Malaysian Journal of Analytical Sciences Vol 23 No 5 (2019): 799 - 811

DOI: 10.17576/mjas-2019-2305-05

 

 

 

FILEM POLIMER SEBAGAI MATRIKS PEMEGUNAN PEWARNA CAMPURAN SEMULA JADI UNTUK SENSOR pH

 

(Polymeric Films as Matrixes for the Immobilization of Mixed Natural Dyes for Optical pH Sensor)

 

Noor Azizah Ahmad1,2, Lee Yook Heng1*, Sharina Abu Hanifah1, Faridah Salam2

 

1Fakulti Sains dan Teknologi,

Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia

2Institut Penyelidikan dan Kemajuan Pertanian Malaysia,

43400 Serdang, Selangor, Malaysia

 

*Corresponding author:  yhl1000@ukm.edu.my

 

 

Received: 7 July 2019; Accepted: 25 August 2019

 

 

Abstrak

Pencirian sensor pH yang berasaskan pemegunan pewarna campuran semula jadi daripada ekstrak tumbuhan Clitoria sp dan Brassica sp pada filem beberapa jenis polimer telah dilakukan. Matriks polimer yang telah dikaji ialah karagenan (ι- dan κ-), kanji jagung dan karboksil metil selulosa. Kesesuaian filem polimer dinilai dari segi keterlarutan polimer dalam air, serapan air oleh filem dan juga larut-resap bahan sensor terpegun daripada filem. Hasil kajian kesesuaian menunjukkan bahawa filem ι-karagenan adalah memenuhi ciri yang diperlukan sebagai filem sensor. Sensor pH yang dibina dengan filem ι-karagenan menunjukkan nilai sisihan piawai relatif (RSD) untuk ciri kebolehulangan dan kebolehasilan berada di bawah paras 5% pada nilai pH 4, 7 dan 12 yang diukur. Masa rangsangan yang diperlukan oleh filem sensor pH ini untuk bertindak balas dengan lengkap adalah 2 minit dalam tempoh perendaman. Filem sensor pH berasaskan ι-karagenan boleh disimpan pada suhu bilik selama 7 hari tanpa perubahan rangsangan (RSD 1.85%). Kestabilan foto bagi filem sensor pH selepas 12 minggu disimpan dalam suhu 4°C masih menunjukkan rangsangan yang stabil (RSD 1.63%). Kesan histerisis pada sensor pH juga didapati minimum dengan menggunakan filem ι-karagenan ini. Oleh yang demikian, kriteria yang terdapat pada filem ι-karagenan terpegun dengan pewarna campuran semula jadi menunjukkan ia berpotensi untuk digunakan sebagai sensor pH, khasnya dalam pemantauan kesegaran makanan semasa penyimpanan.

 

Kata kunci:  sensor pH, antosianin, pewarna campuran semula jadi, ι-karagenan

 

Abstract

The characterization of pH sensors based on mixed natural dye from Clitoria sp and Brassica sp plant extracts on several types of polymers film have been performed. The polymer matrixes that have been studied were carrageenan (ι- and κ-), corn’s starch and carboxyl methyl cellulose. The suitability of the polymer film is assessed in terms of water solubility, water absorption and leaching properties of the immobilized sensor material from the film. The study showed that ι-carrageenan film meets the required criteria as a sensor film. The pH sensor developed with the ι-carrageenan film shows the relative standard deviation (RSD) values are below 5% level of pH ​​4, 7 and 12 for repeatability and reproducibility properties. The response time of the pH sensor film for fully respond is 2 minutes during immersion period. The ι-carrageenan-based pH sensor film can be kept at room temperature for 7 days without response changes (RSD 1.85%). Photo stabilization of pH sensor film after 12 weeks stored at 4°C still shows stable response (RSD 1.63%). The hysteresis effect on the pH sensor was also found to be minimum by using this ι-carrageenan film. Therefore, the criterion found in the ι-carrageenan film immobilized with mixed natural dye indicates to be used as a potential pH sensor, especially in the monitoring of food freshness during storage.

 

Keywords:  pH sensor, anthocyanin, mixed natural dye, ι-carrageenan

 

References

1.       Hisamato, H., Tsubuku, M., Enomoto, T., Watanabe, K., Kawaguchi, H., Koike, Y. and Suzuki, K. (1996). Theory and practice of rapid flow-through analysis based on optode detection and its application to pH measurement as a model case. Analytical Chemistry, 68: 3871.

2.       Glenn, S. J., Gullum, B. M., Nair, R. B., Nivens, D. A., Murphy, C. J. and Angel, S. M. (2001). Lifetime-based fiber-optic water sensor using a luminescent complex in a lithium-treated NafionTM membrane. Analytica Chimica Acta, 448: 1-8.

3.       Sotomayor, P. T., RaimundoJr, I. M., Zarbin, A. J. G, Rohwedder, J. J. R. and Alves, O. L. (2001). Construction and evaluation of an optical pH sensor based on polyaniline-porous Vycor glass nanocomposite. Sensors and Actuators B: Chemical, 74: 157-162.

4.       Pacquit, A., Frisby, J., Diamond, D., Lau, K. T., Farrell, A. and Quilty, B. (2007). Development of a smart packaging for the monitoring of fish spoilage. Food Chemistry, 102(2): 466-470.

5.       Nopwinyuwong, A., Trevanich, S. and Suppakul, P. (2010). Development of a novel colorimetric indicator label for monitoring freshness of intermediate-moisture dessert spoilage. Talanta, 81(3): 1126-1132.

6.       Kuswandi, B. and Nurfawaidi, A. (2017). On-package dual sensors label based on pH indicators for real-time monitoring of beef freshness. Food Control, 82: 91-100.

7.       Kuswandi, B., Maryska, C., Jayus, Abdullah, A. and Heng, L. Y. (2013). Real time on-package freshness indicator for guavas packaging. Journal of Food Measurement and Characterization, 6: 1-4.

8.       Rukchon, C., Nopwinyuwong, A., Trevanich, S., Jinkarn, T. and Suppakul, P. (2014). Development of a food spoilage indicator for monitoring freshness of skinless chicken breast. Talanta, 130: 547-554.

9.       Zhang, X., Lu, S., and Chen, X. (2014). A visual pH sensing film using natural dyes from Bauhinia blakeana Dunn. Sensors and Actuators B: Chemical, 198: 268-273.

10.    Devarayan, K. and Kim, B. S. (2015). Reversible and universal pH sensing cellulose nanofibers for health monitor. Sensors and Actuators B: Chemical, 209: 281-286.

11.    Pereira Jr, V. A., de Arruda, I. N. Q. and Stefani, R. (2015). Active chitosan/PVA films with anthocyanins from Brassica oleraceae (red cabbage) as time–temperature indicators for application in intelligent food packaging. Food Hydrocolloids, 43: 180-188.

12.    Silva-Pereira, M. C., Teixeira, J. A., Pereira-Júnior, V. A. and Stefani, R. (2015). Chitosan/corn starch blend films with extract from Brassica oleraceae (red cabbage) as a visual indicator of fish deterioration. Food Science and Technology, 61(1): 258-262.

13.    Golasz, L. B., Silva, J. D. and Silva, S. B. D. (2013). Film with anthocyanins as an indicator of chilled pork deterioration. Food Science and Technology (Campinas), 33: 155-162.

14.    Yoshida, C. M. P., Maciel, V. B. V., Mendonca, M. E. V. and Franco, T. T. (2014). Chitosan biobased and intelligent films: Monitoring pH variations. Food Science and Technology, 55: 83-89.

15.    Maciel, V. B. V., Yoshida, C. M. P. and Franco, T. T. (2012). Development of a prototype of a colourimetric temperature indicator for monitoring food quality. Journal of Food Engineering, 111: 21-27.

16.    Prietto, L., Mirapalhete, T. C., Pinto, V. Z., Hoffmann, J. F., Vanier, N. L., Lim, L. T., Guerra Dias, A. R. and Zavareze, E. D. (2017). pH-sensitive films containing anthocyanins extracted from black bean seed coat and red cabbage. LWT-Food Science and Technology, 80: 492-500.

17.    Pourjavaher, S., Almasi, H., Meshkini, S., Pirsa, S. and Parandi, E. (2017). Development of a colorimetric pH indicator based on bacterial cellulose nanofibers and red cabbage (Brassica oleraceae) extract. Carbohydrate Polymers,156: 193-201.

18.    Kungsuwan, K., Sing, K., Phetkao, S. and Utama-ang, N. (2014). Effect of pH and anthocyanin concentration on colour and antioxidant activity of Clitoria ternatea extract. Journal of Food and Applied Bioscience, 2(1): 31-46.

19.    Lapornik, B., Prošek, M. and Wondra, A. G. (2005). Comparison of extracts prepared from plant by-products using different solvents and extraction time. Journal of Food Engineering, 71: 214-22.

20.    Yew, P. L. and Heng, L. Y. (2014). A reflectometric ion sensor for potassium based on acrylic microspheres. Sensors and Actuators B: Chemical, 191: 719-726.

21.    Romero-Bastida, C. A., Bello-Pérez, L. A., García, M. A., Martino, M. N., Solorza-Feria, J. and Zaritzky, N. E. (2005). Physicochemical and microstructural characterization of films prepared by thermal and cold gelatinization from non-conventional sources of starches. Carbohydrate Polymers, 60 (2): 235-244.

22.    Hadi, H. and Idayu, I. M. (2013). Modification and swelling kinetic study of kappa-carrageenan-based hydrogel for controlled release study. Journal of Chinese Institute Chemical Engineers, 44: 182-191.

23.    Rosmawani, M., Musa, A. and Jamaluddin, M. D. (2007). Potensi kurkumin sebagai penunjuk pH semula jadi untuk pembangunan sensor optik pH. Malaysian Journal of Analytical Sciences, 11(2): 351-360.

24.    Soedlak, H. S. (1994). Colorimetric determination of carrageenans and other anionic hydrocolloids with methylene blue. Analytical Chemistry, 66: 4514-4518.

25.    De Ruiter, G. A. and Rudolph, B. (1997). Carrageenan biotechnology. Trends Food Science Technology, 8: 389-395.

26.    Tako, M., Nakamura, S. and Kohda, Y. (1987). Indicative evidence for a conformational transition in ι-carrageenan. Carbohydrate Research, 161: 247-253.

27.    Thrimawithana, T. R., Young, S., Dunstanb, D. E. and Alany, R. G. (2010). Texture and rheological characterization of kapa and iota carrageenan in the presence of counter ions. Carbohydrate Polymers, 82: 69-77.

28.    Carabeo, M. M. C. (2005). Swelling capacity of different polyvinyl alcohol and ι- carrageenan blend films. A Thesis Report, Mapúa Institute of Technology, Philippines.

29.    Subhas, C. S. and Pathik, M. S. (2014). Edible polymers: challenges and opportunities. Journal of Polymers, 2014: 1-13.

30.    Makote, R. and Collinson, M. M. (1999). Organically modified silicate films for stable pH sensors. Analytica Chimica Acta, 394: 195-200.

31.    Grant, S.A. and Glass, R. S. (1997). A sol-gel based fiber optic sensor for local blood pH measurements. Sensors and Actuators B, 45: 35-42.

32.    Giusti, M. M. and Wrolstad, R. E. (2001). Anthocyanins: characterization and measurement of anthocyanins by uv-visible spectroscopy. In: Wrolstad, R., Ed., Current Protocols in Food Analytical Chemistry. John Wiley & Sons, Inc., New York: F1.2.1-F1.2.13.

33.    Sadilova, E., Stintzing, F. C. and Carle, R. (2006). Thermal degradation of acylated and nonacylated anthocyanins. Journal of Food Science, 71: 504-512.

34.    Liu, Z., Luo, F. and Chen, T. (2005). Phenol red immobilized PVA membrane for an optical pH sensor with two determination ranges and long-term stability. Sensors and Actuators B, 107: 311-316.

35.    Jaakola, L. (2013). New insights into the regulation of anthocyanin biosynthesis in fruits. Trends in Plant Science, 18(9): 477-483.

 

 




Previous                    Content                    Next