Malaysian Journal of Analytical Sciences Vol 23 No 1 (2019): 147 - 154

DOI: 10.17576/mjas-2019-2301-18

 

 

 

OXYGEN REDUCTION REACTION BEHAVIOURS OF CARBON NANOTUBES SUPPORTING Pt CATALYST FOR PROTON EXCHANGE MEMBRANE FUEL CELL

 

(Sifat Tindak Balas Penurunan Oksigen bagi Tiub Nanokarbon Disokong Mangkin Pt bagi Membran Penukaran Proton Sel Bahan Api)  

 

Md Ahsanul Haque1,2*, Abu Bakar Sulong1,3, Edy Herianto Majlan1, Kee Shyuan Loh1, Teuku Husaini1, Rosemilia Rosli1

 

1Fuel Cell Institute,

Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

2Department of Applied Chemistry and Chemical Engineering,

Islamic University, Kushtia-7003, Bangladesh

3Department of Mechanical and Materials Engineering, Faculty of Engineering and Built Environment,

Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

 

*Corresponding author:  ahsan.chem38@gmail.com 

 

 

Received: 13 April 2017; Accepted: 17 April 2018

 

 

Abstract

Sluggish oxygen reduction reaction (ORR) in cathode electrode is the most common problem in Proton Exchange Membrane (PEM) fuel cell systems. In this study, the ORR behaviours of a half-cell in the cathodic part were investigated which had an impact on its catalyst activity. The electrode was synthesized from multi-walled carbon nanotubes (MWCNT) supported platinum (Pt) catalyst, assigned as MWCNT/Pt, using an impregnation method. In this case, the hexachloroplatinic acid (H2PtCl6.6H2O) acts as a Pt metal catalyst precursor. The PTFE (polytetrafloro-ethylene) was also used as sub-supporting material with MWCNT to produce MWCNT/PTFE composite. The Pt is deposited onto the surface of MWCNT/PTFE composite which forms MWCNT/PTFE/Pt electrode. Using CV and RRDE techniques, the electrochemical phenomena of MWCNT/Pt and MWCNT/PTFE/Pt electrodes in the 0.1 M KOH electrolyte solutions were analysed and compared. The electron transfer (n) from the K-L plot was recorded as 3.89 and 3.77 for MWCNT/Pt and MWCNT/PTFE/Pt electrode respectively. Based on the chronoamperometric analysis, the MWCNT/PTFE/Pt was found to be more stable than MWCNT/Pt. Therefore, the MWCNT/PTFE/Pt electrode may be recommended for PEM fuel cell application considering its electrochemical activity.  

 

Keywords:    oxygen reduction reaction, multi-walled carbon nanotube, cyclic voltammetry, chronoamperometric analysis

 

Abstrak

Kelembapan tindak balas penurunan oksigen (ORR) dalam katod elektrod adalah cabaran utama dalam sistem membran penukar proton (PEM) sel bahan api. Dalam kajian ini, tindak balas bagi ORR setengah-sel dikaji pada bahagian katod yang merupakan sebahagian daripada aktiviti pemangkin. Elektrod terhasil disintesis daripada tiub nanocarbon multi dinding (MWCNT) disokong pemangkin platinum (Pt) yang membentuk MWCNT/Pt dengan menggunakan kaedah pengisian. Dalam kes ini, asid heksakloroplatinik (H2PtCl6.6H2O) bertindak sebagai pemangkin logam Pt pelopor. PTFE (politetrafloro-etilena) juga digunakan sebagai bahan sokongan tambahan dengan MWCNT untuk menghasilkan MWCNT/PTFE komposit. Kemudian, Pt telah ditambah ke atas permukaan MWCNT/PTFE komposit yang membawa kepada pembentukan MWCNT/PTFE/Pt elektrod. Berdasarkan kaedah CV dan RRDE telah dianalisis dan dibandingkan fenomena elektrokimia dengan menggunakan kandungan larutan elektrolit 0.1 M KOH bagi setiap bahan MWCNT/Pt dan MWCNT/PTFE/Pt elektrod. Pemindahan elektron (n) dari plot K-L juga dikira dan direkodkan sebagai 3.89 bagi MWCNT/Pt dan 3.77 bagi MWCNT/PTFE/Pt elektrod. Berdasarkan analisis kronoamperometrik, MWCNT/PTFE/Pt adalah lebih stabil berbanding MWCNT/Pt. Oleh itu, elektrod MWCNT/PTFE/Pt adalah disyorkan untuk aplikasi PEM sel fuel dengan mengambilkira aktiviti elektrokimia.

 

Kata kunci:      tindak balas penurunan oksigen, karbon nanotiub berbilang, kitaran volmetrik, analisis kronoamperometrik

 

References

1.       Haque, M. A., Sulong, A. B., Loh, K. S., Majlan, E. H., Husaini, T. and Rosli, R. E. (2017). Acid doped polybenzimidazoles based membrane electrode assembly for high temperature proton exchange membrane fuel cell: A review. International Journal of Hydrogen Energy, 42(14): 9156-9179.

2.       Paulus, U. A., Wokaun, A., Scherer, G. G., Schmidt, T. J., Stamenkovic, V., Radmilovic, V., Markovic, M. and Ross, P. N. (2002). Oxygen reduction on carbon-supported Pt− Ni and Pt− Co alloy catalysts. The Journal of Physical Chemistry B, 106(16): 4181-4191.

3.       Kangasniemi, K. H., Condit, D. A. and Jarvi, T. D. (2004). Characterization of vulcan electrochemically oxidized under simulated PEM fuel cell conditions. Journal of The Electrochemical Society, 151(4): E125-E132.

4.       Inaba, M. (2009). Durability of electrocatalysts in polymer electrolyte fuel cells. ECS Transactions, 25(1): 573-581.

5.       Li, Q., Aili, D., Hjuler, H. A. and Jensen, J. O. (2016). High temperature polymer electrolyte membrane fuel cells. Springer, Switzerland.

6.       Li, W., Liang, C., Qiu, J., Zhou, W., Han, H., Wei, Z., Gongquan, S. and Xin, Q. (2002). Carbon nanotubes as support for cathode catalyst of a direct methanol fuel cell. Carbon, 40(5): 787-790.

7.       Wang, C., Waje, M., Wang, X., Tang, J. M., Haddon, R. C. and Yan, Y. (2004). Proton exchange membrane fuel cells with carbon nanotube based electrodes. Nano Letters, 4(2): 345-348.

8.       Wang, X., Li, W., Chen, Z., Waje, M. and Yan, Y. (2006). Durability investigation of carbon nanotube as catalyst support for proton exchange membrane fuel cell. Journal of Power Sources, 158(1): 154-159.

9.       Kinoshita, K. (1992). Electrochemical oxygen technology. John Wiley & Sons.

10.    Kordesch, K. and Simader, G. (1996). Fuel cells and their applications. Weinheim: VCh.

11.    Bernardi, D. M. and Verbrugge, M. W. (1992). A mathematical model of the solid‐polymer‐electrolyte fuel cell. Journal of the Electrochemical Society, 139(9): 2477-2491.

12.    Toda, T., Igarashi, H., Uchida, H. and Watanabe, M. (1999). Enhancement of the electroreduction of oxygen on Pt alloys with Fe, Ni, and Co. Journal of the Electrochemical Society, 146(10): 3750-3756.

13.    Hiesgen, R., Eberhardt, D., Aleksandrova, E. and Friedrich, K. A. (2006). Structure and local reactivity of supported catalyst/Nafion® layers studied by in‐situ STM. Fuel Cells, 6(6): 425-431.

14.    Ralph, T. R. and Hogarth, M. P. (2002). Catalysis for low temperature fuel cells. Platinum Metals Review, 46(3): 117-135.

15.    Yu, X., & Ye, S. (2007). Recent advances in activity and durability enhancement of Pt/C catalytic cathode in PEMFC: Part I. Physico-chemical and electronic interaction between Pt and carbon support, and activity enhancement of Pt/C catalyst. Journal of Power Sources, 172(1): 133-144.

16.    Zhang, S., Yuan, X. Z., Hin, J. N. C., Wang, H., Friedrich, K. A. and Schulze, M. (2009). A review of platinum-based catalyst layer degradation in proton exchange membrane fuel cells. Journal of Power Sources, 194(2): 588-600.

17.    Silva, R. A., Hashimoto, T., Thompson, G. E. and Rangel, C. M. (2012). Characterization of MEA degradation for an open air cathode PEM fuel cell. International Journal of Hydrogen Energy, 37(8): 7299-7308.

18.    Scheibe, B., Borowiak-Palen, E. and Kalenczuk, R. J. (2010). Oxidation and reduction of multiwalled carbon nanotubes—preparation and characterization. Materials Characterization, 61(2): 185-191.

19.    Berber, M. R., Hafez, I. H., Fujigaya, T. and Nakashima, N. (2015). A highly durable fuel cell electrocatalyst based on double-polymer-coated carbon nanotubes. Scientific Reports, 5: 16711.

20.    Okamoto, M., Fujigaya, T. and Nakashima, N. (2009). Design of an assembly of poly (benzimidazole), carbon nanotubes, and pt nanoparticles for a fuel‐cell electrocatalyst with an ideal interfacial nanostructure. Small, 5(6): 735-740.

21.    Toh, S. Y., Loh, K. S., Kamarudin, S. K. and Daud, W. R. W. (2016). The impact of electrochemical reduction potentials on the electrocatalytic activity of graphene oxide toward the oxygen reduction reaction in an alkaline medium. Electrochimica Acta, 199: 194-203.

22.    Soo, L. T., Loh, K. S., Mohamad, A. B., Daud, W. R. W. and Wong, W. Y. (2016). Effect of nitrogen precursors on the electrochemical performance of nitrogen-doped reduced graphene oxide towards oxygen reduction reaction. Journal of Alloys and Compounds, 677: 112-120.

23.    Wong, W. Y., Daud, W. R. W., Mohamad, A. B., Kadhum, A. A. H., Loh, K. S. and Majlan, E. H. (2013). Recent progress in nitrogen-doped carbon and its composites as electrocatalysts for fuel cell applications. International Journal of Hydrogen Energy, 38(22): 9370-9386.

24.    Allen, J. B., Parsons, R. and Jordan, J. (1985). Standard potentials in aqueous solution. Monographs in Electroanalytical Chemistry and Electrochemistry, Dekker Marcel, Inc., New York–Basel.

25.    Maldonado, S. and Stevenson, K. J. (2005). Influence of nitrogen doping on oxygen reduction electrocatalysis at carbon nanofiber electrodes. The Journal of Physical Chemistry B, 109(10): 4707-4716.

26.    Abdullah, M., Kamarudin, S. K. and Shyuan, L. K. (2016). TiO2 nanotube-carbon (TNT-C) as support for Pt-based catalyst for high methanol oxidation reaction in direct methanol fuel cell. Nanoscale Research Letters, 11(1): 553.




Previous                    Content                    Next