Malaysian Journal of Analytical Sciences Vol 23 No 1 (2019): 155 - 169

DOI: 10.17576/mjas-2019-2301-19






(Kesan Ablasi Laser Gentian Denyut dalam Air terhadap Kakisan dan Kekerasan Permukaan Keluli Kalis Karat)


Sze Ney Chan1, Wai Yin Wong2*, Walvekar Rashmi1, Abdul Amir Hassan Kadhum2,3,Mohammad Khalid4, Kean Long Lim2


1School of Engineering,

Taylor’s University Lakeside Campus, Jalan Taylor’s, Subang Jaya, 47500, Selangor, Malaysia

2Fuel Cell Institute

3Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment

Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

4Graphene & Advanced 2D Materials Research Group (GAMRG),

Sunway University, No. 5, Jalan Universiti, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia


*Corresponding author:,



Received: 13 April 2017; Accepted: 17 April 2018




This work presents the use of pulsed fibre laser ablation in water (PLAW) to study the corrosion behaviour and surface hardness of stainless steels. A stainless-steel plate was ablated with a pulsed ytterbrium-doped fibre laser at a power of 4.2 W. The laser-ablated sample was subjected to corrosion testing using electrochemical impedance spectroscopy and potentiodynamic polarisation. The results correlated with surface morphology, X-ray diffraction profiles and Vicker’s hardness values. PLAW can enhance the corrosion resistance of stainless steels in both neutral and acidic electrolytes. The corrosion potential of the laser-treated samples was more positive at −126 and −423 mV compared with that of the as-received samples at −209 and −439 mV in neutral and acidic electrolytes, respectively. The inhibition efficiencies of the laser-treated samples in neutral and acidic electrolytes were 98% and 52%, respectively. An improvement in the surface microhardness at a maximum of 8.7% was reported on the fibre laser-ablated stainless steels, thereby demonstrating the efficiency of fibre-laser-assisted PLAW in inhibiting corrosion and improving the hardness of stainless steel.


Keywords:  stainless steel, corrosion inhibition, fibre laser, pulse laser ablation in water



Kajian ini bertujuan untuk mengkaji kesan penggunaan teknik ablasi laser gentian denyut dalam air terhadap kakisan dan kekerasan permukaan keluli kalis karat. Dalam kajian ini, plat keluli kalis karat telah diablasi dengan laser gentian denyutan terdop ytterbrium pada kuasa 4.2 W. Seterusnya, plat sampel ini dikaji terhadap kakisan dengan teknik spektroskopi impedans elektrokimia dan polarisasi potentiodinamik. Kajian terhadap morfologi permukaan, profil sinar-X dan kekerasan Viker juga dilakukan. Kajian menunjukkan bahawa teknik ini dapat mempertingkatkan rintangan kakisan keluli kalis karat dalam elektrolit neutral dan asid. Potensi kakisan yang lebih positif diperolehi pada sampel terablasi laser gentian, iaitu pada -126 mV dan -423 mV berbanding dengan sampel kawalan (-209 mV dan -439 mV), masing-masing dalam elektrolit neutral dan asid. Kecekapan perencatan kakisan pada sampel terablasi adalah 98% dalam elektrolit neutral dan 24% dalam elektrolit asid. Sebanyak 8.7% pembaikan dari segi kekerasan mikro pada permukaan sampel terablasi dicapai. Hasil kajian ini berjaya menunjukkan kelebihan penggunaan laser gentian dalam proses ablasi keluli kalis karat dalam meningkatkan ketahanan kakisan dan kekerasan permukaan.


Kata kunci:  keluli kalis karat, kecekapan perencatan kakisan, laser gentian, ablasi laser denyut dalam air



1.       Figueira, R., Silva, C. J. and Pereira, E. (2015). Organic–inorganic hybrid sol–gel coatings for metal corrosion protection: A review of recent progress. Journal of Coatings Technology and Research, 12(1): 1-35.

2.       Chen, X., Li, X., Du, C. and Cheng, Y. (2009). Effect of cathodic protection on corrosion of pipeline steel under disbonded coating. Corrosion Science, 51(9): 2242-2245.

3.       Musa, A. Y., Kadhum, A. A. H., Mohamad, A. B., Daud, A. R., Takriff, M. S., Kamarudin, S. K., and Muhamad, N. (2009). Stability of layer forming for corrosion inhibitor on mild steel surface under hydrodynamic conditions. International Journal Electrochemical Science, 4: 707-716.

4.       Aparicio, M., Jitianu, A., Rodriguez, G. Degnah, A., Al-Marzoki, K., Mosa, J. and Klein, L.C. (2016). Corrosion protection of AISI 304 stainless steel with melting gel coatings. Electrochimica Acta, 202: 325-332.

5.       Chong, P. H., Liu, Z., Wang, X. Y. and Skeldon, P. (2004). Pitting corrosion behaviour of large area laser surface treated 304L stainless–steel. Thin Solid Films, 453-454: 388-393.

6.       Khalfaoui, W., Valerio, E., Masse, J. E. and Autric, M. (2010). Excimer laser treatment of ZE41 magnesium alloy for corrosion resistance and microhardness improvement. Optics and Lasers in Engineering, 48(9): 926-931.

7.       Sun, G., Zhang, Y., Zhang, M., Zhou, R., Wang, K., Liu, C. and Luo, K. (2014). Microstructure and corrosion characteristics of 304 stainless steel laser-alloyed with Cr–CrB2. Applied Surface Science, 295: 94-107.

8.       Yue, T. M., Yu, J. K., Mei, Z. and Man, H. C. (2002). Excimer laser surface treatment of Ti–6Al–4V alloy for corrosion resistance enhancement. Materials Letters, 52(3): 206-212.

9.       Boutinguiza, M., del Val, J., Riveiro, A., Lusquiños, F., Quintero, F., Comesaña, R. and Pou, J. (2013). Synthesis of titanium oxide nanoparticles by ytterbium fiber laser ablation. Physics Procedia, 41: 787-793.

10.    Pacquentin, W., Caron, N. and Oltra, R. (2015). Effect of microstructure and chemical composition on localized corrosion resistance of a AISI 304L stainless steel after nanopulsed-laser surface melting. Applied Surface Science, 356: 561-573.

11.    Lawrence, S. K., Adams, D. P., Bahr, D. F. and Moody, N. R. (2016). Environmental resistance of oxide tags fabricated on 304L stainless steel via nanosecond pulsed laser irradiation. Surface and Coatings Technology, 285: 87-97.

12.    Ren, Y., Luo, Y., Zhang, K., Zhu, G. and Tan, X. 2008. Lignin terpolymer for corrosion inhibition of mild steel in 10% hydrochloric acid medium. Corrosion Science, 50: 3147-3153.

13.    ASTM E92 Standard Test Method for Vickers Hardness of Metallic Materials. (2015). Access from

14.    El Maghraby, A. A. (2009). Corrosion inhibition of aluminum in hydrochloric acid solution using Potassium Iodate Inhibitor. The Open Corrosion Journal, 2:189-196.

15.    Wang, Q.-Y., Wang, X.-Z., Luo, H. and Luo, J.-L. (2016). A study on corrosion behaviors of Ni–Cr–Mo laser coating, 316 stainless steel and X70 steel in simulated solutions with H2S and CO2. Surface and Coatings Technology, 291: 250-257.

16.    Wang, X.-T., Wei, Q.-Y., Zhang, L., Sun, H.-F., Li, H. and Zhang, Q.-X. (2016). CdTe/TiO2 nanocomposite material for photogenerated cathodic protection of 304 stainless steel. Materials Science and Engineering: B, 208: 22-28.

17.    Musa, A. Y., Kadhum, A. A. H., Mohamad, A. B., Rahoma, A. A. B. and Mesmari, H. (2010). Electrochemical and quantum chemical calculations on 4,4-dimethyloxazolidine-2-thione as inhibitor for mild steel corrosion in hydrochloric acid. Journal of Molecular Structure, 969(1-3): 233-237.

18.    Hanza, A. P., Naderi, R., Kowsari, E. and Sayebani, M. (2016). Corrosion behavior of mild steel in H2SO4 solution with 1, 4-di [1′-methylene-3′-methyl imidazolium bromide]-benzene as an ionic liquid. Corrosion Science, 107: 96-106.

19.    Behpour, M., Ghoreishi, S., Kashani, M. K. and Soltani, N. (2009). Inhibition of 304 stainless steel corrosion in acidic solution by Ferula gumosa (galbanum) extract. Materials and Corrosion, 60(11): 895-898.

20.    Shadangi, Y., Chattopadhyay, K., Rai, S. B. and Singh, V. (2015). Effect of LASER shock peening on microstructure, mechanical properties and corrosion behavior of interstitial free steel. Surface and Coatings Technology, 280: 216-224.

21.    Lu, J. Z., Qi, H., Luo, K. Y., Luo, M. and Cheng, X. N. (2014). Corrosion behaviour of AISI 304 stainless steel subjected to massive laser shock peening impacts with different pulse energies. Corrosion Science, 80: 53-59.

22.    Ait Albrimi, Y., Ait Addi, A., Douch, J., Souto, R. M. and Hamdani, M. (2015). Inhibition of the pitting corrosion of 304 stainless steel in 0.5M hydrochloric acid solution by heptamolybdate ions. Corrosion Science, 90: 522-528.

23.    Song, B., Dong, S., Liu, Q., Liao, H. and Coddet, C. (2014). Vacuum heat treatment of iron parts produced by selective laser melting: Microstructure, residual stress and tensile behavior. Materials & Design (1980-2015), 54: 727-733.

24.    Cui, C., Hu, J., Liu, Y., Gao, K. and Guo, Z. (2008). Morphological and structural characterizations of different oxides formed on the stainless steel by Nd:YAG pulsed laser irradiation. Applied Surface Science, 254(20): 6537-6542.

25.    Cui, C., Hu, J., Liu, Y. and Guo, Z. (2008). Microstructure evolution on the surface of stainless steel by Nd:YAG pulsed laser irradiation. Applied Surface Science, 254(11): 3442-3448.

26.    Llewellyn, D. and Hudd, R. (1998). Steels: metallurgy and applications: Butterworth-Heinemann.ASTM E92 Standard Test Method for Vickers Hardness of Metallic Materials. (2015). Access from en.astme92.html.

27.    Li, D., Feng, Y., Bai, Z., Zhu, J. and Zheng, M. (2007). Influence of temperature, chloride ions and chromium element on the electronic property of passive film formed on carbon steel in bicarbonate/carbonate buffer solution. Electrochimica Acta, 52(28): 7877-7884.

28.    Marcuci, J. R. J., Souza, E. C. d., Camilo, C. C., Di Lorenzo, P. L. and Rollo, J. M. D. d. A. (2014). Corrosion and microstructural characterization of martensitic stainless steels submitted to industrial thermal processes for use in surgical tools. Revista Brasileira de Engenharia Biomédica, 30: 257-264.


Previous                    Content                    Next