Malaysian Journal of Analytical Sciences Vol 23 No 5 (2019): 880 - 891

DOI: 10.17576/mjas-2019-2305-13

 

 

 

GLYCEROL DEGRADATION IN THE ABSENCE OF EXTERNAL HYDROGEN GAS BY USING WASTE EGGSHELL AS HETEROGENEOUS CATALYST

 

(Degradasi Gliserol Tanpa Kehadiran Hidrogen Luaran dengan Menggunakan Sisa Kulit Telur sebagai Mangkin Heterogen)

 

Mohamad Imran Firdaus Mhd Sawal1, Ahmad Irfan Oslan1, Muhammad Hazwan Muhamad Hatta1, Noraini Hamzah2, Norazzizi Nordin3, Norsaliyana Jumali1, Wan Zurina Samad1*

 

1Department of Chemistry, Kulliyyah of Science,

International Islamic University Malaysia, Bandar Indera Mahkota, 25200 Kuantan, Pahang, Malaysia

2Faculty of Applied Sciences,

Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia

3School of Chemical Sciences,

Universiti Sains Malaysia, 11800 Minden, Pulau Pinang, Malaysia

 

*Corresponding author:   wzurina@iium.edu.my

 

 

Received: 16 January 2019; Accepted: 29 July 2019

 

 

Abstract

The demand of biodiesel production nowadays is increasing every day. However, the booming of biodiesel demand resulted in the increase of glycerol production as a major by-product. Although glycerol could serve in various industries, the demand and usage are still limited. Therefore, an alternative method was proposed in this research in order to convert glycerol into more value-added chemicals such as methanol (MeOH), propanol (1-PrOH), and 1,2-propanediol (1,2-PDO) through a new low cost and simple approach which is the reflux technique in the absence of external hydrogen gas. Due to the concern of global food waste issues, calcium oxide (CaO) catalyst derived from waste eggshells is utilized as a possible heterogeneous catalyst. This preliminary research studied the influence of reaction temperature and reaction time whereas catalyst weight and glycerol concentration were fixed as independent variables. Overall, the three chemicals were successfully synthesized with different optimum conditions. The formation of 1,2-PDO is more preferred at lower temperature (130 °C and 5 hours) with glycerol conversion and selectivity of 53.70% and 64.76%, respectively. However, the formation of MeOH and 1-PrOH are preferred at higher temperature. The formation of 1-PrOH (170 °C and 5 hours) resulted in glycerol conversion and selectivity of 81.64% and 70.85%, respectively. Meanwhile, the best condition in the formation of MeOH is at 190 °C and 7 hours reaction time with glycerol conversion and selectivity of 65.8 % and 46.44%, respectively.

 

Keywords:  glycerol, degradation, external hydrogen, waste eggshell, heterogeneous catalyst

 

Abstrak

Permintaan pengeluaran biodiesel semakin meningkat setiap hari. Fungsi biodiesel itu sendiri sebagai bahan api alternatif untuk menggantikan penggunaan bahan api fosil adalah salah satu teknik terbaik untuk mengurangkan pembebasan gas karbon dioksida (CO2) yang dikeluarkan di atmosfera. Walau bagaimanapun, permintaan biodiesel yang tinggi menyebabkan peningkatan penghasilan gliserol sebagai produk sampingan utama. Walaupun gliserol boleh digunakan dalam pelbagai industri, permintaan dan penggunaannya masih terhad. Oleh itu, satu alternatif telah diambil dalam penyelidikan ini untuk menukar gliserol menjadi bahan kimia yang lebih bernilai seperti metanol (MeOH), propanol (PrOH) dan 1,2-propanediol (1,2-PDO) melalui pendekatan baharu yang lebih murah dan lebih mudah iaitu dengan menggunakan teknik refluks. Penukaran gliserol juga dilakukan tanpa kehadiran gas hidrogen luaran. Dengan mengambil kira mengenai isu kenaikan sisa makanan global, mangkin kalsium oksida (CaO) yang diperoleh daripada sisa kulit telur telah digunakan sebagai mangkin heterogen. Penyelidikan awal ini bertumpu mengkaji parameter pengaruh suhu tindak balas dan masa tindak balas, manakala berat mangkin dan kepekatan gliserol  dijadikan sebagai pemboleh ubah tidak bersandar. Secara keseluruhan, ketiga-tiga bahan kimia telah berjaya disintesis dengan keadaan optimum yang berbeza. Pembentukan 1,2-PDO lebih baik pada suhu yang rendah (130 °C dan 5 jam) dengan penukaran gliserol dan selektiviti pada 53.70% dan 64.76%. Walau bagaimanapun, penghasilan MeOH dan 1-PrOH lebih baik pada suhu yang lebih tinggi. Penghasilan 1-PrOH (170 °C dan 5 jam) mencatatkan penukaran gliserol pada 81.64% dan selektiviti pada 70.85%. Sementara itu, keadaan terbaik dalam pembentukan metanol adalah pada 190 °C, dan masa reaksi 7 jam dengan penukaran gliserol pada 65.87% dan selektiviti produk masing-masing 46.44%.

 

Kata kunci: gliserol, degradasi, hidrogen luaran, sisa kulit telur, mangkin heterogen

 

References

1.       Qadariyah, L., Mahfud., Sumarno., Mahmudah, S., Wahyudiono., Sasaki. M. and Goto M. (2011). Degradation of glycerol using hydrothermal process. Bioresource Technology, 102: 9267 - 9271.

2.       Johnson, D. T. and Taconi, K. A. (2007). The glycerin glut: options for the valueadded conversion of crude glycerol resulting from biodiesel production. Environmental Progress & Sustainable Energy, 26(4): 338-348.

3.       Nanda, M. R., Yuan, Z., Shui, H. and Xu, C. (2017). Selective hydrogenolysis of glycerol and crude glycerol (a by-product or waste stream from the biodiesel industry) to 1,2-propanediol over B2O3 promoted Cu/Al2O3 catalysts. Catalysts, 7(7): 196.

4.       Nanda, M. R., Yuan, Z., Qin, W. and Xu, C. (2016). Recent advancements in catalytic conversion of glycerol into propylene glycol: A review. Catalysis Review, 58(3): 309 - 336.

5.       Samad, W. Z., Salleh, M. M., Shafiee, A. and Yarmo, M. A. (2011). Structural, optical and electrical properties of fluorine doped tin oxide thin films deposited using inkjet printing technique. Sains Malaysiana, 40(3): 251 - 257.

6.       Anand, P. and Saxena, R. K. (2012). A comparative study of solvent-assisted pretreatment of biodiesel derived crude glycerol on growth and 1,3-propanediol production from Citrobacter freundii. New Biotechnology, 29(2): 199 - 205.

7.       Yang, F., Hanna, M. A. and Sun, R. (2012). Value-added uses for crude glycerol–A byproduct of biodiesel production. Biotechnology for Biofuels, 5(1): 13.

8.       Quispe, C. A. G., Coronado, C. J. R. and Carvalho, J. A. J. (2013). Glycerol: production, consumption, prices, characterization and new trends in combustion. Renewable and Sustainable Energy Reviews, 27: 475 - 493.

9.       Da Silva, G. P. D., Mack, M. and Contiero, J. (2009). Glycerol: A promising and abundant carbon source for industrial microbiology. Biotechnology Advances, 27: 30 - 39.

10.    Nakano, T., Ikawa, N. I. and Ozimek, L. (2003). Chemical composition of chicken eggshell and shell membranes. Poultry Science, 82(3): 510 - 514.

11.    Buasri, A., Chaiyut, N., Loryuenyong, V., Worawanitchaphong, P. and Trongyong, S. (2013). Calcium oxide derived from waste shells of mussel, cockle, and scallop as the heterogeneous catalyst for biodiesel production. The Scientist World Journal, 2013: 1 - 7.

12.    Verma, P., Sharma, M. P. and Dwivedi, G. (2016). Impact of alcohol on biodiesel production and properties. Renewable and Sustainable Energy Reviews, 56: 319 - 333.

13.    Haider, M. H., Dummer, N. F., Knight, D. W., Jenkins, R. L., Howard, M., Moulijn, J., Taylor, S. T. and Hutchings, G. J. (2015). Efficient green methanol synthesis from glycerol. Nature Chemistry, 7 (12): 1028.

14.    Henry, Z. K. (1992). Distillation design. McGraw Hill, United State of America: pp. 2 - 3.

15.    Aditha, S. K., Kurdekar, A. D., Chunduri, L. A. A., Patnaik, S. and Kamisetti, V. (2016). Aqueous based reflux method for green synthesis of nanostructures: Application in CZTS synthesis. MethodsX, 3: 35 - 42.

16.    Hassan, S. T. and Nageswara, R. L. (2018). Utilization of modified eggshells as a solid catalyst for the conversion of waste cooking oil to biodiesel. Austin Chemical Engineering, 5(1): 1 - 8.

17.    Praikaew, W., Kiatkittipong, W., Kiatkittipong, K., Laosiripojana, N., Viriya-empikul, N., Boonyasuwat, S., Aiouache, F., Najdanovic, V. and Assabumrungrat, S. (2018). Synthesis of glycerol carbonate from dimethyl carbonate and glycerol using CaO derived from eggshells. MATEC Web of Conferences, 192(03045): 1 – 4.

18.    Renita, A., Chowdhury, P. P., Sultana, P., Phukan, P. and Hannan, A. (2016). Utilization of waste eggshells for production of renewable catalyst for transesterification. International Journal of Pharmacy and Pharmaceutical Sciences, 8(7): 143 -146.

19.    Chen, L., Ren, S. and Ye, X. P. (2014). Lactic acid production from glycerol using CaO as solid base catalyst. Fuel Processing Technology, 120: 40 - 47.

20.    Feng, J., Zhang, Y., Xiong, W., Ding, H. and He B. (2016). Hydrogenolysis of glycerol to 1,2-propanediol and ethylene glycol over Ru-Co/ZrO2 catalysts. Catalysts, 6(4): 51.

21.    Mosaddegh, E. and Hassankhani, A. (2014). Preparation and characterization of nano-CaO based on eggshell waste: novel and green catalytic approach to highly efficient synthesis of pyrano [4, 3-b] pyrans. Chinese Journal of Catalysis, 35(3): 351 - 356.

22.    Maris, E. P. and Davis, R. J. (2007). Hydrogenolysis of glycerol over carbon-supported Ru and Pt catalysts. Journal of Catalysis, 249(2): 328 - 337.

23.    Samad, W. Z., Goto, M., Kanda, H., Wahyudiono., Nordin, N., Liew, K. H., Yarmo, M. A. and Yusop, M. R. (2017). Fluorine-doped tin oxide catalyst for glycerol conversion to methanol in sub-critical water. The Journal of Supercritical Fluids, 120: 366 - 378.

24.    Borhade, A. V., Uphade, B. K. and Gadhave, A. G. (2016). Calcinized eggshell: An environmentally benign green catalyst for synthesis of 2-arylbenzothiazole derivatives. Research on Chemical Intermediates, 42(7): 6301 - 6311.

25.    Tsai, W. T., Yang, J. M., Lai, C. W., Cheng, Y. H., Lin, C. C. and Yeh, C. W. (2006). Characterization and adsorption properties of eggshells and eggshell membrane. Bioresource technology, 97(3): 488 - 493.

 

 

 

 

 




Previous                    Content                    Next