SCHOOL OF MATHEMATICAL SCIENCES
SCHOOL OF MATHEMATICAL SCIENCES

Introduction
The School of Mathematical Sciences started with the establishment of the Department of Mathematics in 1970, which was also the establishment year of UKM. In 1978, the Unit of Statistics and Computer Science was established in the Department of Mathematics. In 1982, the Department of Mathematics was upgraded to a faculty, known as the Centre for Quantitative Studies and it was expanded to include the Department of Mathematics, Statistics and Computer Science. Later in 1991, the center was renamed as the Faculty of Mathematical and Computer Sciences. In 1994, this faculty separated into two faculties, namely the Faculty of Mathematical Sciences and the Faculty of Information Science and Technology. In 1996, the Faculty of Mathematical Sciences established the Centre for Quality and Productivity Improvement, in order to promote mathematical sciences to the general public. On 19th July 1999, the faculty became the School of Mathematical Sciences within the Faculty of Science and Technology. The establishment of the School of Mathematical Sciences integrates knowledge in various major fields of mathematical sciences such as Mathematics, Statistics, Actuarial Science and Quality & Productivity Improvement.

Research Areas and Degrees Offered

At postgraduate level, the School of Mathematical Sciences is offering the following programmes:

a) Doctor of Philosophy
 - Mathematics
 - Statistics
 - Quality and Productivity Improvement

b) Master of Science

 Thesis
 - Mathematics
 - Statistics

 Course Work
 - Mathematics
 - Statistics
 - Quality and Productivity Improvement

 Preliminary Course Work
 - Statistics
Entry Requirements
Candidate applying for these program in the School of Mathematical Sciences must possess:

Doctor of Philosophy
a) Master of Science degree in the field of mathematical sciences from Universiti Kebangsaan Malaysia or other universities approved by the Senate; or
b) Other equivalent qualifications to Master of Science Degree or other qualifications such as experience approved by the Senate; or
c) Master of Science students in Universiti Kebangsaan Malaysia with excellent performance applying for conversion to Doctor of Philosophy program and supported by the Postgraduate Committee and approved by the faculty; or
d) Bachelor of Science degree or other equivalent qualifications to a Bachelors Degree with a good Cumulative Grade Point Average (CGPA) of at least 3.67 from Universiti Kebangsaan Malaysia or other universities approved by the Senate.

Master of Science
a) Bachelor of Science degree with a good CGPA in the field of mathematical sciences from Universiti Kebangsaan Malaysia or other universities approved by the Senate; or
b) Bachelors Degree with a good CGPA in the fields of science, technology and medical or Bachelors Degree in the fields of social sciences from Universiti Kebangsaan Malaysia or other universities approved by the Senate; or
c) Bachelors Degree in the fields of science, technology and medical or Bachelors Degree in the field of social sciences from Universiti Kebangsaan Malaysia or other universities approved by the Senate with related and suitable working experience.

Program of Study

Doctor of Philosophy
All candidates of this program are required to register course STPD6014 Research Methodology and register for the thesis for each semester until completion of the academic program. Students are required to schedule meetings with their supervisor or postgraduate committee for no less than 40 hours per semester for full time students and 20 hours per semester for part-time students.

Master of Science

Thesis
Candidates taking the MSc program by thesis are required to take 12 credit hours of courses which comprise STPD6014 Research Methodology and two course that is related to the field of research to be studied to complete for Master of Science program.

Course Work
Candidates taking the MSc program by course work are required to take and pass at least 32 credit hours of courses (core and elective courses) and to complete 8 credit hours Research Project.

Preliminary Course Work
Candidates accepted to the MSc (Statistics) program by course work but do not have good foundation of statistics must take preliminary course work. They are required to take three courses totaling of 12 units. The candidates are required to get grade B for all these courses in order for them to continue doing MSc (Statistics).
DOCTOR OF PHILOSOPHY (MATHEMATICS)

PROGRAM EDUCATIONAL OBJECTIVE (PEO)

PEO1: To produce outstanding moral and character, ethical and competitive students.
PEO2: To equip students with the ability to translate and synthesize their understanding towards nature, human and development.
PEO3: To equip students with the awareness towards environment and uphold the established development.
PEO4: To equip students with the ability to utilize the mathematical problem solving methods such as analysis, modeling, programming and mathematical software applications in addressing the development issues and current changes.
PEO5: To equip students with the scientific approaches in generating and sharing knowledge which is inter- and intra- discipline.
PEO6: To equip students with the high creativity and innovative ability and able to contribute ideas towards the policy establishment process, decision making and development implementation.

PROGRAM LEARNING OUTCOME (PLO)

PLO1: Able to apply the mathematical sciences knowledge.
PLO2: Able to design the methodology suitable to the problem encountered.
PLO3: Able to analyse and interpret outputs and generate new ideas based on the outputs.
PLO4: Able to gather, utilize and generate informations.
PLO5: Able to have strength to manage emotions.
PLO6: Able to honour noble character and aesthetical values towards the Creator, customers and societies.
PLO7: Able to lead, work in team and give priority to the success of team.
PLO8: Able to communicate effectively through speaking and writing both in Bahasa Melayu and English.
PLO9: Able to understand mathematical sciences solution in every dimension of life.
PLO10: Ability to recognize the needs of life long learning and practise in the whole life.
PLO11: Able to possess the entrepreneur character.

DOCTOR OF PHILOSOPHY (STATISTICS)

PROGRAM EDUCATIONAL OBJECTIVE (PEO)

PEO1: Produce highly skilled, ethical and competitive student.
PEO2: Equip students with the ability to translate and synthesize their understanding towards nature, human and development.
PEO3: Equip students with the awareness towards environment and uphold the established development.
PEO4: Equip students with the ability to utilize the mathematical problem solving method such as analysis, modelling, programming and mathematic software application in addressing the development issues and current changes.
PEO5: Equip students with the scientific approaches in generating and sharing knowledge which is inter- and intra- discipline in nature; and
PEO6: Equip students with the high creativity and innovative ability and able to contribute ideas toward the policy establishment process, decision making and development implementation.

PROGRAM LEARNING OUTCOME (PLO)

PLO1: Able to apply the statistics knowledge.
PLO2: Ability to design the methodology suitable to the problem encountered.
PLO3: Ability to analyse and interpret outputs and generate new ideas based on the outputs.
PLO4: Able to gather, utilize and generate information.
PLO5: Strength to manage emotion.
PLO6: Honour noble character and aesthetical values towards the Creator, customers and society.
PLO7: Able to lead, work in a team and give priority to the success of a team.
PLO8: Able to communicate effectively through speaking and writing both in Bahasa Malaysia and English.
PLO9: Ability to understand statistics solution in every dimension of life.
PLO10: Ability to recognize the needs for continuous learning and practice it in the whole life.
PLO11: Possess the entrepreneur characteristics.

DOCTOR OF PHILOSOPHY (PRODUCTIVITY AND QUALITY IMPROVEMENT)

PROGRAM EDUCATIONAL OBJECTIVE (PEO)

PEO1: Produce highly skilled, ethical and competitive student.
PEO2: Equip students with the ability to translate and synthesize their understanding towards nature, human and development.
PEO3: Equip students with the awareness towards environment and uphold the established development;
PEO4: Equip students with the ability to utilize the mathematical problem solving method such as analysis, modelling, programming and mathematic software application in addressing the development issues and current changes;
PEO5: Students with the scientific approaches in generating and sharing knowledge which is inter- and intra- discipline in nature; and
PEO6: Equip students with the high creativity and innovative ability and able to contribute ideas toward the policy establishment process, decision making and development implementation.

PROGRAM LEARNING OUTCOME (PLO)

PLO1: Able to apply the quality and productivity knowledge.
PLO2: Ability to design the methodology suitable to the problem encountered.
PLO3: Ability to analyse and interpret outputs and generate new ideas based on the outputs.
PLO4: Able to gather, utilize and generate information.
PLO5: Strength to manage emotion.
PLO6: Honour noble character and aesthetical values towards the Creator, customers and society.
PLO7: Able to lead, work in a team and give priority to the success of a team.
PLO8: Able to communicate effectively through speaking and writing both in Bahasa Malaysia and English.

PLO9: Ability to understand statistics solution in every dimension of life.

PLO10: Ability to recognize the needs for continuous learning and practice it in the whole life.

PLO11: Possess the entrepreneur characteristics.

MASTER OF SCIENCE (MATHEMATICS)

Introduction

This program is divided into three modules as follows:

- Pure Mathematics
- Applied Mathematics
- Management and Financial Mathematics

Entry Requirements

Candidates who wish to apply must have the following qualifications:

- Bachelor Degree in mathematics with a good CGPA and sufficient pure mathematics component from Universiti Kebangsaan Malaysia or other universities approved by the Senate; or
- Bachelor Degree in mathematics with a good CGPA and sufficient classical applied mathematics component from Universiti Kebangsaan Malaysia or other universities approved by the Senate; or
- Bachelor Degree in mathematical sciences (including management science, statistics, statistical economy, information science and technology) with a good CGPA from Universiti Kebangsaan Malaysia or other universities approved by the Senate.

PROGRAM EDUCATIONAL OBJECTIVE (PEO)

PEO1: To produce outstanding moral and character.

PEO2: To equip students with the ability to translate and synthesize their understanding towards nature, human and development.

PEO3: To equip students with the awareness towards environment and uphold the established development.

PEO4: To equip students with the ability to utilize the mathematical problem solving methods such as analysis, modeling, programming and mathematical software applications in addressing the development issues and current changes.

PEO5: To equip students with the scientific approaches in generating and sharing knowledge which is inter and intra discipline.

PEO6: To equip students with the high creativity and innovative ability and able to contribute ideas towards the policy establishment process, decision making and development implementation.

PROGRAM LEARNING OUTCOME (PLO)

PLO1: Able to apply the mathematical sciences knowledge.

PLO2: Able to design the methodology suitable to the problem encountered.

PLO3: Able to analyse and interpret outputs and generate new ideas based on the outputs.

PLO4: Able to gather, utilize and generate informations.

PLO5: Able to have strength to manage emotions.

PLO6: Able to honour noble character and aesthetical values towards the Creator, customers and societies.
PLO7: Able to lead, work in team and give priority to the success of team.
PLO8: Able to communicate effectively through speaking and writing both in Bahasa Melayu and English.
PLO9: Able to understand mathematical sciences solution in every dimension of life.
PLO10: Ability to recognize the needs of life long learning and practise in the whole life.
PLO11: Able to possess the entrepreneur character.

Program Structure
Candidates pursuing the program by course work must register and pass at least 32 credit hours (core and elective courses) and complete a research project of 8 credit hours.

Candidates taking the MSc program by thesis are required to take 12 credit hours of courses which comprise STPD6014 Research Methodology and two courses that related to the field of research to be studied to complete for Master of Science program.

STPD6014 Research Methodology

and 8 credit hours of courses that is related to the field of thesis research and approved by supervisor.

Pure Mathematics Module

<table>
<thead>
<tr>
<th>SEMESTER</th>
<th>CORE COURSES</th>
<th>ELECTIVE COURSES</th>
<th>TOTAL</th>
</tr>
</thead>
</table>
| I | STPD6014 Research Methodology
STQM6114 Topology
STQM6124 Algebra
STQM6134 Functional Analysis | Choose three:
STQM6024 Biomechanics
STQM6034 Decision and
Game Analysis
STQM6044 Cryptology
STQM6054 Linear Programming
STQM6064 Mathematical Modeling and Methods | |
| II | STQM6224 Complex Analysis
STQM6988 Research Project | STQM6074 Numerical Analysis
STQM6214 Fuzzy Mathematics
STQM6234 Argotic Theory
STQM6254 Combinatorial Group Theory
STQM6274 Measure Theory and Integration
STQM6294 History and Philosophy of Mathematics
STQM6324 Numerical Methods for Heat Transfer and Fluid Flow
STQM6414 Dynamical System
STQM6524 Linear Modeling of Non-Deterministic Dynamical System
STQM6534 Fluid Mechanics
STQM6624 Simulation | |
Applied Mathematics Module

<table>
<thead>
<tr>
<th>SEMESTER</th>
<th>CORE COURSES</th>
<th>ELECTIVE COURSES</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>STPD6014 Research Methodology</td>
<td>Choose three:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>STQM6414 Dynamical System</td>
<td>STQM6024 Biomechanics</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>STQM6074 Numerical Analysis</td>
<td>STQM6034 Decision and Game Analysis</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>STQM6534 Fluid Mechanics</td>
<td>STQM6044 Cryptology</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>STQM6084 Linear Programming</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>STQM6114 Topology</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>STQM6124 Algebra</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>STQM6134 Functional Analysis</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>STQM6214 Fuzzy Mathematics</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>STQM6224 Complex Analysis</td>
<td></td>
</tr>
<tr>
<td></td>
<td>STQM6064 Mathematical Modeling and</td>
<td>STQM6234 Ergodic Theory</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Methods</td>
<td>STQM6254 Combinatorial Group Theory</td>
<td></td>
</tr>
<tr>
<td></td>
<td>STQM6988 Research Project</td>
<td>STQM6274 Measure Theory and Integration</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>STQM6294 History and Philosophy of Mathematics</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>STQM6324 Numerical Methods for Heat Transfer</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>and Fluid Flow</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>STQM6524 Linear Modeling of Non-Deterministic</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dynamical System</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>STQM6624 Simulation</td>
<td></td>
</tr>
<tr>
<td>II</td>
<td>STQM6064 Mathematical Modeling and</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Methods</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>STQM6988 Research Project</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>28</td>
<td>12</td>
<td>40</td>
</tr>
</tbody>
</table>
Management and Financial Mathematics Module

<table>
<thead>
<tr>
<th>SEMESTER</th>
<th>CORE COURSES</th>
<th>ELECTIVE COURSES</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>STQA6024</td>
<td>Security Derivatives and Risk Management</td>
<td>Choose three:</td>
</tr>
<tr>
<td></td>
<td>STQM6654</td>
<td>Mathematical Economics and Finance in Business</td>
<td>STQM6084</td>
</tr>
<tr>
<td></td>
<td>STQS6444</td>
<td>Time Series Modeling and Forecasting</td>
<td>STQA6934</td>
</tr>
<tr>
<td></td>
<td>STPD6014</td>
<td>Research Methodology</td>
<td>STQM6034</td>
</tr>
<tr>
<td>II</td>
<td>STQA6014</td>
<td>Investment Analysis and Portfolio Management</td>
<td>STQM6044</td>
</tr>
<tr>
<td></td>
<td>STQM6988</td>
<td>Research Project</td>
<td>STQM6214</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>STQM6224</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>STQS6244</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>STQM6294</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>STQM6324</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>STQM6414</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>STQM6524</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>STQM6624</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>STQS6274</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td>28</td>
</tr>
</tbody>
</table>

Courses Offered

- STQA6014 Investment Analysis and Portfolio Management
- STQA6024 Security Derivatives and Risk Management
- STQA6034 Issues in Risk Management and Insurance
- STQM6024 Biomechanics
- STQM6034 Decision and Game Analysis
- STQM6044 Cryptology
- STQM6064 Mathematical Modeling and Methods
- STQM6074 Numerical Analysis
- STQM6084 Linear Programming
Course Contents

STQA6014 Investment Analysis and Portfolio Management
The course aims to introduce the use of various investment instruments and its role in risk management. The concept of risks and returns are covered comprehensively. Efficient diversification is introduced with the emphasis on the construction of efficient portfolio. The different kinds of investment instruments are also introduced. Share valuation methods and portfolio theories such as the Markowitz theory, the One-Factor model, the Capital Asset Pricing Model are studied. The fundamental and technical analyses are also discussed. The behavioral finance theory such as the Efficient Market Hypothesis is also included. At the end of the semester, students are expected to present, discussed and submit a project.

References

STQA6024 Security Derivatives and Risk Management
This course is an introduction to the management of risk which is fast developing in academia as well as in industrial finance. It will focus on risk management using market securities. Basic concepts and methods of risk management using market securities will be covered such as options, future securities and exchangeable securities. Evaluation of various security derivatives will be included. At the end of the course it is hoped the student will be able to study the application of derivatives in the management of various risks such as market risk, financial risk, rate of interest risk and credit risk.

References

STQA6034 Issue in Risk Management and Insurance
This course aims to discuss the concept of risk, the principle of risk management and the application of risk management in insurance. The students will be exposed to several actuarial approaches used in non-life insurance businesses. At the end of this course, the students are expected to understand the concepts of risk and risk management, classify risk into several categories, understand the principles of insurance and their relationship with risk management, understand the structure of insurance market in Malaysia, learn the operation of non-life insurance business, study and analyze the factors that affect premium and analyze insurance claims.

References

STQM6024 Biomechanics
The course begins with the general equations of three-dimensional motion. The variables in these equations are explained and a summary on how these variables can be determined experimentally or theoretically is presented. The course will discuss selected methods for quantifying biomechanical data experimentally, which includes discussion on force measurements, accelerometry, measurement of motion with optical methods, electromyography, and strain measurement. The goal is to explain the principles involved in the experimental techniques, and to compare the different techniques. Next the course will discuss the place of mathematical modeling in biomechanics. The concept of force system analysis is discussed. The course will look into various mathematical models that were determinate. The indeterminate systems are also discussed as well, including solving it using optimization theory. Lastly the course discusses simulation as a tool of biomechanical research.

References
STQM6034 Decision and Game Analysis
This course aims at showing students that decision problems with limited number of alternatives can be solved by using decision analysis techniques. Instruments that are used to solve these problems depend on the type of problems. Analytic Hierarchy Process, ELECTRE and TOPSIS methods are used to solve problems with certainty. Decision tree is the best instrument to obtain solution for problems which involve probability. For decision problems with uncertainty, criteria that reflect decision maker's attitude towards risks are used, while game theory is used to obtain the best decision for two competitors with contradicting goals, under each competitor's worst condition.

References

STQM6044 Cryptology
Cryptology is the science of secure communication which embraces both cryptography and cryptanalysis. The symmetric and asymmetric systems of writing secret codes (cryptography) will be introduced and the development of cryptosystem, digital signature and other cryptographic techniques such as threshold cryptography, secret sharing, identification and authentication scheme and key agreement protocol will be thoroughly explained and discussed. The techniques of breaking codes (cryptanalysis) will also be investigated throughout the course.

References

STQM6064 Mathematical Modelling and Methods
Mathematical modelling is a process of developing mathematical presentation of a phenomenon for obtaining better understanding of it. This course aims to train students in developing, analyzing and solving mathematical models for certain complex problems (in particular a deterministic model in physical sciences). The basic concepts of mathematical modelling will be explained. Scaling analysis, approximations and dimensional analysis procedures will be discussed first. Both linear and non-linear models will be considered.
Analytical solution methods discussed in this course include the perturbation expansion method, calculus of variation and Fourier series. Utilization of computer algebra system/package such as Maple and Mathematica will be stressed.

References

STQM6074 Numerical Analysis
This course covers numerical methods for solving ordinary/partial differential equations (ODEs/PDEs). The problems considered include initial value problems and boundary value problems for ODEs. Numerical methods discussed include one-step and multi-step methods with fixed or variable step size for stiff and non-stiff as well as chaotic equations/system of equations. Further, the topics covered include stability and error analysis; introduction to numerical method for PDEs such as finite difference methods; analysis of hyperbolic and elliptic equations; convergence, consistency, order and stability methods. Applications to certain problems in engineering/science.

References

STQM6084 Linear Programming
The aim of this course is to introduce to the students the application of mathematical modeling methods for managerial decision makings. Several deterministic models will be discussed with a focus on how to model problems and derive solutions using LINGO computer software. Assignments in the form of case studies require students to use LINGO to obtain the solutions and write short reports. Among the topics discussed include linear programming, integer programming and goal programming problems, while emphasizing on the use of these methods in solving real world problems such as problems in network analysis, transportation and assignment problems, travelling salesman problems and efficiency analysis.

References
STQM6124 Algebra

References

STQM6134 Functional Analysis
This course aims at showing the relation between two important structures in mathematics, that is algebraic structure and topological structure. Combining these two structures into one mathematical system known as Banach algebra. This course begins with the introduction of Hilbert space and its properties. Next orthogonality, Banach space and its properties are discussed. Also discussed are linear operators on normed space, Hilbert spaces with the Hahn-Banach theorem, Banach algebra and spectral theory. Finally the notion of C*-algebras shall be introduced briefly.

References

STQM6214 Fuzzy Mathematics

References

STQM6224 Complex Analysis
This course gives a view of analyticity of functions, the proof of Cauchy’s theorem (in triangle, convex domain or in a disc), Goursat’s theorem with various versions, homotopy path, singularities, maximum/minimum modulus theorem various versions, Rouche’s theorem and Phragmen-Lindelof’s theorem. Schwarz lemma and Riemann mapping theorem. This course also introduces a theorem in the space of analytic functions and shows the application of Runge’s theorem to prove Cauchy’s theorem and Mittag-Leffler’s theorem. Harmonic functions including solutions to Dirichlet’s problem and the application of Green’s theorem to the onto functions are also introduced. This course also concentrate on application of Weierstrass factorization, gamma and zeta functions. Picard’s theorem also will be introduced in the sense of singularities.

References

STQM6234 Ergodic Theory
Ergodic theory is a quantitative study of the long term behavior of a system. The collection of all states of a system constitute a space X and the evolution of the system is represented by a transformation whereby if x represents the state of the system at one particular time, then $T(x)$ represents the state of the system after one unit of time. A study will be conducted on X which is a measure space (and T measure-preserving) and topological space (with T continuous). The main objective is to understand as T^n increases.

References
Panduan Siswa FST, Sesi 2016-2017

STQM6254 Combinatorial Group Theory
The course aims to display geometrical techniques and ideas to study free groups and group presentations, basic to the combinatorial group theory. Variety of equivalent classes will be discussed and related groups will be constructed using various geometrical techniques. Geometrical techniques discussed include graph, group of graph, complexes, picture and diagram. Then several selected and latest articles will be discussed.

References

STQM6274 Measure Theory and Integration
Firstly the idea of σ-algebra is introduced. Next a measure is defined as a real valued function with domain σ-algebra. Next outer measures is discussed (including metric outer measures) and with it is defined measurable sets, abstract measure spaces, measurable functions and convergence measurable functions. Using these concepts, properties of integrable functions, convergence theorems, spaces and important inequalities are discussed. Examples of definite integrals like Riemann integral, Lebesgue integrals and Lebesgue-Stieltjes integrals will be briefly discussed. Finally the concept of measures is extended to signed measures, complex valued measures and integration on product spaces.

References

STQM6294 History and Philosophy of Mathematics
This course will deepen the history and philosophy of mathematics in various aspects. Topics to be discussed include mathematical reality from metaphysical, epistemological, logical and axiological aspect will be examined together with the relationship between mathematics and
belief systems. History and philosophy of the Islamization of knowledge and the indigenization of knowledge will also be discussed.

References

STQM6324 Numerical Methods for Heat Transfer and Fluid Flow
This course will present heat transfer and fluid flow models and their numerical solutions. The course begins with heat transfer and fluid flow model formulations. Steady and unsteady heat conduction up to three dimensions will be discussed. Next, the course discusses Crank-Nicholson method, steady and unsteady convection and diffusion up to three dimensions, and their numerical solution schemes include hybrid and power laws. Flow regimes and numerical solution methods will also be presented.

References

STQM6414 Dynamical Systems
The course deals with numerical methods for heat transfer and fluid flow models. The course begins with the basics for numerical solutions of ODEs and PDEs. The stability analysis of numerical methods is given. Formulation of the fluid flow and heat transfer problems are discussed. Steady and unsteady heat conduction problems up to three dimensions are considered. Some numerical methods like the particular Crank-Nicholson scheme are discussed.

References

STQM6524 Non-Deterministic Linear Dynamical Systems Modeling
This course is designed to exhibit the capability to model the dynamical system with non-deterministic condition as a stochastic process which fulfills the linear stochastic differential
equations. It, furthermore can lead to the stochastic integral. This includes various Newtonian dynamical systems with noise, planning of monitoring system, management and screening of information. From this model, the definition of the concept of stochastic process is exhibited and in addition the analytical and numerical Ito's Stochastic Calculus is constructed to solve the mentioned model. The relationship between the stochastic differential equations and the diffusion process is discusses to the research boundary.

References

STQM6534 Fluid Mechanics
The aim of this course is to show how the ideal and viscous fluids can be modelled mathematically, and further, to investigate the behaviour of the fluids analytically and numerically, especially towards the Navier-Stokes equation. This course starts with general introduction to fluid and the principle of fluid static and kinematic. Discussion on ideal fluid includes continuity, Euler and Bernoulli equations. Potential flow and incompressible flow will also be discussed. Most parts of this course discuss viscous fluid, which leads to Navier-Stokes equation, its derivations and exact solutions, as well as steady and unsteady flows. Basic flows, Stokes flow, laminar and turbulent flows, dimensional analysis, similarity method as well as Reynolds number and its importance will also be discussed. In addition, boundary layer theory and fluid instabilities will also be discussed in detail.

References

STQM6624 Simulation
This course introduces to the students the concept and applications of simulation systems. The aim is to enable the students to model, simulate and analyse simple but representative system quite soon throughout the course, and to encourage them to further explore the results experimentally. Static, discrete and dynamic system simulation models will be explained. The topics include simulation concept, modelling, simulation and analyses of various systems especially those that use Excel, @Risk and Arena. The scientific aspect in the management of simulation system projects is also covered.

References

STQM6654 Mathematics of Economy and Finance in Business
Mathematics of Economy and Finance is a building block to learners in the field of finance. It exposes the student to fundamental concepts of financial mathematics, and how those concepts are applied in calculating present and accumulated values for various streams of cash flows as a basis for future use in: reserving, valuation, pricing, asset/liability management, investment income, capital budgeting and valuing contingent cash flows. The candidate will also be given an introduction to financial instruments, including derivatives. A basic knowledge of calculus and an introductory knowledge of probability is assumed.

References

STQM6988 Research Project
Research project is a compulsory course, which is either a practical training, an industrial training, a literature review or a research. Every student does this project under the supervision of a supervisor. Each student must choose a suitable topic within his/her programme module and it must be approved by the supervisor. The student must complete a report, which is either a critical review to the selected topic, a new theory or a new model in its own way.

STQS6244 Stochastic Process
The aim of this course is to introduce the students to the theory of stochastic process. Among the topics to be discussed include discrete and continuous time Markov chain. This include subtopics regarding the Chapman-Kolmogorov equation, Birth and Death process, limiting probabilities and some important properties of Markov process. Other topics to be discussed include the Poisson process and the Renewal process which include the subtopics of Homogeneous and Nonhomogeneous Poisson process, compound Poisson Process, decomposition of Poisson Process, Renewal equation, mean-value function, limit theorem and etc. The students will also be expose with the topics of Reliability theory, Brownian motion and the application of Markov Chain Monte Carlo method.

References
Panduan Siswazah FST, Sesi 2016-2017

STQS6274 Statistical Computing
Students will be equipped with sufficient computing knowledge that useful for data analysis and statistical inferences. For these objectives they are given programming skills using S-plus and R. Utilizing the skills the students will be trained to write function for obtaining various statistical summaries, empirical distribution, nonparametric measures using quantiles and the quantile based distribution summaries. In addition the students will also be exposed to various methods for simulating random data. S-plus and R computing for classical and Bayesian statistical inference will be discussed. All the discussions are data and practical problems based. Re-sampling techniques for statistical inference - bootstrap and jackknife, order statistics will be explored together with testing hypothesis using permutation and Monte Carlo methods. Spatial data analysis.

References

STQS6444 Time Series Modeling and Forecasting
The objectives of this course are estimating simple regression models, explaining the techniques for modeling trend and volatility in time series data, explaining the cointegrating relation between two or more time series, and at the same time highlighting several major issues in time series analysis that are related to stationarity, trend, volatility, and cointegration. In particular, for modeling trend and volatility, the focus will be on the ARCH-GARCH models. As for cointegration, the error-correction mechanism and the Johansen approach will be discussed. At the end of the semester, the students will be required to write one short report on the application of statistical testing methods and model analyses that are covered during the semester.

References
MASTER OF SCIENCE (STATISTICS)

Introduction
Statistics is an area of study that deals with the collection, classification, analysis and interpretation of data to explain reality based on the scientific method. The Master of Science Programme (Statistics) offers several courses in statistics, suitable for candidates who want to further their education in this area. The programme emphasizes on the theory and application of statistics so that candidates would master the statistical knowledge and able to apply it.

Entry Requirements
The candidate applying for the Master of Science (Statistics) programme must possess:

a) Bachelor of Science degree with a good CGPA in the field of statistics from Universiti Kebangsaan Malaysia or other universities approved by the Senate; or
b) Bachelor of Science degree with a good CGPA in the related field from Universiti Kebangsaan Malaysia or other universities approved by the Senate.

PROGRAM EDUCATIONAL OBJECTIVE (PEO)

PEO1: Produce highly skilled, ethical and competitive student.
PEO2: Equip students with the ability to translate and synthesize their understanding towards nature, human and development.
PEO3: Equip students with the awareness towards environment and uphold the established development.
PEO4: Equip students with the ability to utilize the statistical problem solving method such as analysis, modelling, programming and application of statistical software in addressing the development issues and current changes.
PEO5: Equip students with the scientific approaches in generating and sharing knowledge involving is inter- and intra-discipline in nature; and
PEO6: Equip students with a high creative and innovative ability and able to contribute ideas toward the process of establishing policy, decision making and development implementation.

PROGRAM LEARNING OUTCOME (PLO)

PLO1: Able to apply the statistics knowledge.
PLO2: Able to design the methodology suitable to the problem encountered.
PLO3: Able to analyse and interpret outputs and generate new ideas based on the outputs.
PLO4: Able to gather, utilize and generate information.
PLO5: Able to manage emotion.
PLO6: Honour noble character and aesthetical values towards the Creator, customers and society.
PLO7: Able to lead, work in a team and give priority to the success of a team.
PLO8: Able to communicate effectively through speaking and writing both in Bahasa Malaysia and English.
PLO9: Able to understand mathematical science solution in every dimension of life.
PLO10: Able to recognize the needs for continuous learning and practice it throughout the whole life.
PLO11: Possess the entrepreneur characteristics.

Program Structure
Candidates who wish to do course work, must attend and pass at least 32 credit hours of courses (compulsory and elective courses) and complete a Research Project of 8 credit hours. Candidates who do not have a good foundation of statistics must take a few preliminary courses as listed below and must pass with an average grade of B before pursuing the masters program. These courses are:

<table>
<thead>
<tr>
<th>Code</th>
<th>Name of courses</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>STQS6004</td>
<td>Calculus and Matrix Algebra for Statistics</td>
<td>4</td>
</tr>
<tr>
<td>STQS6014</td>
<td>Mathematical Statistics</td>
<td>4</td>
</tr>
<tr>
<td>STQS6024</td>
<td>Modeling and Data Analysis</td>
<td>4</td>
</tr>
</tbody>
</table>

TOTAL 12

<table>
<thead>
<tr>
<th>SEMESTER</th>
<th>CORE COURSES</th>
<th>ELECTIVE COURSES</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>STPD6014 Research Methodology</td>
<td></td>
</tr>
<tr>
<td></td>
<td>STQS6034 Statistical Inference</td>
<td></td>
</tr>
<tr>
<td></td>
<td>STQS6274 Statistical Computing</td>
<td></td>
</tr>
<tr>
<td></td>
<td>STQS6584 Statistical Modeling</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Choose two: doi:10.1007/978-3-319-39823-7_3</td>
<td></td>
</tr>
<tr>
<td>II</td>
<td>STQS6234 Bayesian Inference Design and</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Analysis of Experiments</td>
<td></td>
</tr>
<tr>
<td></td>
<td>STQS6988 Research Project</td>
<td></td>
</tr>
</tbody>
</table>

TOTAL 32 8 40

Candidates who wish to choose the program by thesis must take 12 credit hours of courses and write up a thesis. The 12 credit hours that are required include:

STPD6014 Research Methodology

Two course valued 8 credit hours related to the research field.
List of courses Offered

STPD6014 Research Methodology
STQS6004 Calculus and Matrix Algebra for Statistics
STQS6014 Mathematical Statistics
STQS6024 Modeling and Data Analysis
STQS6034 Statistical Inference
STQS6064 Medical Statistics
STQS6094 Sampling Techniques
STQS6234 Bayesian Inference
STQS6244 Stochastic Process
STQS6254 Design and Analysis of Experiments
STQS6274 Statistical Computing
STQS6284 Multivariate Analysis
STQS6424 Nonparametric Methods
STQS6444 Time Series Modeling and Forecasting
STQS6584 Statistical Modeling
STQS6988 Research Project

Course Contents

STQS6004 Calculus and Matrix Algebra for Statistics
The aim of this course is to introduce students to the use of calculus and matrix algebra in the field of statistics. The concept of limit is given intuitively. The concept of differentiation, rate of change and problem of extremum are discussed. Integration as anti derivative and several integration techniques are discussed. Various basic concepts about matrices are given: inverse, transpose, determinant, trace, quadratic form and orthogonal. Various basic concepts about vectors are discussed: vector, linearly dependent and not linearly dependent, eigen values and eigen vectors. Introduction is given on generalized inverse and partitioning of matrix. Several examples for linear model are given.

References

STQS6014 Mathematical Statistics
The aim of this course is to introduce students to the concept of statistical thinking and tools. The concept of random variables and several distribution functions. Distributions function of random variables and the techniques to identify the particular distribution: distribution function technique, transformation technique and moment generating function technique. Bivariate and multivariate distribution are discussed in the aspects of joint densities, joint distribution function, marginal distribution, conditional distribution, independence between random variables, conditional expectation and correlation coefficient. Chebyshev theorem and bivariate normal. Order statistics and sampling distribution. Several distributions related to normal distribution such as t distribution, Chi-square and F. Law of large numbers and central limit theorem. Methods of point estimation, maximum likelihood technique and
method of moment. Point estimation and interval estimation involves estimation of one population parameter and two population parameters. Hypothesis testing covers one and two populations.

References

STQS6024 Modeling and Data Analysis
The aim of this course is to introduce students to the practical use of statistical software in doing statistical tests. The topics covered are test of hypothesis, error measurement, power of the test, test to compare means such as t test, analysis of variance (ANOVA), analysis of covariance (ANCOVA); goodness of fit test for distributions; test for linear relationship which covers correlation, simple regression and multiple regression as well as introduction to the analysis of residuals. Several related topics on nonparametric statistics will also be discussed.

References

STQS6034 Statistical Inference
The aim of this course is to enhance understanding of students in the theory of statistics, point estimations and the properties of the estimators. The properties discussed include efficiency, unbiasedness, minimum variance unbiased estimator, sufficiency and completeness. Rao-Cramer Inequality and Rao-Blackwell Theorem are discussed. The estimation methods studied include maximum likelihood, method of moment and least square. Asymptotic evaluations of the estimators are also covered. Various topics under hypothesis testing such as best critical region and likelihood ratio are also discussed.

References
STQS6064 Medical Statistics
Several important statistical concepts in medicine are discussed in detail. Basic analysis methods will be examined including the evaluation of the diagnostic tests. Topics that will be discussed are risk, relative risk, odds and odds ratio, prevalence and incidence, attributal risk, confounding and interaction, detection of and adjustment for confounding effects. Observational studies such as cohort studies, control-case will be covered; intervention methods; sample size determination. Other topics discussed are modelling in medicine, classical linear model, logistic model and survival model.

References

STQS6094 Sampling Techniques
This course introduces sampling designs and the related theories. The discussion will begin with various important statistics obtained from surveys and the necessary measures for initiating a survey. Simple random sampling will be discussed in detail, the theory, practical aspects, and mathematical derivations. Estimators and the properties will be studied mathematically and supported using computing techniques. Stratified sampling will be explored in details - include mathematical derivation, computing and the practical aspects. Simulation methods will be utilized for data generation and for investigating the properties of the estimators. Single and two stages cluster sampling will also be studied. Similar approaches as used for stratified sampling will be implemented in investigating the properties of estimators produced by cluster sampling. This course covers sampling design for wildlife population and spatial sampling.

References
STQS6244 Stochastic Process
The aim of this course is to introduce the students to the theory of stochastic process. Among the topics to be discussed include discrete and continuous time Markov chain. This include subtopics regarding the Chapman-Kolmogorov equation, Birth and Death process, limiting probabilities and some important properties of Markov process. Other topics to be discussed include the Poisson process and the Renewal process which include the subtopics of Homogeneous and Nonhomogeneous Poisson process, compound Poisson Process, decomposition of Poisson Process, Renewal equation, mean-value function, limit theorem and etc. The students will also be expose with the topics of Reliability theory, Brownian motion and the application of Markov Chain Monte Carlo method.

References

STQS6254 Design and Analysis of Experiments
The aim of this course is to explain the role of statistics in the scientific method which is a prerequisite to design an efficient experiment. This course will cover the basic principles of experimentation; randomization, and replication. RRL & one-way ANOVA; linear contrasts; underlying assumptions in ANOVA; analysis of residuals; additivity and interaction; transformation of data to satisfy ANOVA assumptions; block design; incomplete block design; properties of orthogonality and balance; rule of assignment of treatments in blocks; 2^n factorial designs; blocking and confounding in factorial experiments; fractional factorial designs; confounding systems and aliases; design resolutions. Other topics covered will be fractional factorial designs; response surface methodology; and covariance analysis.

References

STQS6274 Statistical Computing
Students will be equipped with sufficient computing knowledge that useful for data analysis and statistical inferences. For these objectives they are given programming skills using R. Utilizing the skills the students will be trained to write function for obtaining various statistical summaries, empirical distribution, nonparametric measures using quantiles and the quantile based distribution summaries. In addition the students will also be exposed to various methods for simulating random data. R computing for classical and Bayesian
statistical inference will be discussed. All the discussions are data and practical problems based. Re-sampling techniques for statistical inference - bootstrap and jackknife, order statistics will be explored together with testing hypothesis using permutation and Monte Carlo methods.

References

STQS6284 Multivariate Analysis
This course introduces the nature of multivariate as compare to univariate data. The practices of univariate data analysis are extended to multivariate data. Estimation theories and statistical inferences for multivariate distributions will be covered. Multivariate methods such as multivariate analysis of variance, principle component analysis, factor analysis, canonical correlation analysis, discriminants analysis and cluster analysis are explained. The mathematics, computing and data analysis will be integrated in the course.

References

STQS6444 Time Series Modeling and Forecasting
The objectives of this course are estimating simple regression models, explaining the techniques for modeling trend and volatility in time series data, explaining the cointegrating relation between two or more time series, and at the same time highlighting several major issues in time series analysis that are related to stationarity, trend, volatility, and cointegration. In particular, for modeling trend and volatility, the focus will be on the ARCH-GARCH models. As for cointegration, the error-correction mechanism and the Johansen approach will be discussed. At the end of the semester, the students will be required to write one short report on the application of statistical testing methods and model analyses that are covered during the semester.

References
Panduan Siswaazah FST, Sesi 2016-2017

STQS6584 Statistical Modeling
This course begins by introducing the concept of modeling through simple linear regression, multiple linear regression and nonlinear regression where error terms is assumed to be normally distributed. Diagnostic checking on fitted model and model assumptions will be further discussed. The course continue to model where the normality assumption is not met. Students will be exposed to the concepts of generalized linear model such as logistic models, Poisson and log-linear models. The concepts of maximum likelihood estimation, likelihood ratio test and the concept of deviance will be introduced.

References

STQS6988 Research Project
Research project is a compulsory course work involving case study/literature survey/research. The student is required to conduct the research study under supervision of a supervisor. The student is also required to select a pertinent topic as agreed to by the supervisor. The students are required to write up a comprehensive and scientific report on the study that he/she has conducted.

MASTER OF SCIENCE (QUALITY AND PRODUCTIVITY IMPROVEMENT)

Introduction
This program is offered to address the challenging issues of quality and productivity in the industrial environment. The main courses offered range from total management techniques and their philosophy to product quality improvement and services with more emphasis on the application of the statistical methods. The main message is to make the consumers understand that the application of scientific methods and statistics will bring improvement to product quality and services.

Entry Requirements
Candidates applying for the Master of Science (Quality and Productivity Improvement) program must possess:

a) Bachelor of Science degree with a good CGPA in the field of Mathematical Sciences from Universiti Kebangsaan Malaysia or other universities approved by the Senate; or
b) Bachelor degree with a good CGPA in the fields of sciences, technology, engineering, management or social sciences from Universiti Kebangsaan Malaysia or other universities approved by the Senate; or
c) Bachelor degree in the fields of sciences, technology, engineering, management or social sciences from Universiti Kebangsaan Malaysia or other universities approved by the Senate with related and suitable working experiences.
PROGRAM EDUCATIONAL OBJECTIVE (PEO)

PEO1: Produce highly skilled, ethical and competitive student;
PEO2: Equip students with the ability to translate and synthesize their understanding towards nature, human and development;
PEO3: Equip students with the awareness towards environment and uphold the established development;
PEO4: Equip students with the ability to utilize the mathematical problem solving method such as analysis, modelling, programming and mathematic software application in addressing the development issues and current changes;
PEO5: Equip students with the scientific approaches in generating and sharing knowledge which is inter- and intra- discipline in nature; and
PEO6: Equip students with the high creativity and innovative ability and able to contribute ideas toward the policy establishment process, decision making and development implementation.

PROGRAM LEARNING OUTCOME (PLO)

PLO1: Able to apply the quality and productivity knowledge.
PLO2: Ability to design the methodology suitable to the problem encountered.
PLO3: Ability to analyse and interpret outputs and generate new ideas based on the outputs.
PLO4: Able to gather, utilize and generate information.
PLO5: Strength to manage emotion.
PLO6: Honour noble character and aesthetical values towards the Creator, customers and society.
PLO7: Able to lead, work in a team and give priority to the success of a team.
PLO8: Able to communicate effectively through speaking and writing both in Bahasa Malaysia and English.
PLO9: Ability to understand mathematical science solution in every dimension of life.
PLO10: Ability to recognize the needs for continuous learning and practice it in the whole life.
PLO11: Possess the entrepreneur characteristics.

Program Structure

Candidates taking the program by Course Work are required to enrol and pass 28 units of courses (core and elective) and to complete 8 units of a Research Project. Candidates are also required to enrol in 1 compulsory course offered by the faculty; STPD6014 Research Methodology.

This program is divided into three modules as follow:
- Public Sector
- Manufacturing Sector
- Service Sector

PUBLIC SECTOR MODULE

<table>
<thead>
<tr>
<th>SEMESTER</th>
<th>CORE COURSES</th>
<th>ELECTIVE COURSES</th>
<th>TOTAL</th>
</tr>
</thead>
</table>

MANUFACTURING SECTOR MODULE

<table>
<thead>
<tr>
<th>SEMESTER</th>
<th>CORE COURSES</th>
<th>ELECTIVE COURSES</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>STPD6014 Research Methodology</td>
<td>Choose two: STQK6124 Process Control and Quality Improvement</td>
<td>32 8 40</td>
</tr>
<tr>
<td></td>
<td>STQK6114 Quality Assurance and Standardization</td>
<td>STQK6514 Quality Management in Service Sector</td>
<td></td>
</tr>
<tr>
<td></td>
<td>STQK6134 Total Quality Management</td>
<td>STQK6534 Marketing Research Methods</td>
<td></td>
</tr>
<tr>
<td></td>
<td>STQK6154 Organizational Performance Measurement</td>
<td>STQK6544 Quality Design and System Reliability</td>
<td></td>
</tr>
<tr>
<td>II</td>
<td>STQK6324 Service Delivery System in the Public Sector</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>STQK6524 Productivity Measurement</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>STQK6988 Research Project</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>32</td>
<td>8</td>
<td>40</td>
</tr>
</tbody>
</table>

SERVICE SECTOR MODULE

<table>
<thead>
<tr>
<th>SEMESTER</th>
<th>CORE COURSES</th>
<th>ELECTIVE COURSES</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>STQK6124 Process Control and Quality Improvement</td>
<td>Choose two: STQK6264 Supply Chain Management</td>
<td>32 8 40</td>
</tr>
<tr>
<td></td>
<td>STQK6514 Quality Management in Service Sector</td>
<td>STQK6534 Marketing Research Methods</td>
<td></td>
</tr>
<tr>
<td></td>
<td>STQK6544 Quality Design and System Reliability</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Courses Offered

- STPD6014 Research Methodology
- STQK6114 Quality Assurance and Standardization
- STQK6124 Process Control and Quality Improvement
- STQK6134 Total Quality Management
- STQK6144 Organizational Performance Measurement
- STQK6264 Supply Chain Management
- STQK6324 Service Delivery System in the Public Sector
- STQK6514 Quality Management in Service Sector
- STQK6524 Productivity Measurement
- STQK6534 Marketing Research Methods
- STQK6544 Quality Design and System Reliability
- STQK6988 Research Project

Course Contents

STQK6114 Quality Assurance and Standardization

This course aims at giving students knowledge on the quality system in an organization and its role in assuring quality in products and services. Topics that will be discussed include the Total Quality Control, ISO 9000 and its development, documentation and planning of quality system, quality assurance analysis techniques, and quality audits and accreditation. This course also exposes the students to Quality Management System (QMS) based on Islam perspectives and the Syariah principles in supporting and defining QMS MS 1900:2005. Next, the QMS MS1900:2005 is studied on its implementation in various sectors, and method that can improve their competitiveness by adding Islamic values and halal aspects in the process of producing products and providing services, and in the work environment.

References

Dean R. Spitzer. 2007. Transforming Performance Measurement: Rethinking the Way We Measure and Drive Organizational Success. AMACOM.

STQK6124 Process Control and Quality Improvement

The aim of this course is to illustrate students the importance of process control and quality improvement based on 6Sigma concept and how to apply the 6Sigma methodology in order to identify customers and improve process in an organization. The application of 6Sigma will be divided into two general categories; i.e. in manufacturing and management. Topics that will be discussed include the understanding and definition of 6Sigma concepts and its steps, identification of critical factors for success, measurement strategies including measurement tools, analyze phase, control phase including some control charts such as multivariate charts, CUSUM, EWMA, decision barrier scheme and reliability test, reference measurement, break even analysis of the quality values, learning curve and process improvement.

References

STQK6134 Total Quality Management

This course introduces students to the concepts of Total Quality Management (TQM) from the aspects of history, philosophy, principles, needs, measurement, reports and its usage. Topics that will be discussed include the historical development of TQM; TQM philosophy, needs and principles of TQM; customer concentration, human resource management, process management, ISO 9000 and its development, documentation and planning of quality system, quality audits and accreditation, and benchmarking.

Reference

STQK6154 Organizational Performance Measurement

This course aims at giving students knowledge of the concepts of measuring an organization’s performance, either in public or private sector. Emphasize will be given on the questions of why performance measurement is an essential element in an organization and how it can be done. One of the performance principles that are important is the Key Performance Indicators (KPI) and its linkages to the organization’s strategic planning. Other performance principle that will be highlighted is the Balanced Scorecard (BSC) that measures performance in 4 major perspectives: Internal Process, Customer, Finance and Human Capital. Implementation aspects of BSC and its challenges will also be discussed. Several case studies will be presented in order to enhance the knowledge of students towards the performance measurement through BSC implementation.

References

STQK6264 Supply Chain Management

This course is an introduction to the supply chain concept and will explore the management of supply chains to improve an organization's overall supply efficiency. Other concepts included are the definitions of supply chains, identification procedures, an overview of methods, processes, and systems that are used in the operation of supply chains, and the applications of methods, processes, and systems to improve supply chain performance.

References

STQK6324 Service Delivery System in the Public Sector

In this course, student will be exposed to the service delivery system of the government agencies. Students need to understand various policies, regulation and circulation about
various types and level of public service released by the Public Service Department of Malaysia. The history aspects of the public service and its evolution in Malaysia also will be discussed. Among important approaches in the public service that will be discussed includes ‘Best Value Review’. Comparison with various service delivery systems from other countries, particularly from Australia, United Kingdom, USA and Canada will also be touched. Case study on the public service system in the government agencies will also be discussed.

References

STQK6514 Quality Management in Service Sector
This course explains to students the definition of 'customer service' and 'service excellence', basis of service excellent and the importance of services excellent in an organization. The importance aspect is how an organization can manage the customer complaint and solve the problem that being complaint by the customer. It also discusses the barrier to service excellence. The aim of this course is also to introduce students the methods of Customer Relationship Management (CRM) which is one of the important business strategies for an organization which put customers as the main focus. Students will get to understand the meaning and concepts of CRM and its importance to any organization, especially business organizations. Implementation of CRM in an organization includes aspects such as customer profiling, customer data warehousing and customer data mining, and also problems often encountered whilst implementing it will be discussed. Other aspects are customer satisfaction measurement, customer loyalty, customer equity concept and value equity. The usage of information technology makes the implementation of automatic CRM easier and establishment of Call Centre or Customer Service Centre is also discussed.

References

STQK6524 Productivity Measurement
This course introduces the concept of measuring the productivity of a firm, which efficiently convert inputs into outputs. Productivity measurement is a way which provides an excellent medium to monitor the status of productivity, and to explicitly relate productivity to its other strategic objectives. Topics discussed include productivity indicators, Data Envelopment Analysis (DEA) method, Index numbers and Malmquist Index. Several applications of the DEA method and Malmquist Index will be discussed.
References

STQK6534 Marketing Research Methods
This course discusses the research in marketing. Students will be exposed to the scientific research methods in order to understand and be able to analyze any problem in an organization. Comprehension of problem statement, research issues, research design, collection and analysis of data will be discussed in detail. The best approach in producing an 'Executive Summary' will also be discussed. The use of SPSS statistical package to analyze data and the interpretation of the outcomes of the statistical analysis will be delivered to students. In this case, several concepts and statistical analysis techniques will be discussed using collected data from a selected real life problem.

References

STQK6544 Quality Design and System Reliability
This course explores how statistics is used for controlling quality of product design and the process in manufacturing industry and furthermore for reliability assurance in production system. Experiments done by most researchers from various fields will be made an example in teaching and learning of this course. The outcomes from the analysis of these experiments depend and rely on the factors (whether the factors are fixed or randomly chosen) and experiment errors. Data collected from the experimental design are not only important to be analyzed statistically but also the ability to interpret the results becoming more important for more established experimental design development having taken into account suitable errors and factors. The topics that will be discussed are design of experiments in quality improvement and control; analysis of variance, f-test, multiple comparison, completely randomised design, factorial design, orthogonality, optimal blocked and design; Taguchi quality definition, Taguchi method, signal-noise ratio, robust design, loss function and output tolerance, reliability and failure function; life time distribution, model selection and fitting; repairable systems; fault tree; life testing plan; accelerated life testing; failure rating models and regression.

References

STQK6988 Research Project
Research project is a compulsory course work involving case study/literature survey/research. The student is required to conduct the research study under supervision of a supervisor. The student is also required to select a pertinent topic as agreed to by the supervisor. The students are required to write up a comprehensive and scientific report on the study that he/she has conducted.
MASTER OF SCIENCE (DATA SCIENCE AND ANALYTICS)

Introduction
Data science is a multidisciplinary field of study that involves scientific methods, processes and systems in extracting both explicit and implicit information from a variety of data structures. It combines the knowledge of mathematics and statistics, programming and data analytics. This master programme offers a variety of courses with emphasis on data analytics. Candidates are free to choose from three different learning modules: Data Computing, Data Analytic, and Finance & Business Analytic to match their interests and career paths. The aim of the programme is to produce knowledgeable, ethical and competitive graduates who can contribute to the nations.

Entry Requirements
Candidates who wish to apply must have the following qualifications:

a) Bachelor of Science degree with a good CGPA (3.00 and above) from Universiti Kebangsaan Malaysia or other universities approved by the Senate; atau
b) Bachelor of Science degree with minimum CGPA of 2.75 from Universiti Kebangsaan Malaysia or other universities approved by the Senate with relevant work experience; atau
c) Bachelor's degree in the field of Social Sciences with a good CGPA (3.00 and above) from Universiti Kebangsaan Malaysia or other universities approved by the Senate. This should include a pass with credit in Mathematics or Statistics subject at undergraduate level, OR a distinction in Mathematics or a pass in Additional Mathematics at SPM level.

For candidates who have already obtained a degree as mentioned above in more than TEN (10) years, you are required to sit in preparatory classes before starting the master’s course.

PROGRAM EDUCATIONAL OBJECTIVE (PEO)
PEO1: To produce students with the national aspiration who are able to master and apply mathematics, statistics and computing knowledge to meet the needs of the stakeholders and the public.
PEO2: Equip students with the ability to utilise the data science problem solving methods in translating and synthesizing their understanding towards issues on nature, human, current changes and development.
PEO3: Equip students with highly creative and innovative abilities and able to contribute ideas towards the process of policy establishment, decision making and development implementation.

PROGRAM LEARNING OUTCOME (PLO)
PLO1: Able to relate mathematical, statistical and computing knowledge to various aspects of life.
PLO2: Able to analyse and interpret the solutions obtained using the suitable model and software in accordance with the data processing environment to generate new ideas.
PLO3: Able to think and argue maturely with stable emotion and be socially responsible towards society and the environment.
PLO4: Possess moral values, ethics and professionalism.
PLO5: Able to communicate effectively visually and verbally, as well as to lead and work in a team.
PLO6: Able to use analytical and algorithmic techniques on big data to retrieve the hidden information.
PLO7: Able to assess problem, make critical analysis, find solution and make decision in a variety of conditions through a scientific approach.
PLO8: Able to understand the impact of data science solution in every dimension of life.
Program Structure

This programme is divided into three modules as follows:

1. Data Computing
2. Data Analytic
3. Finance and Business Analytic

Candidates must register and pass at least 36 credit hours (core and elective courses) and complete a capstone project of 9 credit hours.

Data Computing Module

<table>
<thead>
<tr>
<th>SEMESTER</th>
<th>CORE COURSES</th>
<th>ELECTIVE COURSES</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>STQD6014 Data Science</td>
<td>STQ6124 Data Visualization and Communication</td>
</tr>
<tr>
<td></td>
<td>STQD6214 Mathematical Statistics with Computing</td>
<td>STQ6324 Data Management</td>
</tr>
<tr>
<td></td>
<td>STQD6414 Data Mining</td>
<td>STQ6114 Unstructured Data Analytics</td>
</tr>
<tr>
<td>II</td>
<td>STQD6024 Machine Learning</td>
<td>STQ6444 Time Series Modelling and Forecasting</td>
</tr>
<tr>
<td></td>
<td>STQP6014 Research Methodology and Industrial Seminar</td>
<td>STQM6154 Network Science</td>
</tr>
<tr>
<td></td>
<td></td>
<td>STQD6334 Multicriteria Decision Making</td>
</tr>
<tr>
<td></td>
<td></td>
<td>STQD6524 Statistical Methods for Computational Biology</td>
</tr>
<tr>
<td>III</td>
<td>STQD6889 Capstone Project</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>29</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>45</td>
<td></td>
</tr>
</tbody>
</table>
Data Analytic Module

<table>
<thead>
<tr>
<th>SEMESTER</th>
<th>CORE COURSES</th>
<th>ELECTIVE COURSES</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>STQD6014 Data Science</td>
<td>Choose four:
STQD6124 Data Visualization and Communication
STQS6284 Multivariate Analysis
STQD6114 Unstructured Data Analytics
STQD6134 Business Analytics
STQS6444 Time Series Modelling and Forecasting
STQ56234 Bayesian Inference
STQM6154 Network Science
STQD6334 Multicriteria Decision Making
STQD6524 Statistical Methods for Computational Biology</td>
</tr>
<tr>
<td></td>
<td>STQD6214 Mathematical Statistics with Computing
STQD6414 Data Mining</td>
<td></td>
</tr>
<tr>
<td>II</td>
<td>STQD6024 Machine Learning Research Methodology and Industrial Seminar</td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>STQD6889 Capstone Project</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td>29 16 45</td>
</tr>
</tbody>
</table>

Finance and Business Analytic Module

<table>
<thead>
<tr>
<th>SEMESTER</th>
<th>CORE COURSES</th>
<th>ELECTIVE COURSES</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>STQD6014 Data Science</td>
<td>Choose four:
STQD6124 Data Visualization and Communication
STQD6134 Business Analytics
STQD6114 Unstructured Data Analytics
STQS6444 Time Series Modelling and Forecasting
STQ56234 Bayesian Inference
STQM6154 Network Science
STQD6334 Multicriteria Decision Making
STQA6034 Issues in Risk Management and Insurance</td>
</tr>
<tr>
<td></td>
<td>STQD6214 Mathematical Statistics with Computing
STQD6414 Data Mining</td>
<td></td>
</tr>
<tr>
<td>II</td>
<td>STQD6024 Machine Learning Research Methodology and Industrial Seminar</td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>STQD6889 Capstone Project</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td>29 16 45</td>
</tr>
</tbody>
</table>
Courses Offered
STQA6014 Investment Analysis and Portfolio Management
STQA6034 Issues in Risk Management and Insurance
STQD6014 Data Science
STQD6024 Machine Learning
STQD6114 Unstructured Data Analytics
STQD6124 Data Visualization and Communication
STQD6134 Business Analytics
STQD6214 Mathematical Statistics with Computing
STQD6324 Data Management
STQD6334 Multicriteria Decision Making
STQD6414 Data Mining
STQD6524 Statistical Methods for Computational Biology
STQD6889 Capstone Project
STQM6154 Network Science
STQP6014 Research Methodology and Industrial Seminar
STQS6234 Bayesian Inference
STQS6284 Multivariate Analysis
STQS6444 Time Series Modelling and Forecasting

Course Contents

STQA6014 Investment Analysis and Portfolio Management
The focus of this course is on the investment decision making. It presents the applications of various investment instruments and its role in risk management. The concept of risks and returns are covered comprehensively. Efficient diversification is discussed with the emphasis on the construction of efficient portfolio. The different kinds of investment instruments are assessed and weighted. Share valuation methods and portfolio theories such as the Markowitz theory, the Single Index model, the Capital Asset Pricing Model are discussed. The fundamental and technical analyses are also explained. The behavioral finance theory such as the Efficient Market Hypothesis is included. Students will participate in learning activities consisting of article journal discussion and project presentations.

References
STQA6034 Issues in Risk Management and Insurance
This course has two main objectives; the first is to provide students with a broad perspective of risk management that emphasize traditional risk management and insurance while introducing other types of risk management, while the second is to equip students with the tools needed for the analysis of mathematical models that describe the loss process. The major topics that will be covered are risk management (objectives, measurement, diversification and retention), hedging, corporate risk management, enterprise risk management, estimation methods (for complete and incomplete data) and model selection. The students will also be trained to use R and Excell software for computing relevant mathematical analysis. At the end of semester, students are required to make a presentation on an article from an agreed journal so that they will appreciate the applicability of concepts and methodologies covered in this course.

References

STQD6014 Data Science
This course aims to expose students to the basic principles of data science and Python programming. Students will be introduced with the concept of big data and the various types of data related to it. This course would also covers the algorithms, processes, methods and analyses used in the field of data science with examples and discussions using Python. Other topics covered are the current data technologies available for storing and archiving data.

References

STQD6024 Machine Learning
This course aims to expose students on concepts, techniques and algorithms in machine learning. Machine learning revolves around the development of a computer system, which is able to self-learning and improving through experience and recorded data. This course is among main technologies in Big Data and its applications in various fields. Among common topics covered are neural network, decision tree and support vector machines. Among advanced topics covered are ensemble and unsupervised learning also reinforcement and evolutionary learning.
References

STQD6114 Unstructured Data Analytics
The aim of this course is to introduce students to basic and current methods used to compile, summarize and analyze unstructured and semi-structured data. Unstructured data includes texts, images and audios. Focus are given to algorithms and techniques for mining, exploring and analyzing unstructured data using suitable packages. Students are also exposed to sources for unstructured data. Related applications of unstructured data such as sentiment analysis, document clustering and information extraction are also discussed.

References
Russell, M.A. 2011. *Mining the Social Web: Analyzing Data from Facebook, Twitter, LinkedIn, and Other Social Media Sites*. O’Reilly.

STQD6124 Data Visualization and Communication
This course introduces students to the basic principles of data visualization and communication. Students are exposed to the principle of designing visualizations, human perception, colour theory and effective data storytelling. Suitable graphs and charts to convey information clearly are taught. Students will be trained to use visualization softwares such as R, ggplot, Matplotlib, D3 and others. Some specific graphical techniques will be introduces such as visualizing multivariate, time series, spatial, texts, hierarchical and network data.

References
STQD6134 Business Analytics
This course aims to expose students on the techniques and tools for the transformation of raw data into meaningful and useful information for business analysis purposes. It is divided into customer, operation and people analytics. Customer analytics focuses on how data is used to describe, explain, and predict customer behavior. Meanwhile, operation analytics focuses on how the data can be used to profitably match supply with demand in various business settings. This also covers on how to model future demand uncertainties, how to predict the outcomes of competing policy choices and how to choose the best course of action in the face of risk. Finally, people analytics is a data-driven approach to managing people at work.

References

STQD6214 Mathematical Statistics with Computing
This course aims to expose students to the fundamentals of mathematical statistics including descriptive statistics, graphical displays, sampling distributions, hypothesis testing and other methods in data analysis. This course also reflects the integral role of R in computing statistical problems. Basic simulation concepts are discussed with examples. Students will learn how to generate data, analyze data using statistical methods and interpret the results obtained.

References
James, G. & Witten, D. 2013. *An Introduction to Statistical Learning: with Applications in R*. New York: Springer.

STQD6324 Data Management
This course aims to provide the fundamental and state of the art on the technologies used in data management big data solutions. Students will be introduced to data model, databases, querying and big data processing. It covers data security, data centre and the development of big data solutions such as the Hadoop ecosystem, including MapReduce and HDFS. Apache Spark will also be introduced, including Spark’s architecture, data distribution and parallelisation of tasks. Students will have a better understanding on how to optimise the information in the big data using Spark’s memory caching, as well as using the more advanced operations available in Spark.
References

STQD6334 Multicriteria Decision Making
The purpose of this course is to introduce the concepts and techniques in solving Multi-criteria Decision Making problems. The methods to be used to solve the problems depend on the type of problems. Topics included are decision making without probabilities, decision making with probabilities, decision making with sample information, decision making under uncertainties, Analytic Hierarchy Process, TOPSIS, VIKOR, PROMETHEE and ELECTRE.

References

STQD6414 Data Mining
This course explains in detail about the process of exploration in the database (KDD) and data mining. This course discusses the process of data preparation which includes data cleaning, integration, transformation, reduction and discretization. This course covers the the general concept of data mining process on various types of data stream, sequence, time series, text, spatial and web-data.

References

STQD6524 Statistical Methods for Computational Biology
The aim of this course is to give exposure on statistical methods and computation in biology and bioinformatics. Focus is given on the understanding of basic statistical concepts and inferential statistics as well as their use in solving biological problems. This course covers topics such as introduction to genetic data, gene expression data, DNA sequential data, Protein and RNA, sequential analysis,
phylogenetic, gene expression analysis and micro array data analysis. Statistical methods that will be covered are inferential statistics methods, hypothesis testings, multivariate, statistical modelling, experimental design, robust statistical techniques, Bayesian and Markov Chain Monte Carlo.

References

STQD6889 Capstone Project
Capstone project provides experiential learning opportunity and gives students space to produce a product which is evaluated by potential employers. The project is obtained from real world problems and executed in collaboration with industry, government or private agencies, or academics. Students will use knowledge and skills which they have obtained throughout their study to help solve real problems. During the course of the project, students will be involved with the whole process of identifying and defining problems, giving solutions and limitations, perform analysis, reporting and presenting results and giving suggestions.

References

STQM6154 Network Science
This course introduces mathematical theories in network science. Network science is a multidiscipline field which investigate problems that can be understood through network approach. Among the aims of network science are to find cross-network equations and increase understanding of systems which are represented by networks through data analysis. The use of network science can be found in mathematics, social networks, biological systems and transportations.

References
STQP6014 Research Methodology and Industrial Seminar

The aim of this course is to give a background and method to perform scientific research in Data Science field. Research ethics, research principles, research designs and the role of researchers are discussed. Research methodologies, sampling and data collection as well as critical literature review are exposed to the students. Students will also be exposed to current issues and recent research in Data Science through a series of Data Science Seminar by inviting researchers and main industry practitioners in this field.

References

STQS6234 Bayesian Inference

This course introduces to the students on Bayesian’s theories. Bayesian inference for normal distributions is also discussed. Other than that, Bayesian inference for distributions other than normal, for example Binomial and Poisson is also explained. Other topics include hierarchical Bayesian model, empirical Bayesian, hypothesis testing, correlation, regression and analysis of variance.

References

STQS6284 Multivariate Analysis

This course intends to introduce statistical methods for multivariate data. Students are emphasized on the comprehension of the concepts and theories in multivariate analysis. Among topics covered in this course are matrix algebra, multivariate normal distribution, hypothesis testing for multivariate data, principal component analysis, factor analysis, discriminant analysis and cluster analysis.

References

STQS6444 Time Series Modelling and Forecasting

The objectives of this course are estimating simple regression models, explaining the techniques for modeling trend and volatility in time series data, explaining the cointegrating relation between two or more time series, and at the same time highlighting several major issues in time series analysis that are related to stationarity, trend, volatility, and cointegration. In particular, for modeling trend and volatility, the focus will be on the ARCH-GARCH models. As for cointegration, the error-correction mechanism and the Johansen approach will be discussed. At the end of the semester, the students will be required to write one short report on the application of statistical testing methods and model analyses that are covered during the semester.

References