Malaysian Journal of Analytical Sciences Vol 23 No 5 (2019): 818 - 827

DOI: 10.17576/mjas-2019-2305-07

 

 

 

DURIAN SHELL HUSK EXTRACT ASSISTED SYNTHESIS OF COPPER OXIDES NANOPARTICLES FOR THE PHOTODEGRADATION OF PARACETAMOL

 

(Ekstrak Sekam Kulit Durian Membantu Sintesis Nanozarah Tembaga Oksida Untuk Fotodegradasi Paracetamol)

 

Ahmad Masudi1, Nurfatehah Wahyuny Che Jusoh1,2*, Zunika Bakri1, Aishah Abdul Jalil2,3, Roshafima Rasit Ali 1,2, Nur Farhana Jaafar4

 

1Department of Chemical Process Engineering, Malaysia-Japan International Institute of Technology (MJIIT),

Universiti Teknologi Malaysia Kuala Lumpur, Jalan Sultan Yahya Petra54100 Kuala LumpurMalaysia

2Center of Hydrogen Energy, Institute of Future Energy

3School of Chemical and Energy Engineering, Faculty of Engineering

Universiti Teknologi Malaysia81310 UTM Johor BahruJohorMalaysia

4School of Chemical Sciences,

Universiti Sains Malaysia, 11800 USM Penang, Malaysia

 

*Corresponding author:  nurfatehah@utm.my

 

 

Received: 13 February 2019; Accepted: 20 September 2019

 

 

Abstract

A series of copper oxide (CuO) nanoparticles catalysts were prepared via electrochemical method. The addition of different concentrations of Durian Shell Husk (DSH) extract in the electrolyte system was evaluated for degradation of paracetamol under visible light irradiation. The catalysts were characterized by using X-ray diffraction (XRD), Fourier Transform Infrared (FTIR) and Scanning Electron Microscopy (SEM). The characterization data showed that the different sizes of CuO were obtained when the amount of DSH extract added into the electrolyte system were varied. The crystallite size of CuO prepared with DSH was decreased from 40 nm to 29 nm, which showed the role of DSH extract as a capping agent. The particle sizes   reduction caused a significant increment towards paracetamol degradation. The initial degradation rate was increased from 2.67×10-2 to 7.28×10-2 mg/L.min. From this study, the optimum condition was noticed for CuO that was prepared by using     0.06 mg/L of DSH extract at a paracetamol initial concentration of 10 mg/L (pH 9) by using 0.1 g/L catalyst. Finally, the result could contribute to the production of copper oxide with ideal sizes using abundant agriculture waste extract for the removal of paracetamol in wastewater.

 

Keywords:  electrochemical, copper oxide, durian shell husk, paracetamol

 

Abstrak

Satu siri pemangkin nanozarah tembaga oksida (CuO) telah disediakan melalui kaedah elektrokimia. Penambahan pelbagai kepekatan ekstrak sekam kulit durian (DSH) dalam sistem elektrolit telah dinilai untuk degradasi paracetamol di bawah sinar cahaya boleh lihat. Pemangkin telah dicirikan menggunakan pembelauan sinar-X (XRD), spektroskopi inframerah transformasi Fourier (FTIR) and mikroskopi imbasan elektron (SEM). Data pencirian menunjukkan bahawa pelbagai saiz CuO diperoleh apabila jumlah ekstrak DSH yang ditambah di dalam sistem elektrolit telah diubah-ubah. Saiz kristal CuO yang disediakan menggunakan DSH menurun dari 40 nm ke 29 nm, yang mana menunjukkan peranan ekstrak DSH sebagai ejen pelekatan. Pengurangan saiz zarah ini menyebabkan kenaikan ketara terhadap degradasi paracetamol. Kadar degradasi awal meningkat daripada 2.67×10-2 kepada 7.28×10-2 mg/L.min. Daripada kajian ini, keadaan optimum telah dikenalpasti untuk CuO yang disediakan  menggunakan 0.06 mg/L ekstrak  DSH  pada  kepekatan  awal paracetamol 10 mg/L (pH 9) dengan menggunakan 0.1 g/L pemangkin. Akhirnya, hasil kajian ini dapat menyumbang kepada penghasilan tembaga oksida dengan saiz yang ideal menggunakan ekstrak sisa buangan pertanian untuk penyingkiran paracetamol dalam air sisa.

 

Kata kunci:  elektrokimia, tembaga oksida, sekam kulit durian, paracetamol

 

References

 1.       Gómez, M. J., Martínez Bueno, M. J., Lacorte, S.,  Fernández-Alba, A. R. and Agüera. A. (2007). Pilot survey monitoring pharmaceuticals and related compounds in a sewage treatment plant located on the Mediterranean coast. Chemosphere, 66(6): 993-1002.

 2.       Kim, S. D., Cho, J.,  Kim, I. S.,  Vanderford, B. J. and Snyder. S. A. (2007) Occurrence and removal of pharmaceuticals and endocrine disruptors in South Korean surface, drinking, and waste waters. Water Research, 41(5):1013-1021.

 3.       Al-Odaini, N. A., Zakaria, M. P., Yaziz, M. I. and Surif. S. (2010). Multi-residue analytical method for human pharmaceuticals and synthetic hormones in river water and sewage effluents by solid-phase extraction and liquid chromatography–tandem mass spectrometry. Journal of Chromatography A, 1217(44):  6791-6806.

 4.       Sidik, D. A. B., Hairom, N. H. H., Zainuri, N. Z., Desa, A. L., Misdan, N., Yusof, N., Ong, C. B., Mohammad, A. W. and Aripen. N. S. M. (2018). Photocatalytic degradation of industrial dye wastewater using zinc oxide-polyvinylpyrrolidone nanoparticles. Malaysian Journal of Analytical Sciences, 22(4): 693-701.

 5.       Vaiano, V., Sacco, O. and Matarangolo, M. (2018). Photocatalytic degradation of paracetamol under UV irradiation using TiO2-graphite composites. Catalysis Today, 315: 230-236.

 6.       Jusoh, N.W.C., Jalil, A. A., Triwahyono, S., Karim, A. H., Salleh, N. F., Annuar, N. H. R., Jaafar, N. F., Firmansyah, M. L., Mukti, R. R. and Ali, M.W. (2015). Structural rearrangement of mesostructured silica nanoparticles incorporated with ZnO catalyst and its photoactivity: Effect of alkaline aqueous electrolyte concentration. Applied Surface Science, 330: 10-19.

 7.       Mazumder, N. A. and Rano. R. (2018). Synthesis and characterization of fly ash modified copper oxide (FA/CuO) for photocatalytic degradation of methyl orange dye. Materials Today: Proceeding, 5: 2281-2286.

 8.       An, J. and Zhou. Q. (2012). Degradation of some typical pharmaceuticals and personal care products with copper-plating iron doped Cu2O under visible light irradiation. Journal of Environmental Sciences, 24(5): 827-833.

 9.       Phiwdang, K., Suphankij, S., Mekprasart, W. and Pecharapa. W. (2013). Synthesis of CuO nanoparticles by precipitation method using different precursors. Energy Procedia, 34: 740-745.

10.     Kayani, Z. N., Ali, Y., Kiran, F., Batool, I., Butt, M. Z., Umer, M., Riaz, S. and Naseem. S. (2015). Fabrication of copper oxide nanoparticles by sol-gel route. Materials Today: Proceedings, 2(10): 5446-5449.

11.     Dong, C., Xing, X., Chen, N.,  Liu, X. and Wang, Y. (2016). Biomorphic synthesis of hollow CuO fibers for low-ppm-level n -propanol detection via a facile solution combustion method. Sensors and Actuators B: Chemical, 230: 1-8.

12.     Sapawe, N., Jalil, A. A., Triwahyono, S.,  Sah, R. N. R. A., Jusoh, N. W. C., Hairom, N. H. H. and Efendi, J. (2013). Electrochemical strategy for grown ZnO nanoparticles deposited onto HY zeolite with enhanced photodecolorization of methylene blue: Effect of the formation of SiOZn bonds. Applied Catalysis A: General, 456: 144-158.

13.     Jusoh, R., Jalil, A. A., Triwahyono, S.,  Idris, A., Haron, S., Sapawe, N., Jaafar, N. F. and Jusoh, N. W. C. (2014). Synthesis of reverse micelle α-FeOOH nanoparticles in ionic liquid as an only electrolyte: Inhibition of electron–hole pair recombination for efficient photoactivity. Applied Catalysis A: General, 469: 33-44.

14.     Chutrakulwong, F. and Thamaphat, K. (2014). Durian peeling extract mediated green synthesis of silver nanoparticles. Advanced Materials Research, 875-877: 18-22.

15.     Raghav, R., Aggarwal, P. and Srivastava. S. (2015). Tailoring oxides of copper-Cu2O and CuO nanoparticles and evaluation of organic dyes degradation. AIP conference proceeding, 1724: 020078-1-020078-5. 

16.     Song, J.Y., Jang, H. K. and Kim. B. S. (2009). Biological synthesis of gold nanoparticles using Magnolia kobus and Diopyros kaki leaf extracts. Process Biochemistry, 44(10): 1133-1138.

17.     Mittal, A. K., Chisti, Y. and Banerjee, U. C. (2013). Synthesis of metallic nanoparticles using plant extracts. Biotechnology Advances, 31: 346-356.

18.     Srivastava, R., Anu Prathap, M. U. and Kore. R. (2011). Morphologically controlled synthesis of copper oxides and their catalytic applications in the synthesis of propargylamine and oxidative degradation of methylene blue. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 392(1): 271-282.

19.     Suresh, D., Kumar, D., Nagabhushana, H., Nagaraju, G. Manjunath, K., Naika, H. R. and Lingaraju, K. (2014). Green synthesis of CuO nanoparticles using Gloriosa superba L. extract and their antibacterial activity. Journal of Taibah University for Science, 9(1): 7-12.

20.     Guedes, M., Ferreira, J. M. F. and Ferro. A. C. (2009). A study on the aqueous dispersion mechanism of CuO powders using Tiron. Journal of Colloid and Interface Science, 330(1): 119-124.

21.     Mestre, A.S., Bexiga, A. S., Proença, M., Andrade, M., Pinto, M. L., Matos, I., Fonseca, I. M. and Carvalho, A. P. (2011). Activated carbons from sisal waste by chemical activation with K2CO3: Kinetics of paracetamol and ibuprofen removal from aqueous solution. Bioresource Technology, 102(17): 8253-8260.

22.     Bernal, V., Erto, A., Giraldo, L. and Moreno-Piraján, C. J. (2017). Effect of Solution pH on the Adsorption of paracetamol on chemically modified activated carbons. Molecules, 22(7): 1032.

23.     Zhang, Y., Zhang, Q. and Hong. J. (2017). Sulfate radical degradation of acetaminophen by novel iron–copper bimetallic oxidation catalyzed by persulfate: Mechanism and degradation pathways. Applied Surface Science, 422: 443-451.

24.     Dubey, S.P., M. Lahtinen, and M. Sillanpää. (2010). Green synthesis and characterizations of silver and gold nanoparticles using leaf extract of Rosa rugosa. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 364(1-3): 34-41.

25.     Shen, Y., Zhang, Z.and Xiao, K. (2015). Evaluation of cobalt oxide, copper oxide and their solid solutions as heterogeneous catalysts for Fenton-degradation of dye pollutants. RSC Advances, 5(111): 91846-91854.

26.     Jaafar, N. F., Jalil, A. A., Triwahyono, S., Efendi, J., Mukti, R. R., Jusoh, R., Jusoh, N. W. C., Karim, A. H., Salleh, N. F. M. and Suendo, V. (2015). Direct in situ activation of Ag0 nanoparticles in synthesis of Ag/TiO2 and its photoactivity. Applied Surface Science, 338: 75-84.

27.     Moctezuma, E., Leyva, E., Aguilar, C. A., Luna, R. A. and Montalvo, C. (2012). Photocatalytic degradation of paracetamol: Intermediates and total reaction mechanism. Journal of Hazardous Materials, 243: 130-138.

 

 




Previous                    Content                    Next