Malaysian Journal of Analytical Sciences Vol 23 No 1 (2019): 170 - 181

DOI: 10.17576/mjas-2019-2301-20

 

 

 

EFFECT OF Cu-PUROLITE A400 RESIN ON ADSORPTION OF NITRATE AND NITRITE IN WASTEWATER TREATMENT

 

(Kesan Resin Purolit A400-Cu Terhadap Penjerapan Nitrat dan Nitrit dalam Rawatan Air Sisa)

 

Fatimah Batubara1, Chairani Selviani1, Muhammad Turmuzi1, Edy Herianto Majlan2,3*

 

1Chemical Engineering Department, Faculty of Engineering,

Universitas Sumatera Utara, Medan, 20155 Sumatera Utara, Indonesia

2Fuel Cell Institute,

Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

3Environmental Engineering Department,

Faculty of Environmental Engineering,

Institut Teknologi Yogyakarta, D.I Yogyakarta, 55171, Indonesia

 

*Corresponding author:  edyhm71@gmail.com

 

 

Received: 13 April 2017; Accepted: 17 April 2018

 

 

Abstract

The exceedance of nitrate and nitrite concentrations over the water standard quality has caused potential human health dangers such as blue baby syndrome and the growth of aquatic plants (eutrophication). In this work, a Purolite A400 anion exchange resin impregnated by Cu (Purolite A400-Cu) is used to remove nitrate and nitrite in wastewater. High saturation capacities of 0.76 mg N/g and 0.88 mg N/g-nitrate and 0.10 mg N/g and 0.11 mg N/g-nitrite are obtained from Purolite A400 and Purolite A400-Cu. Scanning electron microscope measurement shows that the surface of Purolite A400-Cu is rough due to other deposited materials that originate from Cu deposition. Energy dispersive spectroscopy measurement indicates that the increase in adsorption is due to Cu impregnation with the addition of a positive surface charge on the resin by Cu. The adsorption capacities of nitrate and nitrite decrease with increases in sulphate, phosphate and chloride concentrations. Data are obtained from a fixed-bed column using the Thomas equation model. The breakthrough curve shows the Ct/C0 ratio values in Purolite A400 and Purolite A400-Cu. Large Ct/C0 values of 0.55 and 0.52-nitrate and 0.48 and 0.03-nitrite are obtained from Purolite A400 and Purolite A400-Cu.

 

Keywords:  nitrite adsorption, nitrate adsorption, Purolite A400 resin, wastewater treatment, Cu impregnation

 

Abstrak

Kepekatan nitrat dan nitrit yang melebihi piawaian kualiti air akan berpotensi membahayakan kesihatan manusia, sindrom biru-bayi dan pertumbuhan tumbuhan akuatik (eutrofikasi). Purolit A400 resin pertukaran anion yang impregnasi Cu (Purolite-Cu) digunakan untuk mengurangkan kandungan nitrat dan nitrit dalam air sisa. Kapasiti ketepuan tertinggi diperolehi pada Purolit dan Purolit-Cu masing-masing 0.76 mg N/g; 0.88 mg N/g-nitrat dan 0.10 mg N/g; 0.11 mg N/g-nitrit. Pengukuran dengan menggunakan spektrometri serakan tenaga (EDS) membuktikan bahawa peningkatan penjerapan adalah disebabkan oleh impregnasi Cu dengan penambahan caj permukaan positif pada resin oleh logam Cu. Kapasiti penjerapan nitrat dan nitrit menurun apabila kepekatan sulfat, fosfat dan klorida bertambah. Data diperolehi daripada turus lapisan penjerap tetap menggunakan model persamaan Thomas. Lengkung bulus menunjukkan nilai nisbah Ct/C0 dalam Purolit dan Purolit-Cu. Nilai Ct/C0 terbesar diperoleh pada Purolit dan Purolit-Cu masing-masing 0.55 & 0.52-nitrat dan 0.48 & 0.03-nitrit.

 

Kata kunci:  penjerapan nitrit, penjerapan nitrat, resin Purolit A400, rawatan air sisa, impregnasi Cu

 

References

1.       Rajeswari, M., Rajakumar, S. and Ayyasamy, P. M. (2015). Evaluation of nitrate removal in aquatic system: A general view. International Journal of Emerging Research in Management & Technology, 9359 (12): 186 – 194.

2.       Hanafi, H. A. and Azeema, S. M. A. (2016). Removal of nitrate and nitrite anions from wastewater using activated carbon derived from rice straw. Journal of Environmental & Analytical Toxicology, 6 (1): 1-6.

3.       Chatterjee, S., Lee, D. S., Lee, M. W. and Woo, S. H. (2008). Nitrate removal from aqueous solutions by cross-linked chitosan beads conditioned with sodium bisulfate. Journal of Hazardous Materials, 166: 508 – 513.

4.       Madaeni, S. S. and Koocheki, S. (2010). Influence of di-hydrogen phospate ion on performance of polyamide reverse osmosis membrane for nitrate and nitrite removal. Journal Porous Material, 17: 163 – 168.

5.       Hekmatzadeh, A. A., Karimi-Jashani, A., Talebbeydokhti, N. and Klove, B. (2012). Modeling of nitrate removal for ion exchange resin in batch and fixed-bed experiments. Desalination, 284: 22 – 31.

6.       Guy, K. A., Xu, H., Yang, J. C., Werth, C. J. and Shapley, J. R. (2009). Catalytic nitrate and nitrite reduction with Pd - Cu/PVP colloids in water: composition, structure, and reactivity correlations. Journal Physical Chemistry, 113, 8177 – 8185.

7.       Bel, E. S., Hmida, H., Ouejhani, A., Lalleve, G., Fauvarque, J. F. and Dachraoui, M. (2013). A novel anionic electrodialysis membrane can be used to remove nitrate and nitrite from wastewater. Desalination and Water Treatment 23: 13 –19.

8.       Khan, M. A., Ahn, Y. T., Kumar, M., Lee, W., Min, B., Kim, G., Cho, D. W., Park, W. B. and Jeon, B. H. (2011). Adsorption studies for the removal of nitrate using modified lignite granular activated carbon. Separation Science and Technology, 46: 2575 – 2584.

9.       Sabzali, A., Gholami, M., Yazandbakhsh, A. R., Khodadadi, A., Musavi, B. and  Mirzaee, R. (2006). Chemical denitrification of nitrate from groundwater via sulfamic acid and zinc metal. Journal Environmental Health Science Engineering, 3(3): 141 – 146.

10.    Lopez-Vazquez, C. M., Kubare, M., Saroj, D. P., Chikamba, C., Schwarz, J., Daims, H. and Brdjanovic, D. (2013). Thermophilic biological nitrogen removal in industrial wastewater treatment. Applied Microbiology Biotechnology, 98(2): 945 – 956.

11.    Matos, C. T., Velizarov, S., Crespo, J. G. and Reis, M. A. M. (2006). Simultaneous removal of perchlorate and nitrate from drinking water using the ion exchange membrane bioreactor concept. Water Research, 40(2): 231 – 240.

12.    Zhang, Y. and Angelidaki, I. (2012). Bioelectrode-based approach for enhancing nitrate and nitrite removal and electricity generation from eutrophic lakes. Water Research, 46(19): 6445-6453.

13.    Hannachi, C., Guesmi, F., Fatma, K., Missaoui and Hamrouni, B. (2014). Application of adsorption models for fluoride, nitrate and sulfate ion removal by AMX membrane. International Journal of Technology, 5(1): 60 – 69.

14.    Sowmya, A and Meenakshi, S. (2013). An efficient and regenerable quartenary amine modified chitosan beads for the removal of nitrate and phosphate anions. Journal of Environmental Chemical Engineering, 1(4): 906-915.

15.    Shaikh, I. I. and Chendake, Y. J. (2016). Removal of ammonium nitrate from aquaculture by sorption using zeolite. International Journal of Scientific Research in Chemistry, 1(1): 42 – 48.

16.    Hassan, M. L., Kassem, N. F and El-Kader, H. A. A. (2010). Novel Zr (IV)/sugar beet pulp composite for removal of sulfate and nitrate anion. Journal of Applied Polymer Science, 117(4): 2205 – 2212.

17.    Kalaruban, M., Loganathan, P., Shim, W. G., Kandasamy, J., Naidu, G., Tien, V. N. and Vigneswaran, S. (2016). Removing nitrate from water using iron-modified Dowex 21K XLT ion exchange resin: Batch and fluidised-bed adsorption studies. Separation and Purification Technology, 158: 62 – 70.

18.    Bulgariu, L., Ceica, A., Lazar, L., Cretescu, I. and Balasanian, I. (2010). Equilibrium and kinetics study of nitrate removal from water by Purolite A100 resin. Revista de Chimie, 61(11): 1136 – 1141.

19.    Nur, T., Shim, W. G., Loganathan, P., Vigneswaran S. and Kandasamy, J. (2014). Nitrate removal using Purolite A520E ion exchange resin: batch and fixed-bed column adsorption modelling. International Journal of Environmental Science and Technology, 12(4): 1311 – 1320.

20.    Primo, O., Rivero, M. J., Urtiaga, A. M. and Ortiz, I. (2009). Nitrate removal from electro-oxidized landfill leachate by ion exchange. Journal of Hazardous Materials, 164(1): 389 – 393.

21.    Li, W. B., Song, Y. B., Xu, H. K., Chen, L. Y., Dai, W. D. and Dong, M. (2015). Ion-exchange method in the collection of nitrate from freshwater ecosystem for nitrogen and oxygen isotope analysis: A review. Environmental Science Pollution Research, 22(13): 9575 – 9588.

22.    Farajpourlar, M., Rao, S. R. M. and Rao, V. V. B. (2013). Studies on fixed and fluidized bed ion exchange column  to treat  wastewater. IOSR Journal of Environmental Science, Toxicology and Food Technology, 6(1): 1 – 6.

23.    Li, H. and Yang, C. (2015). Nitrite removal using ion exchange resin: Batch vs. fixed bed performance. Separation Science and Technology, 50(11): 1721 – 1730.

24.    Loganathan, P., Vigneswaran, S. and Kandasamy, J. (2013). Enhanced removal of nitrate from water using surface modification of adsorbents - A review. Journal of Environmental Management, 131: 363 – 374.

25.    Swarna, A. (2014). Removal of arsenic using iron coated limestone. Master Theses & Specialist Projects. Western Kentucky University.

26.    Zou, W., Han, R., Chen, Z., Jinghua, Z. and Shi, J. (2006). Kinetic study of adsorption of Cu(II) and Pb (II) from aqueous solutions using manganese oxide coated zeolite in batch mode. Colloids and Surfaces A: Physicochemistry Engineering Aspects, 279: 238 – 246.

27.    Purolite (2017). Technical data ISO 9002. http://www.purolite.com. [Access online 7 September 2017].

28.    Faiku, F and Haziri, A. (2016). Assesment of the water quality of Lumbardhi River, Prizren (Kosovo). Bulgarian Chemical Communications, 48(4): 646 – 658.

29.    Zhang, J., Yang, C., Chen, C. and Yang, X. (2013). Determination of nitrite and glucose in water and human urine with light-up chromogenic response based on the expeditious oxidation of 3,3’,5,5’-tetramethylbenzidine by peroxynitrous acid. Analyst, 138(8): 2398 – 2404.

30.    Roohparvar, R., Shamspur, T. and Mostafavi, A. (2016). Application of modified silica coated magnetite nanoparticles to separation-preconcentration and determination of nitrite. Chemical & Metallurgical Engineering Journal, 4: 101 – 103.

31.    Xu, X., Gao, B., Yue, Q., Li, Q. and Wang, Y. (2013). Nitrate adsorption by multiple biomaterial based resins: Application of pilot-scale and lab-scale products. Chemical Engineering Journal, 234: 397 – 405.

32.    Chowdhury, Z. Z., Zain, S. M., Rashid, A. K., Rafique, R. F. and Khalid, K. (2013). Breakthrough curve analysis for column dynamics sorption of Mn(II) ions from wastewater by using Mangostana garcinia peel-based granular-activated carbon. Journal of Chemistry, 2013: 1 – 8.

33.    Babu, B. V. and Gupta, S. (2005). Modeling and simulation for dynamics of packed bed adsorption. Proceedings of International Symposium & 57th Annual Session of IIChE in association with AIChE (CHEMCON-2004), Mumbai.

 




Previous                    Content                    Next