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 The basic conservation laws of physics include: 

 Conservation of mass: mass is neither created nor destroyed. 

 Newton’s second law of motion: the change of momentum 

equals the sum of forces on a fluid particle. 

 First law of thermodynamics (conservation of energy): rate of 

change of energy equals the sum of rate of heat addition to and 

work done on fluid particle. 

 

 The fluid is treated as a continuum. 

 For length scales of, say, 1m and larger, the molecular 

structure and motions may be ignored. 

Basic Conservation Laws 
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Lagrangian vs. Eulerian Description 

 A fluid flow field can be thought 

of as being comprised of a 

large number of finite sized 

fluid particles which have 

mass, momentum, internal 

energy, and other properties. 

Mathematical laws can then be 

written for each fluid particle. 

This is the Lagrangian 

description of fluid motion. 

 

 Another view of fluid motion is 

the Eulerian description. In the 

Eulerian description of fluid 

motion, we consider how flow 

properties change at a fluid 

element that is fixed in space 

and time (x,y,z,t), rather than 

following individual fluid 

particles. 
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Fluid Element and Properties 

 The behaviour of the fluid is described 
in terms of macroscopic properties: 
 Velocity u. 

 Pressure p. 

 Density r. 

 Temperature T. 

 Properties are averages of a 
sufficiently large number of molecules. 

 A fluid element can be thought of as 
the smallest volume for which the 
continuum assumption is valid. 
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two terms of a Taylor series expansion,

e.g. for p : and
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Mass Balance 

 Rate of increase of mass in fluid element equals the net 

rate of flow of mass into element. 

 Rate of increase is: 

 The outflows (positive) and inflows (negative) are shown 

here: 
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Continuity Equation 

 Summing all terms in the previous slide and dividing by 

the volume dxdydz results in: 

 

 

 

 In vector notation: 

 

 

 For incompressible fluids r /t = 0, and the equation 

becomes:  
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Rate of Change for a Fluid Particle 

 Fluid element is a volume stationary in space, and a fluid 

particle is a volume of fluid moving with the flow. 

 A moving fluid particle experiences two rates of changes: 

 Change due to changes in the fluid as a function of time. 

 Change due to the fact that it moves to a different location in the 

fluid with different conditions. 

 The sum of these two rates of changes for a property per 

unit mass  is called the total or substantive derivative: 
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(for moving fluid particle)                                                             (for given location in space) 

Rate of Change for a Fluid Element 

 In most cases we are interested in the changes of a flow 

property for a fluid element, or fluid volume, that is 

stationary in space. 

 However, some equations are easier derived for fluid 

particles. For a moving fluid particle, the total derivative 

per unit volume of this property  is given by: 

 

 

 For a fluid element, for an arbitrary conserved property  : 
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be derived as follows: 



10 

Relevant Entries for Φ  
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Momentum Equations 

 The conservation equations for momentum and energy 

for fluid particles can then be derived for an Eulerian 

frame (for fluid elements).  

 Newton’s second law: 

Rate of change of momentum equals sum of forces. 

 Rate of increase of x-, y-, and z-momentum: 

 

 

 Forces on fluid particles are: 

 Surface forces such as pressure and viscous forces. 

 Body forces, which act on a volume, such as gravity, centrifugal, 

Coriolis, and electromagnetic forces. 
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Viscous Stresses 

 Stresses are forces per area. 

(unit: N/m2 or Pa) 

 Viscous stresses denoted by t. 

 Suffix notation tij is used to 

indicate direction. 

 Nine stress components. 

  txx, tyy, tzz are normal 

stresses. e.g. tzz is the stress 

in the z-direction on a z-plane. 

 Other stresses are shear 

stresses. E.g. tzy is the stress 

in the y-direction on a z-plane. 

 Forces aligned with the 

direction of a coordinate axis 

are positive. Opposite direction 

is negative. 
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Forces in the x-direction 
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Net force in the x-direction is the sum of all the force components in that direction. 
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Momentum Equations 

 Set the rate of change of x-momentum for a fluid particle 

Du/Dt equal to: 

 the sum of the forces due to surface stresses shown in the 

previous slide, plus 

 the body forces. These are usually lumped together into a 

source term SM: 

 

 

 p is a compressive stress and txx is a tensile stress. 
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Energy Equation 

 First law of thermodynamics: rate of change of energy of 
a fluid particle is equal to the rate of heat addition plus 
the rate of work done. 

 Rate of increase of energy is rDE/Dt. 
 Energy E = i + ½ (u2+v2+w2).  

 Here, i is the internal (thermal energy). 

 ½ (u2+v2+w2) is the kinetic energy. 

 Potential energy (gravitation) is usually treated 
separately and included as a source term. 

 The energy equation is derived by setting the total 
derivative equal to the change in energy as a result of 
work done by viscous stresses and the net heat 
conduction. 

 The kinetic energy equation is substracted to arrive at a 
conservation equation for the internal energy. 
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Work Done by Surface Stresses 

 The total rate of work done by surface stresses is 

calculated as follows: 

 For work done by x-components of stresses add all terms in the 

previous slide. 

 Do the same for the y- and z-components. 

 Add all and divide by dxdydz to get the work done per unit 

volume by the surface stresses: 
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Energy Flux due to Heat Conduction 
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The heat flux vector q has three components, qx, qy, and qz. 



19 

Energy Flux due to Heat Conduction 

 Summing all terms and dividing by dxdydz gives the net rate of 

heat transfer to the fluid particle per unit volume: 

 

 

 Fourier’s law of heat conduction relates the heat flux to the 

local temperature gradient: 

 

 

 In vector form: 
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Energy Equation 

 Setting the total derivative for the energy in a fluid 

particle equal to the previously derived work and energy 

flux terms, results in the following energy equation: 

 

 

 

 

 

 

 Note that we also added a source term SE that includes 

sources (potential energy, sources due to heat 

production from chemical reactions, etc.). 
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Kinetic Energy Equation 

 Separately, a conservation equation for the kinetic 

energy of the fluid can also be derived. 

 In order to do this, multiply the u-momentum equation by 

u, the v-momentum equation by v, and the w-momentum 

equation by w.  

 We then add the results together. This results in the 

following equation for the kinetic energy: 
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Internal Energy Equation 

 Subtract the kinetic energy equation from the energy 

equation. 

 Define a new source term for the internal energy as  

Si = SE – uSM. This results in: 
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Enthalpy Equation 

 An often used alternative form of the energy equation is 

the total enthalpy equation. 

 Specific enthalpy h = i + p/r.  

 Total enthalpy h0 = h + ½ (u2+v2+w2) = E + p/r. 
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Viscous Stresses 

 A model for the viscous stresses tij is required. 

 The viscous stresses can be expressed as functions of 

the local deformation rate (strain rate) tensor. 

 There are two types of deformation: 

 Linear deformation rates due to velocity gradients. 

 Elongating stress components (stretching). 

 Shearing stress components. 

 Volumetric deformation rates due to expansion or compression. 

 All gases and most fluids are isotropic: viscosity is a 

scalar. 

 Some fluids have anisotropic viscous stress properties, 

such as certain polymers and dough – Non-Newtonian 

fluids. 
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Viscous Stress Tensor 
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 Using an isotropic (first) dynamic viscosity  for the linear 

deformations and a second viscosity l = 2/3 for the 

volumetric deformations results in: 

Note: div u = 0 for incompressible fluids. 



26 

Navier-Stokes Equations 

 Including the viscous stress terms in the momentum 

balance and rearranging, results in the Navier-Stokes 

equations: 
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Viscous Dissipation 

 Similarly, substituting the stresses in the internal energy 

equation and rearranging results in: 

 

 

 

 Here F is the viscous dissipation term. This term is 
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Equations of State 

 Fluid motion is described by six partial differential 
equations for mass, momentum (in x,y,z), and energy. 

 Amongst the unknowns are four thermodynamic 
variables: u (in form of u,v,w), r, p, i, and T. 

 The thermodynamic equilibrium can be assumed where 
the time taken for a fluid particle to adjust to new 
conditions is short relative to the timescale of the flow. 

 We add two equations of state using the two state 
variables r and T:  p=p(r,T)  and  i=i(r,T). 
 For a perfect gas, these become:  p=r RT and  i=CvT. 

 At low speeds (Ma < 0.3), the fluids can be considered 
incompressible. 
 There is no linkage between the energy equation, and the mass 

and momentum equation. 

 We then only need to solve for energy if the problem involves 
heat transfer. 
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Summary of Equations in Conservation Form 
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 The system of equations is now closed, with seven equations for 

seven variables: pressure, three velocity components, enthalpy, 

temperature, and density. 

 There are significant commonalities between the various 

equations. Using a general variable , the conservative form of all 

fluid flow equations can usefully be written in the following form: 

 

 

 

 Or, in words: 
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 The key step of the finite volume method is to integrate the 

differential equation shown in the previous slide, and then to 

apply Gauss’ divergence theorem, which for a vector a states: 

 

 

 This then leads to the following general conservation equation 

in integral form: 
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Classification: Fluid Flow vs. Granular Flow 

 Fluid and solid particles: fluid flow vs. 

granular flow.  

 A fluid consists of a large number of 

individual molecules. These could in 

principle be modeled as interacting 

solid particles. 

 The interaction between adjacent salt 

grains and adjacent fluid parcels is 

quite different, however. 
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Reynolds Number 

 The Reynolds number Re is defined as:  

                                Re = rVL/. 

 Here L is a characteristic length, and V is the velocity.  

 It is a measure of the ratio between inertial forces and 

viscous forces. 

 If Re >> 1 the flow is dominated by inertia. 

 If Re << 1 the flow is dominated by viscous effects. 
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Reynolds Number 

Re = 0.05             Re = 10                   Re = 200                Re = 3000 
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Newton’s Second Law 

 For a solid mass: F = m.a 

 For a continuum: 

 

 

 

 For an incompressible Newtonian fluid, this becomes: 
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Newton’s Second Law 

 The flow is then inviscid,  = 0, and the Navier-Stokes 

equations becomes the Euler equations: 
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Basic Quantities 

 The Navier-Stokes 

equations for 

incompressible flow 

involve four basic 

quantities: 

 Local (unsteady) 

acceleration. 

 Convective 

acceleration. 

 Pressure gradients. 

 Viscous forces. 

 The ease with which 

solutions can be obtained 

and the complexity of the 

resulting flows often 

depend on which 

quantities are important 

for a given flow. 

(steady laminar flow) 

(impulsively started) 

(boundary layer) 

(inviscid, impulsively started) 

(inviscid) 

(unsteady flow) 

(steady viscous flow) 



38 

Steady Laminar Flow 

 Steady viscous laminar flow in 

a horizontal pipe involves a 

balance between the pressure 

forces along the pipe and 

viscous forces. 

 The local acceleration is zero 

because the flow is steady. 

 The convective acceleration is 

zero because the velocity 

profiles are identical at any 

section along the pipe. 
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Flow Past an Impulsively Started Flat Plate 

 Flow past an impulsively 

started flat plate of infinite 

length involves a balance 

between the local (unsteady) 

acceleration effects and 

viscous forces. Here, the 

development of the velocity 

profile is shown. 

 The pressure is constant 

throughout the flow. 

 The convective acceleration is 

zero because the velocity does 

not change in the direction of 

the flow, although it does 

change with time. 
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Boundary Layer Flow along a Flat Plate 

 Boundary layer flow along a 

finite flat plate involves a 

balance between viscous 

forces in the region near the 

plate and convective 

acceleration effects. 

 The boundary layer thickness 

grows in the downstream 

direction. 

 The local acceleration is zero 

because the flow is steady. 
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Inviscid Flow past an Airfoil 

 Inviscid flow past an airfoil 

involves a balance between 

pressure gradients and 

convective acceleration. 

 Since the flow is steady, the 

local (unsteady) acceleration is 

zero. 

 Since the fluid is inviscid (=0) 

there are no viscous forces. 
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Impulsively Started Flow of an Inviscid Fluid 

 Impulsively started flow of an 

inviscid fluid in a pipe involves 

a balance between local 

(unsteady) acceleration effects 

and pressure differences. 

 The absence of viscous forces 

allows the fluid to slip along the 

pipe wall, producing a uniform 

velocity profile. 

 The convective acceleration is 

zero because the velocity does 

not vary in the direction of the 

flow. 

 The local (unsteady) 

acceleration is not zero since 

the fluid velocity at any point is 

a function of time. 
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Steady Viscous Flow past a Cylinder 

 Steady viscous flow past a 

circular cylinder involves a 

balance among convective 

acceleration, pressure 

gradients, and viscous forces. 

 For the parameters of this flow 

(density, viscosity, size, and 

speed), the steady boundary 

conditions (i.e. the cylinder is 

stationary) give steady flow 

throughout. 

 For other values of these 

parameters the flow may be 

unsteady. 
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Unsteady Flow past an Airfoil 

 Unsteady flow past an airfoil at 

a large angle of attack (stalled) 

is governed by a balance 

among local acceleration, 

convective acceleration, 

pressure gradients and viscous 

forces. 

 A wide variety of fluid 

mechanics phenomena often 

occurs in situations such as 

these where all of the factors in 

the Navier-Stokes equations 

are relevant. 
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Flow Classifications 

 Laminar vs. turbulent flow. 

 Laminar flow: fluid particles move in smooth, layered fashion (no 

substantial mixing of fluid occurs). 

 Turbulent flow: fluid particles move in a chaotic, “tangled” fashion 

(significant mixing of fluid occurs). 

 Steady vs. unsteady flow. 

 Steady flow: flow properties at any given point in space are 

constant in time, e.g.  p = p(x,y,z).  

 Unsteady flow: flow properties at any given point in space 

change with time, e.g.  p = p(x,y,z,t). 
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Flow Classifications 

Newtonian 

(low μ) 

Newtonian 

(high μ) 
Bingham-plastic 

t0 

tc 

Casson fluid 

Pseudo-plastic 

(shear-thinning) 

Dilatant (shear-thickening) 

Strain rate (1/s) 

t (Pa)  Newtonian vs. 

Non-Newtonian  
 Newtonian fluids: 

water, air. 

 Pseudoplastic fluids: 

paint, printing ink. 

 Dilatant fluids: dense 

slurries, wet cement. 

 Bingham fluids: 

toothpaste, clay. 

 Casson fluids: blood, 

yogurt. 

 Visco-elastic fluids: 

polymers (not shown 

in graph because 

viscosity is not 

isotropic). 
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Flow Classifications 

 Incompressible vs. compressible flow. 

 Incompressible flow: volume of a given fluid particle does not 

change. 

 Implies that density is constant everywhere. 

 Essentially valid for all liquid flows. 

 Compressible flow: volume of a given fluid particle can change 

with position. 

 Implies that density will vary throughout the flow field. 

 Compressible flows are further classified according to the value of 

the Mach number (M), where. 

 

 

 M < 1 - Subsonic. 

 M > 1 - Supersonic. 

c

V
M 
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Flow Classifications 

 Single phase vs. multiphase flow. 

 Single phase flow: fluid flows without phase change (either liquid 

or gas). 

 Multiphase flow: multiple phases are present in the flow field 

(e.g. liquid-gas, liquid-solid, gas-solid). 

 Homogeneous vs. heterogeneous flow. 

 Homogeneous flow: only one fluid material exists in the flow 

field. 

 Heterogeneous flow: multiple fluid/solid materials are present in 

the flow field (multi-species flows). 
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Flow configurations: External Flow 

 Fluid flows over an object in an unconfined domain. 

 Viscous effects are important only in the vicinity of the 

object. 

 Away from the object, the flow is essentially inviscid. 

 Examples: flows over aircraft, projectiles, ground 

vehicles. 
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Flow Configurations: Internal Flow 

 Fluid flow is confined by walls, partitions, and other 

boundaries. 

 Viscous effects extend across the entire domain. 

 Examples: flows in pipes, ducts, diffusers, enclosures, 

nozzles. 

airflow 
temperature profile 

car interior 
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Conclusion 

 CFD simulations satisfy conservation laws of physics: 

 Mass conservation – the continuity equation 

 Momentum conservation (Newton’s Second Law of Motion) –  

the Navier-Stokes/Euler equations 

 First Law of Thermodynamics – the energy equation 

 

 Fluid flows can be classified in a variety of ways: 

 Laminar vs. turbulent. 

 Compressible vs. incompressible. 

 Steady vs. unsteady. 

 Supersonic vs. transonic vs. subsonic. 

 Single-phase vs. multiphase. 

 Internal vs. external. 
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Thank You 
 


