journal of Crystal Growth, 291(1): 135–139.

10.    Li-Jie, H., Dong, Z., Shou-hua, F., Bo, Z. and Gang, C. (2012). Hydrothermal synthesis and characterization of perovskite oxide AgTaO3. Chemical Research in Chinese Universities, 28: 760–763.

11.    Li, C., Zhu, Y., Fang, S., Wang, H., Gui, Y., Bi, L. and Chen, R. (2011). Preparation and characterization of SrSnO3 nanorods. Journal of Physics and Chemistry of Solids, 72(7): 869–874.

12.    Ahmadi, S., Asim, N., Alghoul, M., Hammadi, F., Saeedfar, K., Ludin, N. and Sopian, K. (2014). The role of physical techniques on the preparation of photoanodes for dye sensitized solar cells. International Journal of Photoenergy, 2014: 1-19.

13.    James, K., Aravind, A. and Jayaraj, M. (2013). Structural, optical and magnetic properties of Fe-doped barium stannate thin films grown by PLD. Applied Surface Science, 282: 121–125.

14.    Bellal, B., Hadjarab, B., Bouguelia, A. and Trari, M. (2009). Visible light photocatalytic reduction of water using SrSnO3 sensitized by CuFeO2. Theoretical and Experimental Chemistry, 45(3): 160–166.

15.    Junploy, P., Thongtem, T., Thongtem, S. and Phuruangrat, A. (2014). Decolorization of methylene Blue by Ag/SrSnO3 composites under ultraviolet radiation. Journal of Nanomaterials, 2014: 67.

16.    Kotan, Z., Ayvacikli, M., Karabulut, Y., Garcia-Guinea, J., Tormo, L., Canimoglu, A. and Can, N. (2013). Solid state synthesis, characterization and optical properties of Tb doped SrSnO3 phosphor. Journal of Alloys and Compounds, 581: 101–108.

17.    Liu, Q., Wang, H., Chen, F. and Wu, W. (2008). Single-crystalline transparent and conductive oxide films with the perovskite structure: Sb-doped SrSnO3. Journal of Applied Physics, 103(9): 93709.

 




Previous                    Content                    Next