

Universiti Kebangsaan MALAYSIA

Kalaivani Chellappan¹, Nor Jaziha Mat Jalil¹, Siti Zaida Yasir¹, Fauziah Ramli¹, Muhammad Syafiq Abdul Razak¹, Mas Ayu Othman¹, Aida Baharuddin¹, Rosmina Jaafar¹, Noorfazila Kamal^{1,2}, Ahmad Yunus Misdi¹, Nur Farah Liza Ramli¹, Ruzaini Ahmad¹

¹Department of Electrical, Electronic and Systems Engineering, ²Centre for Engineering Education Research, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia

ABSTRACT

This outlines the development and implementation of a flipped workshop model supported by constructivism theory to promote student-skill enhancement as part of an electronics undergraduate degree. This model redesigns the traditional lecture-style classroom into a blended learning model that combines discovery learning pedagogy with programmed instruction (or learning) technology. The **Embedded System, Internet of Things (IoT) and Mobile** Application skills set delivery are the ultimate focus of this workshop sequence in training IoT skilled engineers.

OBJECTIVE

To engage the electronics engineering students in a gapclosing program that serve the needs of present IoT industry.

INTRODUCTION

Survey of the electronics-engineering course in UKM identified a gap in the curriculum where students have limited exposure in the system-level design and printed circuit board (PCB) fabrication.

Students are expected to produce a working prototype by the end of the two-days workshop.

METHODOLOGY

RESULTS

Proposed a gap-closing term-break curriculum to prepare and engage students in blended learning activities, thus helping to prepare themselves before entering the industry as well as meet their potential employers' expectations.

Developed a new electronics design and fabrication workshop, an introduction to Internet of Things (IoT), and incorporating a scalable solution to blended learning.

FLIP WORKSHOP MODEL

PRE-WORKSHOP

Online Participant Application

Participant **Personality Test**

Participant **Selection Interview** (Entry Interview)

Prototype Sensor Circuits for PCB Workshop

Participants during Circuit Assembling

CONCLUSION

Pre and Post Workshop Assessment

Post Workshop Interview (Exit Interview)

The development of PCB Circuit Design and Fabrication learning module for gap-closing program will introduce the students to the current electronic manufacturing technology, and allow them to design electronic systems using PCB technology.

The proposed PCB Circuit Design and Fabrication Flip-Workshop aims to be one of the gap-closing module among the engineering and computing undergraduate students in preparing them for IoT industries.