Malaysian Journal of Analytical Sciences Vol 23 No 5 (2019): 781 – 788

DOI: 10.17576/mjas-2019-2305-03

 

 

 

SURFACTANT-BOUND Fe3O4 NANOPARTICLES AS CATALYST SUPPORT: SYNTHESIS AND PHYSICOCHEMICAL PROPERTIES

 

(Nanopartikel Fe3O4 Surfaktan Terikat Sebagai Sokongan Mangkin: Sintesis dan Ciri Fizikokimia)

 

Hassanain Hafiz Mohd Asnan1, Siti Kamilah Che Soh1*, Wan Fatihah Khairunisa Wan Nor1, Sabiqah Tuan Anuar1, Uwaisulqarni M. Osman1, Mohd Hasmizam Razali1, Mohd Zul Helmi Rozaini2, Mustaffa Shamsuddin3

 

1Faculty of Science and Marine Environment

2Institute of Marine and Biotechnology

Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia.

3Department of Chemistry, Faculty of Science,

Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia

 

*Corresponding author:  sitikamilah@umt.edu.my

 

 

Received: 10 June 2019; Accepted: 7 August 2019

 

 

Abstract

Magnetic nanoparticles are highly valuable solid support for the attachment of homogeneous inorganic catalyst and organocatalyst. In this study, surfactant-bound Fe3O4 nanoparticles were successfully synthesized via a co-precipitation method between FeCl3.6H2O and FeCl2.4H2O, in which sodium dodecyl sulfate (SDS) was applied as a stabilizing agent. The use of surfactant was also to avoid the agglomeration process during the catalytic activity. Different techniques were employed to characterize the synthesized magnetic nanoparticles, such as Fourier Transform Infrared Spectroscopy (FTIR), Thermogravimetric Analysis (TGA), X-ray Diffraction (XRD), Field Emission Scanning Electron Microscopy/Electron Dispersive X-ray (FESEM/EDX), Vibrating Sample Magnetometer (VSM), and Brunauer–Emmett–Teller (BET) Surface Area Analysis. The specific surface area analysis of surfactant-bound Fe3O4 nanoparticles gave a higher value (117 m2/g) with large pore volume (0.40 cm3/g) compared to bare iron oxide. The VSM pattern demonstrates superparamagnetic properties of magnetic nanoparticles with saturation magnetization Ms, 53.98 emu/g. The analyses obtained recommended the surfactant-bound Fe3O4 nanoparticles potentially to be used as solid support for catalytic applications due to their unique properties, for example high surface area, superparamagnetism, and well-dispersed material.

 

Keywords:  magnetite nanoparticles, catalyst support, heterogeneous catalysis

 

Abstrak

Nanopartikel magnet merupakan penyokong padu yang berharga untuk pengikatan mangkin homogen tak organik dan mangkin homogen organo. Dalam kajian ini, nanopartikel Fe3O4 surfaktan terikat berjaya disintesis melalui kaedah pemendakan bersama antara FeCl3.6H2O dan FeCl2.4H2O, yang menggunakan natrium dodesil sulfat sebagai agen penstabilan. Penggunaan surfaktan juga untuk mengelak proses aglomerasi semasa aktiviti pemangkinan. Pelbagai teknik digunakan untuk pencirian nanopartikel magnet yang disintesis seperti Spektroskopi Inframerah Penjelmaan Fourier (FTIR), Analisis Gravimetri Terma (TGA), Pembelauan Sinar-X (XRD), Mikroskopi Elektron Pengimbasan Pancaran Medan/Sinar-X Sebaran Elektron (FESEM), Magnetometer Sampel Bergetar (VSM), dan Analisis Luas Permukaan Brunauer–Emmett–Teller(BET). Analisis luas permukaan khusus bagi nanopartikel Fe3O4 surfaktan terikat memberikan suatu nilai yang tinggi (117 m2/g) dengan isi padu liang besar (0.40 cm3/g) berbanding dengan oksida besi tanpa surfaktan. Pola VSM mempamerkan sifat superparamagnetik bagi nanopartikel magnetik dengan nilai pemagnetan tepu Ms, 53.98 emu/g. Analisis yang diperolehi mengesyorkan bahawa nanopartikel Fe3O4 surfaktan terikat berpotensi digunakan sebagai penyokong padu untuk aplikasi pemangkinan disebabkan oleh sifat-sifat uniknya seperti luas permukaan yang tinggi, superparamagnet dan sebagai bahan terserak yang baik.

 

Kata kunci:  nanopartikel magnetit, sokongan mangkin, mangkin heterogen

 

References

1.       Rezaei, G., Naghipour, A. and Fakhri, A. (2017). Catalytic performance studies of new Pd and Pt Schiff base complexes covalently immobilized on magnetite nanoparticles as the environmentally friendly and magnetically recoverable nanocatalyst in C–C cross coupling reactions. Catalysis Letters, 148(2): 732 - 744.

2.       Dehghani, F., Sardarian, A. R. and Esmeilpour M. (2013). Salen complex of Cu(II) supported on superparamagnetic Fe3O4@SiO2 nanoparticles: an efficient and recyclable catalyst for synthesis of 1- and 5- substituted 1H-tetrazoles. Journal of Organometallic Chemistry, 743: 87 - 96.

3.       Rayati, S., Khodaei E., Jafarian M. and Wojtczak A. (2017). Mn-Schiff base complex supported on magnetic nanoparticles: synthesis, crystal structure, electrochemical properties and catalytic activities for oxidation of olefins and sulfides. Polyhedron, 133: 27 - 335.

4.       Sydnes, M. O. (2017). The use of palladium on magnetic support as catalyst for Suzuki–Miyaura cross-coupling reactions. Catalysts, 7(1): 35.

5.       Feng, X. and Lou, X. (2015). The effect of surfactants-bound magnetite (Fe3O4) on the photocatalytic properties of the heterogeneous magnetic zinc oxides nanoparticles. Separation and Purification Technology, 147: 266 - 275.

6.       Ali A., Zafar H., Zia M., Haq I., Phull A. R., Ali J. S. and Hussain A. (2016). Synthesis, characterization, applications, and challenges of iron oxide nanoparticles. Nanotechnology, Science and Applications, 9: 49 - 67.

7.       Yang Q., Dai Z., Yang K. and Li Y. (2015). Preparation of magnetic Fe3O4 microspheres using different surfactant and silica-coated magnetic particles. Atlantis Press, London: pp. 47 - 51.

8.       Ng, K., Kok, K. and Ong, B. (2017). Facile synthesis of self-assembled cobalt oxide supported on iron oxide as the novel electrocatalyst for enhanced electrochemical water electrolysis. ACS Applied Nano Materials, 1(1): 401 - 409.

9.       Sievers C., Noda Y., Qi L., Alburquerque E. M., Riuox R. M. and Scott S. L. (2018). Phenomena affecting catalytic reactions at solid-liquid interfaces. ACS Catalytic, 6 (12): 8286 - 8307.

10.    Tan, W. L. and Bakar M. A. (2006). The effect of additives on the size of Fe3O4 particles. Journal of Physical Sciences, 17(2): 37 - 50.

11.    Han, D., Yang, S., Yang, J., Zou, P., Kong, X., Yang, L. and Wang, D. (2016). Synthesis of Fe3O4 nanoparticles via chemical coprecipitation method: Modification of surface with sodium dodecyl sulfate and biocompatibility study. Nanoscience and Nanotechnology Letters, 8(4): 335 - 339.

12.    Petcharoen, K. and Sirivat, A. (2012). Synthesis and characterization of magnetite nanoparticles via the chemical co-precipitation method. Materials Science and Engineering: B, 177 (5): 421 - 427.

13.    Nor W. F. K. N., Soh S. K. C., Azmi A. A. A., Yusof M. S. M. and Shamsuddin M. (2017). Synthesis and physicochemical properties of magnetite nanoparticles (Fe3O4) as potential solid support for homogeneous catalysts. Malaysian Journal of Analytical Sciences, 2(5): 768 - 774.

14.    Riva’i, I., Wulandari, I. O., Sulistyarti, H. and Sabarudin, A. (2018). Ex-situ synthesis of polyvinyl alcohol (PVA)-coated Fe3O4 nanoparticles by co precipitation-ultrasonication method. IOP Conference Series: Materials Science and Engineering, 299: 1 - 8.

15.    Arévalo, P., Isasi, J., Caballero A.C., Marco, J. F. and Martín-Hernández, F. (2017). Magnetic and structural studies of Fe3O4 nanoparticles synthesized via co precipitation and dispersed in different surfactants. Ceramics International, 43(13): 10333 - 10340.

16.    El-kharrag, R., Amin, A. and Griesh, Y. E. (2011). Synthesis and characterization of mesoporous sodium dodecyl sulfate-coated magnetite nanoparticles. Journal of Ceramic Science and Technology, 02(04): 203 - 210.

17.    Liu, X., Kaminski, M. D., Guan, Y., Chen, H., Liu, H. and Rosengart, A. J. (2006). Preparation and characterization of hydrophobic superparamagnetic magnetite gel. Journal of Magnetism and Magnetic Materials, 306(2): 248 - 253.

18.    Mascolo, M. C., Pei, Y. and Ring, T. A. (2013). Room temperature co-precipitation synthesis of magnetite nanoparticles in a large pH window with different bases. Materials, 6(12): 5549 - 5567.

19.    Mürbe, J., Rechtenbach, A. and Töpfer, J. (2008). Synthesis and physical characterization of magnetite nanoparticles for biomedical applications. Materials Chemistry and Physics, 110(2-3): 426 - 433.

20.    Dick, K., Dhanasekaran, T., Zhang, Z. and Meisel, D. (2002). Size-dependent melting of silica-encapsulated gold nanoparticles. Journal of American Chemical Society, 124(10): 2312 - 2317.

21.    Villa, S., Riani, P., Locardi, F. and Canepa, F. (2016). Functionalization of Fe3O4 NPs by Silanization: Use of amine (APTES) and thiol (MPTMS) silanes and their physical characterization. Materials, 9(10): 826.

22.    Mahdavi, M., Ahmad, M. B., Haron, M. J., Namvar, F., Nadi, B., Rahman, M. Z. and Amin, J. (2013). Synthesis, surface modification and characterisation of biocompatible magnetic iron oxide nanoparticles for biomedical applications. Molecules, 18(7): 7533 - 7548.

23.    Gupta, A. K., and Gupta, M. (2005). Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials, 26(18): 3995 - 4021.

 

 




Previous                    Content                    Next