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Abstract

A parametric study of turbulent boundary layers with pressure gradients was carried

out using hotwire anemometry in order to investigate the effects of varying Reynolds

number and pressure gradient strength.

The coefficient of friction is obtained from oil-film interferometry (OFI). Through this

independent method, a systematic deviation from the log law which grows with pressure

gradient strength is observed.

Mean statistics such as the mean velocities, turbulent intensities and turbulence produc-

tion change in the outer region with pressure gradients. The large-scale features in the

flow are found to be more energetic as the pressure gradient changes from favourable to

adverse when Reynolds number is held constant. The large-scale features are responsi-

ble for the rise in turbulence intensities especially in the outer region. The large-scale

features also causes the skewness to increase in the near-wall region. The more energetic

large-scale features in the outer region have a greater ‘foot-print’ near the wall.

In the second part of the study, a two-point sensor analysis reveals that the turbulence

in the near-wall region is found to be only weakly disturbed by the pressure gradient in

contrast to recent findings, e.g. by Lee and Sung (2009). Nevertheless, the structural

inclination angle increases with adverse pressure gradient, and decreases with favourable

pressure gradient.
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+2
S

t+ Non-dimensionalised time, t+ = tU2
τ /ν, where t = 1/f

TU1/δ Boundary layer turnover time, T is time in seconds

u, v and w Velocity fluctuations in x (streamwise), y (spanwise) & z (wall-normal)

U , V and W Local mean velocity in x (streamwise), y (spanwise) & z (wall-normal)

Uc Convection velocity

UCL Centre line velocity (channel flow)

Uin Inlet velocity

Us Schofield and Perry velocity scale e.g. in Perry and Schofield (1973)

Uτ Friction velocity

U1 Local free stream velocity

w Wake function

Wc Coles wake function

z+∣peak uv Reynolds stress peak location

α1, α2 Variables in Barenblatt (1993)’s half power law

α3 Variable in Stratford (1959)’s power law

β Clauser adverse pressure gradient parameter, β = δ∗/τo(dP1/dx)
δ Boundary layer thickness

δc Boundary layer thickness based on Coles’ formulations

δs Perry and Schofield length scale

δ∗ Displacement thickness

∆ Incremental value of a quantity

ǫ Energy dissipation rate

η Non-dimensionalised distance from the wall, η = z/δ



Symbols xiv

ηK Kolmogorov length scale, ηK = ν3/4/ǫ1/4
λ Wavelength of sodium lamp light source

λx Streamwise wavelength, λx = 2π/kx
λxc Cut-off length scale

λy Spanwise distance or separation

λT Taylor microscale
√
u2/(∂u/∂x)2

Λ A shape or type of eddy

ν Kinematic viscosity

φ Diameter of hotwire sensor

φuu Streamwise energy spectra

ψ Energy deficit, energy difference

Π Coles’ wake factor

ρ Density of fluid

τ Local shear stress

τo Wall shear stress magnitude

τm Maximum shear stress τm = ρuv∣max

θ Momentum thickness

θstruc Structural inclination angle

Ξ Diagnostic function

ζ Non-equilibrium parameter in Perry et al. (2002), ζ = Sδ(dΠ/dx)
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Chapter 1

Introduction

This thesis reports on turbulent boundary layer pressure gradient studies at the Uni-

versity of Melbourne. Why study pressure gradient boundary layer flows? A lot of

studies have been performed in zero pressure gradient (ZPG) flows, yet layers exposed

to pressure gradients are the ones most likely to be encountered in many engineering

applications (Dixit and Ramesh, 2010, Lee and Sung, 2009). Examples of these appli-

cations are diffusers, turbine blades and aerofoils. Turbulent flows are characterised by

three-dimensional chaotic motions caused by movements of coherent eddies of different

sizes and orientations. Researchers are focussing on the physics of these eddies because

they are known to play a very significant role in the production of turbulence kinetic

energy and are major contributors to skin friction.

The simplest and yet an important example of how such studies benefit mankind is

the effect of skin friction on aeroplanes. Large airliners need to use up to 50% of their

power to overcome drag due to skin friction (Ganapathisubramani et al., 2005, Stenzel

et al., 2011). Airline companies quickly single out rising fuel costs as the main reason

for them not meeting the balance sheet. Many airline companies take drastic actions to

cut costs such as implementing staff reduction and a reorganisation of routes to increase

efficiencies. Complex geometries, such as in the cases of pressure gradient flows provide

useful information towards the physics of aerodynamics. Understanding the physics

of aerodynamics contributes to better aeroplane designs (e.g., Rahgozar and Maciel,

2011b), which in turn helps these companies to reduce their fuel costs.

Aerodynamics affect many livelihoods outside of the airline industry as well. Cars use

approximately 20% of their engine power to overcome aerodynamic drag. This figure

1
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changes from company to company and even from one model to the others within the

same manufacturer. General Motors (GM) aerodynamics studies in Advanced Material

& Processes, in its January 2006 edition, reported that figure to be about 20%. Some

manufacturers design hybrid systems, where the fuel-driven engine is usually shut-off

after the car no longer needs a lot of power (usually from stationary to a certain desired

speed) and replaced with battery power. Hybrid systems are a major area of investment

for car manufacturers wishing to increase fuel efficiency.

Governments and regulating bodies too are expediting regulations, because rising fuel

prices hurt everybody, individuals, private or governments. The Spanish government

reduced the compulsory maximum speed limit from 120 km/h to 110 km/h on 7 March

2011, when war broke out in Northern Africa, the source of much of Spain’s fuel. Ag-

gressive driving (speeding, rapid acceleration and braking) wastes fuel. It lowers a car’s

fuel mileage by 33% at highway speeds and by 5% in suburban areas. Drag generally is

proportional to the frontal area, the area that sees the incoming air or fluid and square of

the speed (White, 1991). Returning to Spain’s highway speed limit, in June of the same

year, the regulation was extended because of its effectiveness in reducing vehicles’ fuel

consumption. Studies pointed out that this regulation only reduced fuel consumption

by approximately 5%, not by the government estimate of 15% (a 15% reduction would

potentially save the nation’s fuel bill by BC2.3bn. However, a 5% saving represents a huge

sum of much needed money that could be used for other sectors of Spain’s economy.

In the U.S., the President announced in July 2011 that car manufacturers had to meet

tougher Corporate Average Fuel Economy (CAFE) laws regarding fuel efficiency. CAFE

laws were first enacted in 1975 to improve the average fuel economy of cars and light

trucks. Automakers have agreed to a 54.5 mile-per-gallon (MPG) national average fuel

economy standard by 2025 (54.5 MPG is equivalent to 4.32 l/100km). The new standard

is the ‘single most important step’ to cut U.S. dependence on foreign oil, according to the

President. It will mean the average motorist can fill up every two weeks, instead of every

week. Most car companies submitted their plans, especially more aerodynamic designs.

The 2013 Chevrolet Malibu model will see a significant improvement in aerodynamics

with a shape approaching the wind drag of the Chevy Volt extended-range electric

car. The Hyundai Accent, the entry-level subcompact, gets a 2.1% improvement in

fuel savings from reduced wind drag. Among other things, the car is fitted with an

underbody panel to keep air from becoming trapped underneath. The new Ford Focus

is 7% more fuel-efficient. Among the changes were more aerodynamic side mirrors, wheel

wind deflectors, a panel underneath the front end, shutters that close behind the grille
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at higher speeds and molding on the front roof pillars aimed at smoothing out air flow.

The subcompact Nissan Versa, going on sale in summer 2011, is more than an inch lower

than the one it replaces, to make it more aerodynamic. The new version of the Honda

Civic has a rear spoiler and wheels that have a flatter surface to prevent trapped air. It

gets a 3 MPG improvement (USA Today, 1 Aug. 2011). The savings from the more fuel

efficient designs increase many households disposable income. More disposable income

means spending on other items will increase, lifestyles change too.

Understanding the physics of friction generation and how to reduce it contributes to fuel-

efficient designs. Complex car surfaces are better approximated with flows in pressure

gradients, therefore better understandings in APG and FPG flows are greatly required.

The two examples above of how greatly aerodynamics affect aeroplanes’ and cars’ per-

formances demonstrate the importance of such applications for this study. Aerodynamic

drag is also an important factor in the maritime and land transportation industries and

in high-speed trains. In sports, aerodynamics have long been important features in

bicycle and helmet designs, swimsuits, canoes, etc.

To summarize, aerodynamic issues exist in many aspects of life; applications from such

knowledge improve individual life styles as well as the national economy. However,

studies of boundary layers in pressure gradients are lacking in the literature, as expressed

recently in Dixit and Ramesh (2010), Lee and Sung (2009) and Rahgozar and Maciel

(2011b). Lee and Sung (2009) stressed that the efficiency of such devices is almost always

determined by the APG, so the behaviour of the APG flows is of practical importance.

In general, elucidating the behaviour of turbulent boundary layers exposed to pressure

gradients improves its modeling (Lee and Sung, 2009) and contributes to flow control

strategies (Robinson, 1991).

1.1 Literature review

1.1.1 Progress in wall turbulence

Wall-turbulence research has seen some successes in the last decade in understanding

the large-scale structures of the flow. The large-scale structures reside in the outer layer

consisting of the log region, in which the length scale varies almost linearly with the

distance from the wall, and the wake region in which the length scale approaches the

boundary-layer thickness. Both regions contain eddies ranging from as small as those
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found in the buffer layer in the near-wall region, as well as the much larger eddies. The

characteristics of the structures in the buffer layer such as the streaks, the low and high

speed streamwise vortices, modulated in spanwise direction have been well documented

(Kline et al., 1967, Robinson, 1991, Smith and Metzler, 1983). They have been linked

with a sequence of events called the bursting process, in which streaks lift-up, oscillate

and break down (Jeong et al., 1997, Kim et al., 1987). The mechanism by which the

wall turbulence sustains itself has also been documented (Panton, 1997, Walleffe, 1997).

Less is known about the structure of the outer layers than about the buffer layer, partly

because it contains a wider range of scales (Adrian et al., 2000). Marusic et al. (2010a)

too noted that the majority of investigations have been focussed in the near-wall region.

However, there have also been earlier studies on turbulent structures in the outer layers.

Kovasznay et al. (1970) and Brown and Thomas (1977) for example, showed structures

which scales with the boundary layer thickness, dominated the outer layers.

Kim and Adrian (1999) proposed a model of vortex packets to explain the dominance of

very low frequency energy in the log region of high Reynolds number wall-turbulence.

This study was followed by similar studies highlighting large-scale structures in the

outer layers (Adrian et al., 2000, Balakumar and Adrian, 2007, del Álamo et al., 2004,

Ganapathisubramani et al., 2003, Guala et al., 2006, Hutchins and Marusic, 2007a,

Tomkins and Adrian, 2003). As has been discussed above, the turbulent structures in

the outer layers have features that scale with outer variables. The alternating regions of

high and low-speed regions suggest that the large-scale features have widths that scale

with the outer variables too (Ganapathisubramani et al., 2005, Hutchins et al., 2005,

Monty et al., 2007). Much less is known about turbulent structure for boundary layers

in pressure gradients as most previous studies have been performed in ZPG turbulence

boundary layer (TBL), channel or pipe flows.

1.1.2 The ‘active’ and ‘inactive motions’

Bradshaw (1967a), Lee and Sung (2009), Sk̊are and Krogstad (1994) and recently Monty

et al. (2011) showed evidence of increased large-scales features when a TBL flow is

exposed to APG. To understand the extent of the increased larger-scale structures, it

is useful to revisit the ‘active’ and ‘inactive’ motions postulated by Townsend (1961).

Bradshaw (1967a) further refined this hypothesis: an inner turbulence motion, say in the

region z/δ < 0.2, consists of an active universal component, scaling on friction velocity

and wall-normal distance, which produces the shear stress, and an inactive component,
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imposed by the eddies and pressure fluctuations in the outer part of the boundary layer,

which does not produce shear stress near the wall and can be regarded as a quasi-steady

oscillation of the inner layer flow. The inactive motions, larger, swirling and meandering

eddies however produce shear stress much further in the outer region (Townsend, 1976).

Supported by experimental evidence, Townsend (1976) and Bradshaw (1967b) showed

that inactive motions are intense in boundary layers in the adverse pressure gradient.

The latter further elaborated that there was no noticeable effect in the mean quantities

in the inner layer if these very large fluctuations are imposed, since such structures do

not change the universality of the smaller motions in the inner layer. Despite their

passive contribution in the inner layer, the inactive motions are strong contributors to

the shear stress and turbulence production in the outer layer. These effects can also be

seen clearly in very large APG experiments of Sk̊are and Krogstad (1994) and Dengel and

Fernholz (1990), where a secondary peak in turbulence production was observed in the

outer region. For the purpose of this study, the small-scale and the large-scale structures,

commonly associated with the active and inactive motions, are used to describe turbulent

structures.

1.1.3 Reynolds number effects

Wei and Wilmarth (1989) reported that turbulence quantities are dependent on the

Reynolds number in their turbulent channel experiments flow using a Laser Doppler

Anemometer (LDA) with the Reynolds number range 3000 < Reh < 40000 (Reh is the

Reynolds number based on channel height). The mean velocities, turbulence intensities,

the Reynolds stress and energy spectra, were shown not to scale with inner variables very

close to the wall. Ching et al. (1995), Johansson and Alfredsson (1983), Klewicki and

Falco (1990) and DeGraaff and Eaton (2000) as was commonly assumed in the classical

literature also reported in well-resolved measurements that the near-wall turbulence

intensity peak location grows with the Reynolds number. In channel flow experiments

by Johansson and Alfredsson (1983), skewness and flatness slightly increased when a high

Reynolds number, (Reh = 129000) was compared to a low Reynolds number flow (Reh =
50000). Andreopoulos et al. (1984), Balint et al. (1991), den Toonder and Nieuwstadt

(1997), Durst et al. (1998), Metzger and Klewicki (2001) have all shown Reynolds number

dependencies of the skewness and flatness.

The variation in the skewness observed when the Reynolds number increases, has been

shown to be associated with the large-scale structures. Metzger and Klewicki (2001)
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showed that the skewness shifts upwards in the near-wall region as the Reynolds number

is increased and using a high-pass filter to remove the low-frequency large-scale features

showed clearly that the large-scales were responsible for the increase in the skewness.

Gad-el-Hak and Bandyopadahyay (1994)’s discussion of the Reynolds number effects

was focused on the Reynolds shear stress because it is the most important dynamical

quantity affecting mean motion. The major portion of the momentum transported in

a two-dimensional turbulent wall-bounded flow is attributable to this quantity. In this

paper, the shear stress peak locations in Wei and Wilmarth (1989) and Harder and Tie-

derman (1991) are shown to move away from the wall as the Reynolds numbers increase.

In Sreenivasan (1989), the shear stress peak location is shown to be a strong function of

the Reynolds number. By using least-square fitting from a list of compiled data, Sreeni-

vasan (1989) demonstrated the peak location can be predicted by the Reynolds number,

z+∣peak uv = (Re∗)0.75 for direct shear stress measurement or z+∣peak uv = 2(Re∗)0.5 when

shear stress is computed from measured mean velocities. Here, Re∗ is the pipe radius

or boundary layer thickness, and the ‘+’ symbol denotes nondimensionalised unit, both

with inner variables.

In sufficiently large Reynolds number ZPG TBL flows, Hutchins and Marusic (2007a)

demonstrated that the large-scale features in the outer layers maintain a presence in

the near-wall region. From the energy spectra analysis, Hutchins and Marusic (2007a)

found that the contribution to the streamwise turbulence intensities associated with the

largest-scale motions, referred to as superstructures, appears to be increasingly signif-

icant with increasing Reynolds number, and scales with outer length variable, δ. The

influence of the large-scale structures could be observed in the near-wall region and it

seems that these features modulate the near-wall cycles. The influence of the low-wave

number energy into the near-wall region is consistent with the rise in near-wall stream-

wise turbulence intensities (when scaled with inner variables noted in the list of papers

at the start of this sub-section) to occur with increasing Reynolds numbers. Recently

there have been more research identifying large Reynolds number effects in the near

wall-region as a result of the interaction between the small-scale structures here and the

large-scale features in the outer region.

Mathis et al. (2009) studied the relationship between the large-scale features and the

small-scale near-wall cycle based on the Hutchins and Marusic (2007a) findings. Here,

the influence of the large-scale boundary-layer motions on the small-scale near-wall cycle

through an amplitude modulation process was studied. The Hilbert transformation was

applied to the spectrally filtered small-scale component of fluctuating velocity signals,
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in order to quantify the interaction and Mathis et al. (2009) showed evidence that the

amplitude modulation effect becomes progressively stronger as the Reynolds number

increases. Using turbulence intensities, turbulence production and energy spectra anal-

yses, Marusic et al. (2010a) demonstrated that the energised large-scale features in the

outer region (due to larger Reynolds number) become increasingly important in terms

of sustaining and producing turbulence as compared to the near-wall cycle. The large-

scale energy ‘percolates’ down to the buffer and viscous sub-layers. Hence, explaining

the dependency of the near-wall turbulence intensities peak on the Reynolds number in

the fully-resolved measurement discussed earlier in Ching et al. (1995), Johansson and

Alfredsson (1983), Klewicki and Falco (1990), Wei and Wilmarth (1989) and DeGraaff

and Eaton (2000) amongst others.

1.1.4 Known pressure gradient effects

The effect of pressure gradients on the turbulence statistics i.e. mean velocities, turbu-

lence intensities, skewness, flatness, structural inclination angle and turbulence produc-

tion, have been documented in APG flows in Marusic and Perry (1995), Nagano and

Houra (2002), Skote and Henningson (2002), Sk̊are and Krogstad (1994) and in FPG

flows in Fernholz and Warnack (1998), Jones et al. (2001) and Bourassa and Thomas

(2009). The wake in the mean velocities and turbulence intensities grows with adverse

pressure gradient parameter in the outer region. The skewness and flatness coefficients

also increase in the near wall region due to the APG. From a two-point correlation,

Krogstad and Sk̊are (1995) showed that the structure inclination angle increases with

APG1. Krogstad and Sk̊are (1995) explained that the features rose up and broke down

to form shorter structures. In contrast, Dixit and Ramesh (2010) showed that the angle

is smaller in FPG (5-10o depending on the severity of the FPG). Relating to the APG

experiment by Krogstad and Sk̊are (1995), Dixit and Ramesh (2010) made an analogy

that, the structures are flattened and stretched in FPG (the opposite of the effects ob-

served in APG). An increase in the streamwise integral length scale and a decrease in the

wall-normal integral length scale observed in Warnack and Fernholz (1998) also imply

elongation of the large-eddy structure.

The ‘constants’ κ and A in the log law of the wall equation (to be discussed in Chapter

3) have also been observed to be affected by pressure gradients. Krogstad and Sk̊are

(1995), Lee and Sung (2009), Nagano et al. (1998) and Monty et al. (2011) observed

1The structural inclination angle is nominally 15o in ZPG TBL (Brown and Thomas, 1977, Ganap-
athisubramani et al., 2003, Marusic and Heuer, 2007, Robinson, 1991)
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a shift-down in the mean velocity profiles from the log law of the wall. In contrast,

Bourassa and Thomas (2009) and Dixit and Ramesh (2010) found a shift-up in strong

FPG flows.

The turbulence production increases in APG and decreases in FPG flows (Fernholz and

Warnack, 1998, Sk̊are and Krogstad, 1994) especially in the outer region. Nagano et al.

(1992) and Sk̊are and Krogstad (1994) explained that the high production in the outer

region was due to higher turbulent shear stresses. Lee and Sung (2009) showed that the

increased outer kinetic energy and shear stress are associated with the presence of large-

scale outer streaky structures. Lee and Sung (2009) used instantaneous visualisation to

demonstrate the presence of a low momentum regions (LMR), which are intensified and

regulated by the presence of APG. The LMRs identified here fit the descriptions of the

large-scale structures with a streamwise length of 4δ and width of 0.4δ. The average

size of LMR is estimated using linear stochastic estimation (LSE), a method employed

by Christensen and Adrian (2001).

The skewness is also found to increase with APG (Nagano and Houra, 2002, Sk̊are and

Krogstad, 1994). However it has not been shown in detailed analysis that such an effect

is due to the increased large-scale features in APG flows. In ZPG flows with increasing

Reynolds number, Metzger and Klewicki (2001) demonstrated that it is the large-scale

features that contribute to the rise of the skewness. It is useful if a similar test is

performed in pressure gradient study to prove that large-scale features increase with

APG.

Based on the above review, it is evident that the increased large-scale features are likely

to be responsible for the rise in the turbulence intensities in the outer region, rise of

the skewness, increase in the structural inclination angle and the turbulence production

in APG flows. These structures break up, creating shorter structures depending on

the severity of the APG (Lee and Sung, 2009). The effects on the boundary layer

through the ‘association’ of the large-scale features is well-documented, but not the

mechanism or physics behind it. Different researchers explained these phenomena with

their own results. Sk̊are and Krogstad (1994) showed that the direction of the turbulent

diffusion is reversed, resulting in considerable turbulent transport towards the wall in

strong APG flows. Nagano et al. (1998) explained that APG causes a change in sweep

and ejection motions2. In an APG flow, sweep motions become equivalent to that

of ejections, the outward and wall-ward interactions relatively increase near the wall,

reflecting a change in the coherent structures. The two examples above highlight the

2the sweep and ejection motions based on quadrant analysis for example in (Lu and Willmarth, 1973)
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different approaches taken by different researchers in explaining these phenomena; it

is hard to comprehend a mechanism that may be agreed upon by most researchers

when these different explanations are compared. The physics behind these changes has

never been satisfactorily explained despite much research. The difficulties in analysing

APG effects are further aggravated by the fact that large-scale features also increase, as

explained at the start of this paragraph3.

This thesis too, is unable to reconcile the physics behind these changes - this will require

continuous, focussed efforts and years of research, e.g. similar to efforts prior to the es-

tablishment of information regarding the near-wall streak. However through systematic

studies, the author attempts to identify the differences when the large-scales effect are

increased or removed from the flow. This is an analysis (pertaining to TBL pressure

gradient flows) which seems to be lacking in the literature which will contribute towards

greater understanding of this phenomenon.

1.1.5 Unknown pressure gradient effects

Effect of increasing β or Re independently

Table 1.1 lists existing studies in APG flows. Each of these studies has revealed impor-

tant properties of APG flows. Column four of Table 1.1 shows the adverse pressure gra-

dient parameter β, while column five displays the corresponding Reynolds number based

on momentum thickness, Reθ. Both parameters are known to affect boundary layer (in

the literature review section) and the large variations in both β and the Reynolds num-

ber have been preferred for different analysis (e.g., Bradshaw, 1967a). As a result, the

effect of increasing β is ‘contaminated’ by the Reynolds number effect and vice versa.

This has created a barrier in understanding the full extent of the effect purely by varying

one parameter at a time.

Studying the effects of these parameters are the main highlights of this thesis, but there

are also more analyses that appear to be lacking in the literature, namely the effect of

sensor length, l+ and the identification of the large-scale features through energy spectra

analysis.

3Adrian et al. (2000) explained the difficulties to analyse flow structure when there are wider range
of scales
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Authors l+ z+min β Reθ

Samuel and Joubert (1974) 24 – 65 12 0.09 – 8 5000 – 30000
Cutler and Johnston (1989) 60 – 70 12 2 – 12 12000 – 25000

Nagano et al. (1998) 7.9 – 15.6 1 0.76 – 4.66 1290 – 3350
Sk̊are and Krogstad (1994) ≈11 3 12 – 21 25000 – 54000
Marusic and Perry (1995) 7 – 38 20 0 – 7 2200 – 19100

Aubertine and Eaton (2005) 3 – 4 3 -0.4 – 2.3 3000 – 6300
Skote et al. (1998) DNS DNS 0.24 – 0.65 360 – 690

Lee and Sung (2008) DNS DNS 0.25 – 1.68 850 – 1400

Table 1.1: Flow and experimental parameters for existing adverse pressure gradient
boundary layer data.

l+ effect

Column two in Table 1.1 shows the sensor length parameter, l+. Large l+ causes small-

scale attenuations, and in pressure gradient flow, the competing effects due to increased

Reynolds number and due to increased l+ discussed in Klewicki and Falco (1990) and

Hutchins et al. (2009) may be aggravated. The detail of such effects is discussed in

Chapter 4. At this point it is sufficient to note that the introduction of APG causes

effects similar to increasing Reynolds number: when APG parameter is introduced, the

measured near-wall intensities scaled with inner variables will most likely increase too,

as evident in Marusic and Perry (1995), Nagano et al. (1992), Skote and Henningson

(2002) and Lee and Sung (2009). However, it is not known if the other competing effect

(l+) acted similarly as in previous ZPG studies. Therefore, it is useful to establish the

effect of l+ in pressure gradient flows.

The roles of the large-scale features in pressure gradient flows

In order to identify the extent of the large-scale effect (the consequence of increasing

β, as discussed in the literature review), it is necessary to remove the large-scales by

using a high-pass filter. This is similar to removing the large-scales as done in the high

Reynolds number data in Metzger and Klewicki (2001). As discussed earlier in Sub-

Section 1.1.3, this effect is not so well explained and therefore it is imperative that such

findings be highlighted in detail. The contributions of the large-scales to turbulence

intensities, skewness and flatness in the outer region will also be analysed and compared

with existing data.

Modulation effect
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The modulation effect of the large-scales on the small-scale events shown by Mathis

et al. (2009) grows with the Reynolds number. Clearly, the increased large-scales are

responsible for the stronger modulation effect in the higher Reynolds number flows

(Hutchins and Marusic, 2007a). The increased large-scale features in an APG flow

may be assumed to increase their influence on the near-wall motions also. There is no

literature on the modulation effect in pressure gradient boundary layer flows up to date.

This is quite understandable since the analysis in ZPG by Mathis et al. (2009) has been

documented only quite recently.

1.2 Motivation

A lot of effort is given to address the unknown pressure gradient effects discussed in

Sub-Section 1.1.5, in particular the roles of the large-scale features. Furthermore, this

thesis also compares the mean statistics of pressure gradient flows with the pipe and

channel flows. This interest arises from the large-scale features study by Hutchins and

Marusic (2007a) and Monty et al. (2009).

Hutchins and Marusic (2007a) showed evidence of very long meandering features that

reside in the log and lower wake regions of turbulent boundary layers via spanwise rake

of hotwire measurements. These features, the large-scale structures or superstructures,

can commonly have lengths of up to 20δ, observed in flows ranging more than a decade

of Reynolds numbers. Monty et al. (2007) compared turbulent pipe and channel flows at

a constant Reynolds number, and the structures of fully developed turbulent pipe and

channel flows were analysed with data obtained using custom-made arrays of hot-wire

probes. The outcome revealed long and meandering structures of lengths up to 25 pipe

radii or channel half-heights, similar to finding in ZPG boundary layer flow by Hutchins

and Marusic (2007a).

Monty et al. (2009) compared ZPG, channel and pipe flows at matched conditions.

Results show that mean statistics (mean velocities, turbulence intensities, skewness and

flatness) in the near-wall region collapse well until 0.5δ. However, contrary to views

from many previous findings, the energy spectra analysis showed noticeable structural

differences. Further to studies in large-scale structures by del Álamo et al. (2004), Kim

and Adrian (1999) and Guala et al. (2006) who found the large-scale peak in energy

spectra analysis in channel/pipe flow occurs at significantly longer wavelengths than

that in boundary layer flow, Monty et al. (2009) added that the energy contribution
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from these large-scales continues to move to longer wavelength with distance from the

wall in pipe/channel flows. The present study repeats this analysis by adding APG

and FPG flows, again at matched conditions. Mean velocities, turbulence intensities,

skewness, flatness, energy spectra analysis and turbulence production are compared in

order to gain better knowledge of the effect of pressure gradients.

In summary, the major aims of this thesis are as follows:

1. To perform experiments on turbulent boundary layers in increasing Reynolds num-

ber while β is constant, and in varying β while the Reynolds number is constant.

The analysis is also extended to compare with ZPG, channel and pipe flows per-

formed by Monty et al. (2007), with the addition of boundary layer flows exposed

to pressure gradients.

2. To analyse the extent of the sensor length parameter, l+, effect on pressure gradient

flows.

3. To analyse pressure gradient effects towards turbulence statistics (mean velocities,

turbulence intensities, skewness, flatness). The energy spectra and the two-points

correlations shall also be analysed to identify the extent of the large-scale features.



Chapter 2

Experimental set up

2.1 Facility

The experiments were performed in an open-return blower wind tunnel. The important

features of the tunnel are a settling chamber containing a honeycomb and five screens,

followed by a contraction with area ratio of 8.9:1, which leads into an initial inlet section

area of 940 × 375 mm. This facility was previously used by Marusic and Perry (1995)

and Jones et al. (2001).

2.1.1 Traverse construction

The two-axis traverse is one of the important element for this measurement. Figure 2.1

shows the perspective view of the traverse. The entire traverse could be moved along

the wind tunnel’s streamwise direction. There are four wheels, two on each side of the

traverse. The base plate is made of solid rectangular aluminum (labeled as traverse

body in the figure). On this plate, there are two main components i.e. traverse one

and traverse two. Traverse one is stationary, therefore a hotwire sensor attached to it

only performs wall-normal measurements. Traverse two moves in both the wall-normal

and spanwise directions. Stiffening metal is fixed to each traverse to ensure deflections

caused by forces associated with air speed or other sources were minimised.

The two-axis system is designed especially for the two-sensor measurement discussed in

Chapter 5. A close-up, front view of the two sensors is shown in Figure 5.2.

13
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For the spanwise direction, two rails and their accessories and a slot on the base plate

had to be constructed. The spanwise movement is driven by a motor-ball screw couple.

Spanwise horizontal slots have to be made at the locations where measurements are to

be performed. To ensure that there is minimum air leakage, a slot cover is provided for

each slot. Foam seals are fitted into these slots to minimize air leakage.

2.1.2 Wind tunnel layout

The adjustable section drawing for the wind tunnel is shown in Figure 2.2. For this

investigation a new, flexible test section ceiling is made from acrylic and hung by ball

screws such that its height is easily adjusted; the adjustable length is 4.2 m. Butterfly

screws were attached to the ball screws to adjust the ceiling heights. There are more

of these features (ball screw, butterfly screws and stiffening spanwise metal across the

acrylic ceiling) than shown in Figure 2.2 to achieve the desired pressure gradient setting.

The smooth wind tunnel floor is made up of a single sheet of acrylic laminate bonded

to a 12 mm thick chipboard sheet and attached to the main frame of the test section.

Oil film interferometry (OFI) infrastructure could also be observed in Figure 2.2 fixed

on the acrylic laminate - thick chipboard sheet. Pressure taps (for the measurements

of coefficient of pressure) were along the centre line of the smooth wall. The first few

pressure taps were spaced 120 mm apart, mostly in the ZPG development region. The

other pressure taps were spaced 40 mm apart.

For all data presented in the thesis, the section heights are 375 mm at the trip wire

(x = 0 m), 400 mm at x = 3 m and 550 mm at x = 5 m for APG (or 270 mm for

FPG). The geometry is shown in Figure 2.4. At no location is the boundary layer

thickness greater than 20% of the tunnel height, ensuring that the boundary layers on

the floor and ceiling of the tunnel do not influence each other. To maintain a constant

adverse pressure gradient, the cross-sectional area of the tunnel increases nominally

exponentially. However, to maintain a constant favourable pressure gradient, the cross-

sectional area of the tunnel decreases approximately linearly.

A front view of the wind tunnel is shown in Figure 2.3. There are five plugs in the wind

tunnel installed for the present study. The first plug is located furthest upstream, this

is station 1. The fifth plug, station 5, is closest to the camera. A transparent glass

plug is installed at station 5 and is lit by a sodium light from underneath. These plugs

and the settings are for the oil-film interferometry (OFI) method discussed in Section
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motor for traverse one

stiffening metal for traverse two

spanwise rail

traverse body

encoder (behind)

ball screw

Slot cover

slot

wheel

probe’s rod

foam seal

Figure 2.1: Traverse perspective view.

2.3. There is only one glass plug; interchangeable all throughout the five stations. The

detailed construction of the OFI infrastructure is shown in Section 2.3.

2.2 Pressure gradient

The wind tunnel is divided into four sections: the inlet, the ZPG, APG (or FPG) and

outlet sections. Modifications have been made to the wind tunnel ceiling to get smooth

pressure gradients. The pressure gradient was carefully adjusted so that the coefficient of

pressure defined in equation 2.1 set to be within ±0.01 throughout the velocities tested.

Here P is the static pressure measured by the wall tappings, Pt is the reference total

pressure, P0 is the reference static pressure and U1 is the local free-stream velocity.
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motor

traverse one

traverse two

spanwise rail

traverse body
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traverse rail
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OFI infrastructureprobe holder
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Figure 2.2: Wind tunnel perspective view.



Introduction 17

Figure 2.3: Front view of wind tunnel

Figure 2.4: Illustration of the wind tunnel geometry

CP = P −P0

Pt − P0

= P − P0

1
2
ρUin

2
= 1 − ( U1

Uin

)2 (2.1)

Figure 2.5 shows CP plotted against streamwise position (m). The first 10 pressure

taps are in the inlet section. The figure shows that the next 15 pressure taps are in the

zero pressure gradient region. The long ZPG section is to ensure that the flow is stable
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Figure 2.5: Coefficient of pressure CP . #: Uin = 15.9 m/s, ●: Uin = 10.5 m/s for
APG and ◻: Uin = 10.5 m/s for mild APG. ◇: Uin = 10.5 m/s for FPG.

before any pressure gradient is introduced. For the APG case, two inlet velocities Uin

= 10.5 m/s and 15.9 m/s are tested. The CP obtained from the two inlet velocities

collapses well. It can be shown that CP does not change with any inlet velocities within

the velocity range of the experiment performed, i.e. 8 m/s ≲ Uin ≲ 22 m/s.

To address any history effects, another CP based on a totally different wind tunnel ceiling

setting was measured. In this case, a milder adverse pressure gradient was obtained,

shown by the ◻ symbol. A detailed discussion regarding the effect of history is in

Chapter 6. For the FPG cases, the ceiling setting was also set for a mild pressure

gradient. The minimum CP in figure 2.5 is CP ≈ −0.48. The mild pressure gradients

in these experiments are necessary to avoid any sudden change in the flow which may

introduce changes in the flow structures.
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2.3 Oil-film interferometry

The determination of the wall shear stress is crucial to the studies of wall-bounded

flows. This quantity is especially important because of the scaling laws used to describe

the velocity profiles of such flows. Many turbulence statistics, such as the mean velocity

profiles and energy spectra, are non-dimensionalised by friction velocity, Uτ . The friction

velocity is defined as Uτ = √τo/ρ, where τo is the wall shear stress and ρ is the density

of the fluid and in this case, air.

A typical method to obtain wall shear stress is the Preston tube (Preston, 1954), it

relies on the law of the wall calibrations. The Clauser chart method (Clauser, 1954)

assumes the validity of the log law and requires knowledge of the universal constants.

Recent findings in APG studies reveal that there is a deviation from the log law (Lee and

Sung, 2009, Skote and Henningson, 2002), and the same applies to highly FPG studies

(Bourassa and Thomas, 2009, Dixit and Ramesh, 2010). Therefore, it is crucial that an

independent study to determine Uτ is adopted for the current pressure gradient study.

The Oil Film Interferometry (OFI) method is a direct method, requiring no calibration

within the experiment. It is based solely on the thinning rate of a thin oil film and the

forces imparted on the film as flow passes over it. The oil film interferometer can be

used to obtain the wall shear stress without detailed knowledge or assumptions about

the flow field (Ng et al., 2007).

OFI was used independently to determine skin friction coefficient Cf . The OFI mea-

surement took place at the position where a hot-wire anemometer measurement was

performed to the accuracy of 1 mm in the streamwise direction. 20 cSt and 200 cSt Dow

Corning 200 Fluid, silicon-based oils were dropped onto a transparent, flat, fine surface

glass flush-fit to the wind tunnel wall. Temperature and pressure were sampled while

pictures of fringes on the droplet were taken using a Nikon D90 camera attached to a

computer. The equipment list used for OFI measurement is shown in Appendix A.1.

The main cause for inaccuracy in OFI measurement is the temperature dependence of the

oil viscosity (Zanoun et al., 2003). Therefore, the oil viscosity needs to be experimentally

calibrated. Dow Corning 200 Fluid, can be obtained in many different viscosities. For

these experiments the 20 and 200 cSt oils were used. The 20 cSt oil was found to be

sufficient for the shear stress magnitudes in the APG experiment, while the 200 cSt oil

was suitable for the FPG experiment. The calibration details for both silicone oils are

shown in Appendix A.2.
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Oil-film interferometry is based on the relationship between the thinning rate of the oil

film and three main forces that may act upon it: gravity, pressure and shear forces.

When the oil film is sufficiently thin, the effect of gravity and pressure forces becomes

negligible and the thinning rate of the oil film is assumed to be linear.

Tanner and Blows (1976) found that the thinning rate of an oil film, could be applied

in a simple relationship, to the measurement of shear stress, by using the thin oil film

equation developed by Squire (1961). Further work was subsequently done by Tanner

(1977a,b) and modifications to the equation were made in Monson (1983), Monson and

Higuchi (1981). A review of the many methods is given by Naughton and Sheplak (2003).

The wall shear relationship with the acting force is given by

τo = µoil∆x
∆t

2
√
n2
oil
− n2airsin2θ
λ

, (2.2)

where θ is the illumination incident angle, noil and nair are refractive indices of oil and

air and λ is the wavelength of the light source (λ = 589.9 nm for the sodium lamp that

was used). ∆x is the fringe displacement found by the Huang Hilbert Transform (HHT)

method discussed by Chauhan et al. (2010) and ∆t is the time between two successive

pictures of fringes.

A detailed sketch of the OFI viewing port from Figure 2.3 is shown in Figure 2.6. The

illustration at the top shows how the infrastructure is fixed to the wind tunnel base floor.

The bottom contains the sectional view. There are three main parts: the glass plug,

main frame and stiffening ring. Only one plug contains the transparent material to allow

viewing from the bottom. The rest of the plugs are completely made from aluminum.

This is because it is quite expensive to produce so many glass plugs, and glass is harder

to maintain as well (glass surface can easily chip and scratch when in contact with sharp

objects).

During installation, the main frames were glued with epoxy resin to the wind tunnel

structure (floor). The top ring of the main frame has to be flush with the wind tunnel

floor, therefore surface flatness equipment, such as small rectangular metal bars were

used for visual inspection. Residues of the epoxy either on the wind tunnel surface or

on the OFI infrastructures were completely removed using cleaning chemicals.

During operation, the glass plug (and all other solid plugs) and the main frame in

Figure 2.6 has to be flush with the wind tunnel floor surface before measurement could
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Glass plug

Wind tunnel structure

Main frame

Stiffening ring

Figure 2.6: Oil-film interferometry infrastructure. Top figure shows the blown-out
structure of the equipment and bottom figure shows the cross-section.

be performed. Adjusting bowel screws fixed into the main support were used to adjust

the levels of the plugs. Finally, stiffening rings at the bottom of the installation were

used to tighten all plugs.

Figure 2.7 shows transparent glass with a high-pressure sodium lamp lit from under-

neath, this lamp produced the yellowish colour. This type of lamp was used because of

the characteristic wavelength of the light source. This picture was taken immediately

after a measurement was performed, so there were still traces of fringes from two drops

of silicone oils. Note that one of the sheared oil films (the upper) almost touched the

edge of the transparent glass and the aluminium ring. This is acceptable even if the

sheared oil film touched the aluminum ring, as the ring is still part of the removable

plug, whereas if the sheared oil traveled beyond the aluminum ring, pictures taken after

that were not considered. If the sheared oil went beyond the aluminum and touched

the aluminum frame (the lower), the data from this particular oil drop would be dis-

carded. The surface tension of the oil film might be altered once the oil film crossed the



Introduction 22

Figure 2.7: Equipment for Oil-Film Interferometry: transparent glass plug on wind
tunnel wall

plug-frame boundary; the oil might fill the tiny gap within the boundary.

Figures 2.8(a) and (b) show samples of OFI fringes developed on the transparent plug.

Figure 2.8 (a) is a typical 20 cSt oil drop sheared in the APG experiment. A 20 cSt

oil drop spreads within less than one minute. The oil drop is also sheared easily and

fringes can develop within three to four minutes. The air velocity in the wind tunnel

has to be increased mildly as bubbles may develop on the fringes. Bubbles act much

like foreign materials as they affect the fringe development and subsequent ∆x/∆t in
equation 2.2. Oil drops were sheared faster in FPG studies; so there was a smaller

window for measurement. Therefore, a higher viscosity oil was needed. A 200 cSt oil

was used for FPG study. Figure 2.8(b) shows typical 200 cSt drops on the transparent

glass. The smaller spread within a given time allows more pictures to be taken at one

run. The time to shear the fringes for the higher viscosity oil is approximately three

times as long for an arbitrary distance ∆xo than with the lower viscosity oil. Therefore,

the time between two successive pictures of fringes, ∆to, for the 200 cSt oil could be

made three times longer for the same resolution i.e. ∆xo/∆to. ∆t is one of the three
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(a) (b)
Figure 2.8: Fringes on transparent plug (a) typical fringes from two drops of 20 cSt(b) fringes from three drops 200cst.

important parameters in an OFI measurement. The others being free stream velocity and

oil viscosity. All parameters are related and need to be balanced (Chauhan et al., 2010).

(Chauhan et al., 2010) explained that short acquisition times would require a relatively

low viscosity oil so that enough linear change in fringe spacing could be observed to

determine the slope, which is not easily achieved in an experiment. By using the HHT,

such problems are eliminated as the HHT is able to extract fringe spacing even from

short signal length or interferograms with few visible fringes.

Figure 2.9(a) shows a close-up, processed, black and white version of the bottom sheared

oil in Figure 2.8(a). This is a good quality picture of fringes. Figure 2.9(b) shows the

same from the second sheared oil (located in the middle) in Figure 2.8(b). There are four
dots on the fringes. These dots are not foreign materials, but air bubbles that developed

when the air velocity was being ramped up aggresively. A small amount of bubbles like

this do not usually affect the calculated ∆x/∆t. This can be verified by comparing the

other calculated ∆x/∆t from the top and bottom sheared oil in Figure 2.8(b). However,
larger bubbles or more bubbles may affect such calculations and these pictures were

discarded. Once an OFI experiment was set up, it could be repeated easily, therefore it

was usually better to discard pictures containing bubbles like in Figure 2.8(b).
More about the OFI method used, background and calibration can be found in Madad

et al. (2010), Ng et al. (2007) and Chauhan et al. (2010).
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(a) (b)
Figure 2.9: Fringes on transparent plug (a) typical fringes from one drop 20 cSt (b)

fringes from three drops 200 cSt.

2.4 The green boundary layer wind tunnel

Figure 2.10 shows a photograph of the green boundary layer wind tunnel. It has been

painted green, therefore it is named the ‘green tunnel’. Data collected from this tunnel

have been used to test the validity of the Townsend (1976) attached-eddy hypothesis

model in non-equilibrium adverse pressure gradient flows (Marusic and Perry, 1995).

Later, FPG data obtained from this tunnel was used to evaluate an extended model, so

that this model covers flows at arbitrary pressure gradients (Perry et al., 2002). The

evolution of turbulent boundary layers in sink flows was also studied using data from

this wind tunnel (Jones et al., 2001).

The setting up of this wind tunnel was done in early 2009. The works included replacing

the wind tunnel ceiling with about 4 m long new pieces of 10 mm acrylic for the test

section and a 1.5 m long 12 mm thick wooden ceiling for the inlet section. The reason for

the change; the older ceiling, also made from acrylic, had a wavy profile. The waviness

was picked up by the flow resulting in a wavy coefficient of friction. By mid 2009, the

required pressure gradient profile was set up. By the end of 2009, most of the single

hotwire measurement measurements in APG had been performed. The work for the OFI

was started just before 2010 and was completed in three months.

For the spanwise measurements to take place, air-tight (spanwise) slots were required.

The traverse too, had to be installed with a second axis. It had a positional encoder
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Figure 2.10: Picture of the green tunnel.

installed for the first axis (vertical direction). Not to increase wind tunnel down-time,

the construction of the traverse took place simultaneously with the installation of OFI

infrastructure. The extra body of the traverse, including the stiffening metal ribs made

the new traverse to weigh a little bit less than 50 kg.

In late 2010, most of APG measurement were completed. Since the traverse and OFI

method have been set up, only the coefficient of pressure needed to be set up to achieve

the required degree of FPG. The FPG experiments were carried out by the end of 2010.

2.5 Experimental parameters

Table 2.1 displays all parameters for the entire experiment. Uin is the inlet velocity, taken

at the position of the trip wire (x = 0 m in Figure 2.4). Reτ = δUτ /ν is the Reynolds

number based on the boundary layer thickness, where the boundary layer thickness is

calculated by the method in Perry et al. (2002). Reθ = θU1/ν is the Reynolds number

based on the momentum thickness. δ∗ is the displacement thickness, defined in (3.12)

and θ is the momentum thickness defined in (3.17). Π is the Cole’s wake factor (Coles,

1956). However, since the friction velocity is obtained from the OFI method, there is a

difference in the calculated values of Π. The difference is illustrated in Figure 3.7. The

pressure gradient parameter, β is defined as
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β = δ∗
τo

dP1

dx
, (2.3)

and acceleration parameter, K is defined as

K = ν

U1
2

dU1

dx
. (2.4)
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Symbol Uin U1 x Reτ Reθ δ δ∗ θ Π β K ν/Uτ d l+ t+ TU1/δ
m/s m/s m m m m ×10−7 µm µm

Constant Reτ ≈ 3000 in Adverse, Zero and Favourable PG⊡ 22.3 20.00 4.00 3200 12030 0.077 0.0134 0.0093 1.38 1.74 -1.05 24.6 2.5 30 0.52 25000△ 21.6 21.57 2.90 3010 5900 0.059 0.0088 0.0059 0.64 ZPG ZPG 19.6 2.5 30 0.70 30000⊕ 16.5 18.12 4.00 3100 6450 0.066 0.0069 0.0054 0.31 -0.42 7.7 21.3 2.5 30 0.67 21800

APG measurements
Constant Reτ ≈ 1900 in APG▷ 14.4 14.24 2.90 1820 5020 0.052 0.0075 0.0055 0.60 ZPG ZPG 28.7 2.5 17 0.38 21800◇ 13.4 12.70 3.50 1880 6090 0.061 0.0100 0.0072 0.82 0.91 -1.40 32.5 2.5 15 0.28 31000

o 12.3 11.10 4.00 1990 6860 0.079 0.0142 0.0097 1.20 1.67 -1.91 41.2 2.5 16 0.19 21900◻ 12.0 10.10 4.46 1980 8310 0.093 0.0196 0.0128 1.65 2.81 -2.37 47.0 2.5 17 0.14 18400∗ 12.2 9.78 4.78 1970 9440 0.104 0.0242 0.0151 1.95 4.54 -2.73 52.7 2.5 16 0.11 22500

Constant β ≈ 1.6 in APGd 10.9 9.84 4.00 1750 6390 0.078 0.0148 0.0099 1.33 1.63 -2.09 44.7 2.5 15 0.14 19000⊗ 13.0 11.72 4.00 2010 7320 0.076 0.0138 0.0094 1.33 1.60 -1.74 37.9 2.5 16 0.20 23000⊛ 16.3 14.71 4.00 2400 8960 0.073 0.0133 0.0092 1.37 1.60 -1.38 31.0 2.5 17 0.31 24000

Constant β ≈ 4.3 in APG⊞ 10.0 8.00 4.78 1730 7620 0.108 0.0242 0.0150 2.00 4.16 -3.37 61.1 2.5 16 0.08 18000⊠ 15.9 12.93 4.78 2500 11640 0.102 0.0226 0.0143 2.05 4.27 -2.10 40.8 2.5 17 0.19 16000
� 21.4 17.13 4.78 3510 16260 0.106 0.0225 0.0146 2.02 4.37 -1.53 30.2 2.5 16 0.34 19600
� 23.9 19.10 4.78 3890 18500 0.104 0.0224 0.0146 2.10 4.39 -1.35 26.8 2.5 17 0.42 24200

continued on next page
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Symbol Uin U1 x Reτ Reθ δ δ∗ θ Π β K ν/Uτ d l+ t+ TU1/δ
m/s m/s m m m m ×10−7 µm µm

K ≈ 1.4 × 10−7 in APG+ 13.0 12.19 3.50 1950 6050 0.066 0.0103 0.0073 0.85 0.94 -1.44 33.7 2.5 15 0.26 29000× 16.0 14.38 4.00 2470 8860 0.077 0.0135 0.0093 1.21 1.52 -1.42 30.3 2.5 17 0.28 23900◁ 19.5 16.41 4.46 3270 14070 0.095 0.0194 0.0128 1.70 3.06 -1.40 29.1 2.5 17 0.30 26600⋆ 22.5 18.00 4.78 3560 17070 0.107 0.0227 0.0147 1.90 4.73 -1.47 30.0 2.5 17 0.31 26500

Uin ≈ 15.9 m/s in APG| 15.9 15.68 2.90 2330 6560 0.061 0.0087 0.0064 0.71 ZPG ZPG 26.2 2.5 18 0.44 20500} 15.9 15.13 3.50 2670 8540 0.076 0.0120 0.0085 0.99 1.16 -1.18 28.4 2.5 17 0.37 20500⟐ 15.9 14.42 4.00 2380 8590 0.076 0.0136 0.0094 1.32 1.58 -1.47 32.0 2.5 15 0.31 22600� 15.9 13.42 4.46 2500 10550 0.090 0.0184 0.0122 1.78 2.76 -1.78 36.0 2.5 14 0.24 23500⊠ Same as in constant β ≈ 4.3
Varying l+ in APG⊙ 21.3 19.15 4.00 3100 11480 0.078 0.0136 0.0092 1.37 1.72 -1.11 25.2 5.0 41 0.52 24600⊡ 21.8 19.67 4.00 3180 11770 0.076 0.0133 0.0092 1.35 1.66 -1.06 23.9 5.0 31 0.48 25000◾ 21.7 19.54 4.00 3130 11490 0.075 0.0132 0.0092 1.37 1.60 -1.08 24.0 2.5 21 0.55 26000

Milder dCp/dx = 0.114⧈ 9.25 8.69 4.78 1820 6053 0.093 0.0150 0.0105 0.95 0.81 -1.21 47.8 2.5 16 0.13 6100

continued on next page
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Symbol Uin U1 x Reτ Reθ δ δ∗ θ Π β K ν/Uτ d l+ t+ TU1/δ
m/s m/s m m m m ×10−7 µm µm

FPG measurements
Uin ≈ 10.5 m/s in FPG
C 10.5 10.46 2.90 1600 4300 0.062 0.0089 0.0064 0.63 ZPG ZPG 38.8 2.5 14 0.21 14000▽ 10.5 11.67 3.50 1750 4380 0.059 0.0079 0.0058 0.48 -0.52 1.34 33.4 2.5 15 0.28 24300y 10.5 11.98 4.0 2100 4430 0.065 0.0074 0.0056 0.30 -0.43 1.17 31.7 2.5 14 0.30 15000⦶ 10.5 12.53 4.46 2300 4870 0.070 0.0079 0.0060 0.30 -0.42 1.04 30.6 2.5 16 0.33 16000q 10.5 13.07 4.78 2290 4500 0.066 0.0069 0.0053 0.20 -0.33 0.95 28.7 2.5 17 0.37 15700

Varying l+ in FPG⊚ 17.0 18.67 4.00 2870 6690 0.063 0.0076 0.0057 0.38 -0.47 0.78 22.1 5.0 48 0.65 23600⊕ Same as in AZF PG 31● 16.4 18.03 4.00 3100 6130 0.066 0.0067 0.0051 0.31 -0.40 0.77 21.4 1.5 21 0.67 21800−. 20.9 20.92 2.90 3000 8920 0.065 0.0088 0.0065 0.75 ZPG ZPG 20.6 2.5 31 0.72 27000

Table 2.1: Experimental parameters for pressure gradient study using hotwire anemometers. All data from the University of Melbourne.
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Three types of hotwire anemometer were used, namely the AA Lab Systems AN-1003,

DISA and the Melbourne University Constant Temperature Anemometer (MUCTA).

The hotwire probes were all operated with a constant temperature mode with an over-

heat ratio of 1.7 - 1.8. The indicated frequency response to the systems to 0.3 kHz -

2.0 kHz square-waves varied from 70 kHz to 130 kHz. Most of the measurements used

2.5 µm diameter wollaston wires. However, to compare with existing data such as that

used in Monty et al. (2009), 5 µm wires were used. Most of the time, the AA Lab was

used, however for the 1.5 µm wires, the DISA and MUCTA systems had to be used as

it was not possible to balance the AA Lab anemometer.

Hot-wire signals were sampled using a Data Translation data-acquisition board. The

sampling frequency, fs, was set at 50 kHz and a low-pass filter was set at 25 kHz unless

otherwise stated. The platinum sensing element was fabricated on boundary layer-type

probe-body geometry, Dantec 55P05 or 55P15 with prong spacings of 3 mm and 1.25

mm. Wollaston wires were soldered to the prong tips and etched to give a platinum

sensing element of physical length l. The viscous scale non-dimensional length of the

platinum sensing element is given by l+ = lUτ /ν. The ratio of the sensing element to its

diameter was l/d > 200 (Bruun, 1995, Ligrani and Bradshaw, 1987).

The hot wires were statically calibrated in situ against a Pitot-static tube pair before

and after each boundary-layer traverse. Third-order polynomial curves were fitted to

the calibration data. Atmospheric conditions were monitored continuously throughout

the experiments, using a calibrated thermocouple and an electronic barometer (144S-

BARO, Sensortechnics). Uncertainties due to temperature drift were accounted for by

using a linear interpolation for temperature correction using the pre and post-experiment

calibrations. However, such temperature correction procedure was applied to less than

10% of the data, because temperature drifts were not usually significant (≈ 0.8oC at

worst).

The non-dimensional sample interval is given by ∆t+ = ∆tU2
τ /ν where ∆t = 1/fs. The

total length in seconds of the velocity sample at each wall-normal measuring position is

given by T , non-dimensionalised to give boundary-layer turnover times TU1/δ. In order

to obtain converged statistics, TU1/δ has to be large. According to Guala et al. (2006),

Hutchins and Marusic (2007a), Kim and Adrian (1999) and Monty et al. (2009), the

large-scale features in wall-bounded turbulent flows can exceed 20δ, therefore a minimum

of hundreds of these events are expected to past the probe for converged statistics. The

current experiment where the boundary layer thickness is in the region of 50 mm < δ <
100 mm and with the streamwise velocities 10 m/s < U1 < 25 m/s, normally required
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Source Uncertainty
Pressure transducer ±0.15%
Temperature ±0.1%
Atmospheric pressure ±0.1%
Friction velocity, Uτ ±1%
Pitot probe uncertainty during calibration ±0.5%
Wire size, l ±0.04 mm
Initial wall normal position ±0.025 mm
Inner scaled mean velocity, U+ ± ≈ 2%
Inner scaled mean velocity, u2

+ ± ≈ 4%

Table 2.2: Uncertainty estimates.

sampling time of 100 < T < 300 in seconds (the sampling time is used for the boundary

layer turnover TU1/δ). Hence, for a typical 50-point wall-normal measurement, three

hours were needed for a complete measurement.

To maintain similar convergence for the two points spanwise measurements, a much

longer time was required. For the spanwise measurement, in addition to the two to

three-hour boundary layer measurement, the spanwise measurements were added at four

pre-selected wall-normal locations. At each wall-normal location, 40 spanwise measure-

ment were recorded. The entire course of measurement sometimes exceeded 10 hours.

Temperature drifts for this experiment were not significant. If there was a change of

temperature of ∆T > 0.5oC in the course of the experiment, a temperature compensation

correction would be applied. The temperature compensation correction was based on

the pre and post calibration temperatures. Given the pre and post calibration curves

and their respective temperatures, new sets of calibration curves were obtained from

linear interpolations based on the temperature of each wall-normal position.

2.5.1 Uncertainty estimates

During experiments, there are a list of experimental uncertainties which can cause errors

in many of the parameters shown in Table 2.1. These errors are described in Table 2.2.
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The method used in the uncertainty analysis is similar to the one in Kline and Mc-

Clintock (1953). The hotwire uncertainties are consistent with findings from the well-

calibrated hotwire study by Bruun (1995). The estimated errors are also consistent with

recent experiments by Hultmark et al. (2010) and Ng et al. (2011).



Chapter 3

Mean statistics

This chapter discusses the background theory before presenting the mean statistics. This

chapter mainly discusses the coefficient of friction, the mean velocities, turbulence inten-

sities, shape factor, skewness, flatness and turbulence production. The mean velocities

and turbulence intensities are scaled with friction velocity or free stream velocity to test

the relevance of these scalings. The deviations from the log law as observed by Bourassa

and Thomas (2009), Nagano et al. (1998), Sk̊are and Krogstad (1994) and Dixit and

Ramesh (2010) will be shown. The development of the wake region too will be ex-

plained using the diagnostic function. The amplified wake of the mean velocity profile,

the easily recognised feature of an APG flow has been documented by Nagano et al.

(1998), Samuel and Joubert (1974) and Aubertine and Eaton (2005). The relationship

between pressure gradient parameter and the wake has been proposed by Perry et al.

(2002). While these studies have undoubtedly contributed to better understanding in

pressure gradient flows, the two important parameters in pressure gradient flows, the

pressure gradient parameter, β and the Reynolds numbers, Reτ , varied. Here, in one

set of the data, the effect of the pressure gradient on the mean velocities and turbulence

intensities profiles is analysed when the Reynolds number is constant. The effect of

increasing the Reynolds number when there is a pressure gradient (also constant), will

also be shown in another set of data. This achieves one of the major aims of the thesis,

to isolate the effect of these two important parameters in pressure gradient flows.

The section on the shape factor (3.12) is a continuation of the work by Monkewitz

et al. (2008) on the mean flow similarity laws in ZPG TBL. The skewness and flatness,

Section 3.13, attempts to highlight the effect of pressure gradients when the large-scales

are removed from the flow using a filtering method, similar to the analysis performed by

33
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Metzger and Klewicki (2001) addressing the effect of very high Reynolds number flow.

It is known that the large-scale features are energised in APG (Bradshaw, 1967a, Lee

and Sung, 2009, Monty et al., 2011, Sk̊are and Krogstad, 1994), so it is suspected that

the large-scale features are responsible for the increased skewness in APG flows (Nagano

and Houra, 2002, Sk̊are and Krogstad, 1994), an analysis that has not been documented

in detail. Understanding the roles of the large-scales is another main aim of the thesis.

The analysis for the turbulence production (Section 3.15) considers data from three

pressure gradient cases at a constant Reynolds number. This analysis arises from re-

cent literature by Marusic et al. (2010a) who attributed that as the Reynolds number

increases, the large- scales become important in terms of sustaining and producing tur-

bulence. This analysis is repeated in pressure gradient flows, where the detail of such

analysis seems to be not so well documented. This chapter contains some new informa-

tion regarding the effect of pressure gradients, attempting to answer the aims outlined

at the start of the thesis i.e. to identify the effect of the two important parameters β

and the Reynolds number, to analyse the effect of the large-scale features on turbulent

statistics and to compare mean statistics of pressure gradient boundary layer flows.

3.1 Coefficient of friction

The scaling used for most analyses are based on internal variables, friction velocity Uτ

and kinematic viscosity ν. Therefore it is important to employ a proper analysis to

calculate Uτ . The friction velocity is obtained from the coefficient of friction, where the

latter is defined as

Cf = τo
1
2
ρU2

1

= 2U2
τ

U2
1

, (3.1)

which is measured using the oil-film interferometry method described in Section 2.3. It

is important to note that there is a difference between Uτ measured with OFI and that

determined by the Clauser method using the mean velocity profile. Figure 3.1 displays

the coefficient of friction plotted as a function of the pressure gradient parameter, β

(the Reynolds number is maintained constant). Note that the skin friction determined

from the Clauser chart method agrees with that obtained from oil-film interferometry

only for zero and mild adverse pressure gradient boundary layer flows. Beyond β ≈
2, the difference between the methods becomes significant (up to approximately 10%

difference in Cf ). This suggests that the Clauser chart is invalid for moderate to strong
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Figure 3.1: Coefficient of friction for constant Reτ ≈ 1900. The solid line connects
Cf obtained directly by OFI. The error bars of 2.5% for the OFI method are shown.
Symbols: (▷) Station 1, (◇) Station 2, (o) Station 3, (◻) Station 4, (∗) Station 5, for
other details, refer to Table 2.1. Symbols not connected with the solid line represent

Cf obtained from Clauser chart.

adverse pressure gradients. The use of Cf obtained from the Clauser chart could lead to

inaccurate conclusions about the applicability of scaling arguments for pressure gradient

boundary layers. Throughout this thesis, Uτ is determined by oil-film interferometry

except in the cases of the zero pressure gradient data of Hutchins et al. (2009) where

the Clauser method was used.

Figure 3.2 shows the coefficient of friction plotted as a function of the Reynolds number

when the pressure gradient parameter, β is maintained constant. The figure shows that

there is almost a constant shift between Cf measured by OFI compared to Cf obtained

from the Clauser chart method, with a percentage difference of approximately 10 – 15%.

In ZPG boundary layer flows, Coles (1962), Fernholz and Finley (1996) and DeGraaff

and Eaton (2000) have shown skin friction as a decreasing exponential function of the

Reynolds number based on momentum thickness, Reθ. Nagib et al. (2007) compiled ZPG

TBL data and showed a collapse of Cf which decreased as a function of the Reynolds

numbers based on numerous skin friction - Reynolds number relationships. In channel

flow too, Ng et al. (2007) have also shown skin friction that decays exponentially with

the Reynolds number (based on channel height). The existing studies cited have the
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Figure 3.2: Coefficient of friction for constant β ≈ 4.3. The solid line connects Cf

obtained directly by OFI. The error bars of 2.5% for the OFI method are shown.
Symbols not connected with the solid line represent Cf obtained from Clauser chart.

Refer to table 2.1 for symbols.

Reynolds numbers in the order of 104. There is also a trend here that Cf in a constant

pressure gradient β decreases with the Reynolds number. An experiment in APG with

skin friction determined from a much higher Reynolds number should be carried out to

confirm this trend.

In the current FPG experiments, there is only a small difference between Cf obtained

from OFI and that determined from the Clauser chart method. The significant difference

found in strong FPG by Bourassa and Thomas (2009), Fernholz and Warnack (1998) and

Dixit and Ramesh (2010) is not observed due to the relatively mild pressure gradients

employed here.

3.2 The law of the wall

In this section, a background theory of turbulent boundary layer flows is presented. The

background theory starts with the development of the law of the wall and the law of the

wake (Coles, 1956). For general two-dimensional turbulent wall-shear flow, the velocities

in the streamwise and wall-normal directions are given by u(x, z) and v(x, z). The flow
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exerts a wall shear stress, τo on a smooth impermeable wall at rest at z = 0. Assuming

a fluid with constant density, the friction velocity is given by

Uτ = √τo/ρ (3.2)

Ludwig Prandtl of Göttingen, Germany published a paper in 1904 suggesting that flow

over a solid boundary may be separated into two regions. The first region is concerned

with the flow outside of the boundary layer which may be considered inviscid. In the

second region, closer to the wall, Prandtl assumed that only wall variables give rise to

the flow and significantly influenced by viscosity. The flow in this region is a function of

wall-normal distance, z, friction velocity, Uτ and kinematic viscosity, ν. By dimensional

analysis the relationship is shown as

U

Uτ

= f1 (zUτ

ν
) . (3.3)

Here, f1 is a universal function that is independent of the large-scale characteristics of

the flow. This is called ‘Prandtl’s law of the wall’. Similarly, in the region beyond the

viscous buffer layer, the mean streamwise velocity is observed to follow, what is called

the ‘velocity defect law’

U1 −U
Uτ

= f2 ( z
∆
) . (3.4)

Here ∆ is the boundary layer thickness and f2 is a function dependent on z/∆ for a given

turbulent shear flow. Following for example Millikan (1938), assuming there is a region

in the turbulent shear flow where both (3.3) and (3.4) are valid, equating gradients of

velocity i.e the derivatives of (3.3) and (3.4) produces

∂

∂z
( U
Uτ

) = Uτ

ν
f ′1 (zUτ

ν
) = − 1

∆
f ′2 ( z∆) , (3.5)

Integration then yields

U

Uτ

= 1

κ
ln(zUτ

ν
) +A, (3.6)
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called the classic logarithmic law of the wall, and

U1 −U
Uτ

= −1
κ
ln(z

δ
) +B. (3.7)

called the logarithmic velocity defect law. Here, κ is the von Kármán constant, A is a

universal constant and B is a large-scale characteristic constant that depends on flow

geometry and pressure gradients. The classic logarithmic law of the wall, in this thesis

called the ‘log law’ for simplicity, has been widely accepted until now. The ‘constants’

κ and A have been reviewed many times. For example, Coles (1962) suggested κ = 0.41
and A = 5. With an abundance of experimental and numerical data to support it, the

explicit form of the log law remains as it is. Detailed discussion about the dependence

of these constants on flow geometry is discussed in Section 3.12.

Returning to (3.6) and (3.7), the region of overlap increases directly with the Reynolds

number (δUτ /ν), however in adverse pressure gradient (APG), the logarithmic region is

shorter, the immediate result of an increasing wake region.

3.3 Alternatives to log law

Although the log law has been accepted almost universally, the velocity scale in the loga-

rithmic velocity defect law has been questioned, especially at low to moderate Reynolds

number. Changing outer flow scale invalidates the derivations above, (3.5 to 3.7). An

alternative form to characterise the behaviour of the mean velocity is called the power

law:

U

Uτ

= α1 (zUτ

ν
)α2

. (3.8)

The power law has been used for example in Barenblatt (1993) and George and Castillo

(1997). There are also other forms of the power law. A lot of previous studies have

focused on boundary layer flows in equilibrium, i.e. these profiles are assumed to be

independent of streamwise distance. For boundary layers held at incipient separation,

Stratford (1959) reported that the mean velocity near the wall did not contain a loga-

rithmic region but could be related with the half-power law equations as follows:
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U =D1(α3z)1/2 +D2(α3ν)1/3 (3.9)

where α3 = (1/ρ)dP1/dx is the local kinematic pressure gradient and D1 and D2 are

absolute constants. Perry et al. (1966) proposed the ‘half-power law’ for APG flows.

It was postulated that a sufficiently developed APG flow could be divided into three

regions. Region 1 is close to the wall, and Prandtl’s law of the wall (3.3) is applicable.

Region 2 is in the logarithmic region, therefore the log law (3.6) is applicable. Provided

that the flow has sufficiently developed, for a large wall distance, region 3 is described

by

U

Uτ

= J (α3z

Uτ

)1/2 + ∆U2

Uτ

( U3
τ

α3ν
) , (3.10)

called the half power law. Here J is a universal constant, α3 is the as defined in (3.8),

∆U2 is a function of integration which is independent of z, ∆U2/Uτ is referred to as the

‘slip function’. The slip function represents the non-dimensional velocity of slip at the

wall if this equation is extrapolated to the wall. Perry et al. (1966) presented APG data

in support of this formulation.

With a wide range of APG data, Perry and Schofield (1973) and Schofield (1981) suc-

cessfully established the Schofield-Perry mean velocity and velocity defect equations. As

an adverse pressure gradient increases indefinitely, the local coefficient of friction (and

friction velocity, Uτ too) approaches zero while Π and β approach infinity. The log

region thins and vanishes and near-wall variables become inappropriate (White, 1991).

Therefore it is natural to replace Uτ with a velocity scale that could describe the flow

better. Schofield-Perry proposed a profile correlation U(z) which near separation, varied

approximately with z1/2. This relationship had been earlier predicted analytically by

Mellor and Gibson (1966). Schofield-Perry showed that an APG flow could be divided

into two main regions, the outer flow and the inner flow. The outer flow is described by

the velocity defect law

U1 −U
Us

= 1 − 0.4( z
δs
)1/2 − 0.6 sin (π

2

z

δs
) , (3.11)



Mean statistics 40

where δs = 2.86δ∗U1/Us is the integral layer thickness, later called the Schofield-Perry

boundary layer thickness and Us is the Schofield and Perry velocity scale. The displace-

ment thickness, δ∗ is defined as

δ∗ = ∫ δ

0
(1 − U

U1

)dz. (3.12)

Schofield-Perry’s inner flow is described by inner law in the form

U

U1

= 0.47(Us

U1

)3/2 ( z
δ∗
)1/2 + 1 − Us

U1

, (3.13)

where δs = 2.86δ∗(U1/Us). The ratio Us/U1 is determined from a mean velocity profile

by using a ‘half power chart’ similar to the Clauser chart i.e. Uτ /U1 is analogous to

Us/U1. An example is shown in Figure 3.3(a). Note the half power abscissae, (z/δ∗)1/2.
To demonstrate the effect of varying Us, by using an initial pre-selected trial value of

Us = 7.2, the result of evaluated (3.13) is shown by the dash-dotted line. The trial value

of Us is increased by a fixed value of 0.5 and these are shown by evaluated (3.13) denoted

by the dotted lines. In the region of 0.1 < (z/δ∗)1/2 < 1.0, using the ‘accepted’ Us, the

data are supposed to collapse with (3.13), shown by the solid line. This is the region

selected in most of the analysis in Perry and Schofield (1973), Schofield (1981), Schofield

and Perry (1973).

As shown in Figure 3.3(a), the data does not collapse well with the approximating

method chosen here, where Us = 8.7 is indicated by the solid line. A similar trend could

be found in Schofield and Perry (1973) when the data from Ludwieg & Tillman (Fig. 15

and Fig. 16) were used, when τm/τo < 1.5, where the maximum shear stress is obtained

from the local shear stress profile τm = ρuv∣max and τo is calculated from (3.2). For

these formulations to work, there needs to be sufficient maximum shear stress to the

wall-shear stress ratio i.e. τm/τo > 1.5. This ratio is met in the current APG data,

where τm/τo ≈ 3.01. There is no obvious reason to explain why the current data does

not collapse well with the Schofield-Perry formulations (as shown in Schofield and Perry

(1973) with a similar τm/τo ratio), however the data collapses well when a multiplier of

0.52 is used to replace 0.47 in (3.13). Us for the other data were also obtained from this

method resulting in different Us for each data.

1The uv term is approximated by formulation described in Perry et al. (2002)
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Figure 3.3: Half-power formulations by Perry and Schofield (1973). (a) Inner law,
solid line denotes (3.13) with accepted Us = 8.7. The vertical dashed lines are (z/δ∗)1/2 =
0.1 and (z/δ∗)1/2 = 1.0. The other lines are results from varying Us, explained in the
text. The data is taken from constant Uin ≈ 15.9 m/s with β ≈ 4.4, x = 4.78m. (b)
Defect law from (3.11). Symbols: | x = 2.90m (ZPG), } x = 3.50m, ⟐ x = 4.00m, �

x = 4.46m and ⊠ x = 4.78m, refer to Table 2.1 for more details.

A velocity defect governed by (3.11) for all of the data at constant Uin ≈ 15.9m/s is shown

in Figure 3.3(b). Note that, in this set of data, the pressure gradient parameter increases

from β = 0 (ZPG) at station one, (x = 2.90m) to β ≈ 4.4 at station five, (x = 4.46m). A

collapse can be seen by using this formulations across the pressure gradient parameter,

β.

Schofield claimed that the formulations represented in (3.11) and (3.13) applied to all

adverse pressure gradient boundary layers including those at the verge of separation,

regardless of whether the boundary layers were in the state of equilibrium or not. How-

ever, Dengel and Fernholz (1990)’s data did not confirm these formulations except for

one point. Furthermore, Dengel and Fernholz (1990) said that these formulations were

‘not particularly good approximation for the other profiles’, referring to a great percent-

age of their data. This might be why the current data (Figure 3.3(a)) does not collapse
with the Schofield-Perry formulations. However, as has been noted earlier, small modi-

fications could be introduced to make the formulations work.
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3.4 Coles’ law of the wall and law of the wake

Based on a large number of mean flow profiles, Coles (1956) proposed that the mean

velocity could in general be described by the ‘law of the wall’ (3.6) and the ‘law of the

wake’ as follows

U

Uτ

= 1

κ
ln(zUτ

ν
) +A + Π

κ
Wc ( z

δc
) , (3.14)

whereWc(z/δc) is Coles’ universal wake function, Π is the wake strength which depends

on the streamwise flow development, and δc is the boundary layer thickness determined

by such formulation i.e. the boundary layer based on Coles wake formulation. For w(0) =
0, w(1) = 2, (w(z/δc) is the wake function) and ∫ 2

0 (z/δc)dw = 1. Equation 3.14 can be

related to the wake parameter Π by the local skin friction coefficient Cf = 2(Uτ /U1)2.
The equation could be related to the displacement thickness δ∗ by (Coles, 1956)

κ
δ∗U1

δcUτ

= 1 +Π, (3.15)

and to the momentum thickness θ by

κ2

2

δ∗ − θ
δc

U2
1

U2
τ

= 1 + c1Π + c2Π2, (3.16)

where c1 and c2 are constants of order unity. The momentum thickness θ, the thickness

of a layer of fluid, of velocity U , for which the momentum flux is equal to the deficit of

momentum flux through the boundary layer is determined by

θ = ∫ δ

0

U

U1

(1 − U

U1

)dz. (3.17)

Coles (1956) further demonstrated that (3.14) and (3.15) together with the identity

(δ∗
δc
)(U1

Uτ

) = (δ∗U1

ν
)/(δcUτ

ν
) , (3.18)
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are sufficient to determine all five of the dimensionless parameters U1/Uτ , δ
∗/δc, δcUτ /ν,

δ∗U1/ν and Π when any two parameters are known. For example, if the two known

quantities are U1/Uτ and δ∗U1/ν as in many boundary layer flow cases, substituting

these known quantities into (3.15) leads to δc = κδ∗U1/(1 +Π)/Uτ . Further substituting

this expression (δc) to (3.14), leads to a simple equation for Π;

2Π − ln(1 +Π) = κU1

Uτ

− κA − ln(δ∗U1

ν
) − lnκ. (3.19)

Coles (1956) suggested that the functional form of the wake function in (3.14) takes the

form

w ( z
δc
) = 1 − cos(π z

δc
) . (3.20)

Expressions (3.14) and (3.20) have been quite successful in describing mean velocity

profiles. However, the slope of the profile at z = δc is non-zero. A further modification

by Perry and Li (1990) leads to

U

Uτ

= 1

κ
ln(zUτ

ν
) +A + Π

κ
Wc (1 − cos(Bπ z

δp
)) , (3.21)

where B is equal to the ratio δp/δc and is a function of only Π. The new boundary layer

thickness now, δp is calculated by the integral method

δp = δ∗
C1

U1

Uτ

= Π + 3/4
κ

, (3.22)

where

C1 = ∫ ∞

0

U1 −U
Uτ

dη, (3.23)

where η = z/δp. The velocity defect is in the form

U1 −U
Uτ

= −1
κ
ln η + Π

κ
{cos(Bπη) − cos(Bπ)}. (3.24)
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3.5 Modification to Coles’ Laws

Townsend (1976) postulated the existence of ‘attached eddies’ in boundary layer flows

that represent the large-scale organised flow. This was further supported by Head and

Bandyopadhyay (1981)’s smoke flow visualisation experiment, where a ZPG boundary

layer was observed to possess a large population of identifiable hairpin type, resembling

attached eddies. Perry and Chong (1982) have shown that many aspects of the near-

wall turbulent statistics, such as mean velocities, turbulent intensities and even spectra,

may be predicted by calculations, by assuming a population of hairpin or horseshoe

or Λ vortices with 45o inclination against the wall. Perry et al. (1994) proposed a

closure scheme for boundary layers in arbitrary pressure gradients for cases where the

streamwise derivatives of the Coles’ wake factor was not very large. Later, Perry and

Marusic (1995) proposed a wall-wake model for boundary layers in equilibrium using the

conventional mean velocity formulations by Coles, as well as momentum equations and

convolution integrals; the momentum equations and convolution integral are based on

attached eddies hypothesis. Further supported by non-equilibrium layers experimental

data, Marusic and Perry (1995) found that the wall-wake model was in agreement with

their APG data. The formulations were extended to cover relaxing, developing states

and flow approaching equilibrium sink flow in Perry et al. (2002).

The usual boundary layer mean momentum equation is given by (Pope, 2000, Rotta,

1962)

U
∂U

∂x
+W ∂U

∂z
= −1

ρ

dP1

dx
+ 1

ρ

∂τ

∂x
(3.25)

where τ is the local shear stress, and

τ

ρ
= −uw + ν ∂U

∂z
. (3.26)

Here, ν∂U/∂z is the viscous contribution and −uw is the Reynolds shear stress and W

is the local mean normal to the wall velocity. The mean continuity equation is given by

∂U

∂x
+ ∂W
∂z
= 0. (3.27)
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and if U1 is the free stream velocity, then

−1
ρ

dP1

dx
= U1

∂U1

∂x
. (3.28)

As was shown by Perry et al. (2002), the log law, (3.14) was used for the purpose of

computing the total shear stress and overall momentum balance, and was assumed to be

valid until the near-wall region2. For a range of Reynolds numbers, this approximation

was in good agreement with developing and sink flow layers as well (Jones et al., 2001).

When Coles’ wake formulation is a function of the distance z/δc = η and wake parameter

Π, Coles’ velocity defect law can be expressed as

U1 −U
Uτ

= − ln(η) + Π

κ
Wc(1,Π) − Π

κ
Wc(1,Π)

= f(η,Π). (3.29)

Therefore,

U = U1 −Uτf(η,Π) (3.30)

Upon substituting (3.30) in (3.27), an expression for the normal velocity W is obtained

in terms of the other mean flow and their streamwise derivatives. The terms for U and

W along their derivatives can be substituted into (3.25). This term is integrated using

(3.28) as the boundary conditions, Perry et al. (2002) have shown that there are four

non-dimensional parameters which describe the state of the boundary layers

Π, S = U1

Uτ

, β = δ∗
τo

dP1

dx
, ζ = SδcdΠ

dx
(3.31)

Here, S is a skin friction parameter, β is the Clauser (1954) pressure gradient parameter

and ζ is non-equilibrium parameter. Perry et al. (2002) further used formulation by

Jones et al. (2001) to derive functions that predict the wall shear stress, which is shown

below:

2in Perry et al. (2002) Wc(z/δc,Π) is used instead of Wc(z/δc) in (3.14)
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U

Uτ

=
log law of the wall³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
1

κ
(zUτ

ν
) +A + − 1

3κ
η3

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Pure wall flow

+
Pure wake component³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
Π

κ
2η2(3 − 2η) . (3.32)

The above is also called the modified Coles’ law.

To understand the development of these important parameters, let’s consider current

APG data with CP shown in Figure 2.5. The constant Uin ≈ 15.9 m/s case is chosen

so that the value of ζ, which contains the dΠ/dx term, could be calculated. The other

flow cases where Uin was not constant, could not be used to calculate ζ (except for the

constant Uin ≈ 10.5 for the FPG case). Figure 3.4(a) shows the mean velocity profiles

for the constant Uin = 15.9 m/s. The symbol | represents the ZPG data. This data

was acquired at ‘Station 1’ (refer to the wind tunnel illustration in Figure 2.4 and CP

in Figure 2.5), located 2900 mm (60δ) from the trip wire. This station is also the last

section before any pressure gradient is introduced. The solid line indicates the log law

of the wall, (3.6), with κ = 0.41, A = 5.0. To facilitate better viewing (because of

overcrowding of data), the mean velocity data points in Figure 3.4(a) in the near-wall

and logarithmic regions have been down-sampled (every 2 points are taken out from 3

data points). In the log region, taken as 50 ≲ z+ ≲ 0.15Reτ , U+ of the ZPG data collapses

with the log law of the wall. In the outer region, the ZPG data has a wake parameter

value of Π = 0.6, as would normally be expected from ZPG boundary layer data (e.g.

DeGraaff and Eaton, 2000, Monkewitz et al., 2008, Robinson, 1991, Spalart, 1986). The

next data is shown by the symbol } where the flow is already in the APG section. This

is at ‘Station 2’ with the pressure gradient parameter β ≈ 1.1. The subsequent data are

exposed to stronger β. It can be observed that there is a deviation from the log law of

the wall in the log region as β increases. The log region for the stronger APG is shorter,

shown by the ‘peeling-off’ that occurs at a closer distance to the wall (the wake region

occurs at a lower wall-normal height). This will be discussed in more details in Section

3.6. In the outer region, the wake parameter also increases with β.

The turbulence intensities, u2/U2
τ profiles are shown in Figure 3.4(b). In the near-wall

region, the magnitude of the near-wall turbulence intensities increases with β. The

near-wall peak generally occurs at z+ ≈ 15; the dashed-dotted line in this figure denotes

z+ = 15. The same trend follows in the outer region. The effect of APG to mean

velocities, turbulence intensities and other statistics are discussed in more detail in
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Figure 3.4: Mean statistics for adverse pressure gradient boundary layers with con-
stant Uin ≈ 15.9 m/s. (a) Mean velocity and, (b) turbulence intensity profiles. Symbols:| x = 2.90m (ZPG), } x = 3.50m, ⟐ x = 4.00m, � x = 4.46m and ⊠ x = 4.78m, refer
to Table 2.1 for more details. The solid line shows (3.6) with κ = 0.41, A = 5.0, the

dashed line shows U+ = z+ and the dashed-dot line indicates z+ = 15.
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Sections 3.6 - 3.9. As the emphasis in this section is on the development of the turbulent

boundary layer along the streamwise direction, it is sufficient for now to note that the

wake in the mean velocity and the outer region of the turbulence intensities profiles in

Figures 3.4(a) and (b) are in agreement with existing studies i.e. the wake increases

with β (Aubertine and Eaton, 2005, Bradshaw, 1967a, Marusic and Perry, 1995, Nagano

et al., 1992, Samuel and Joubert, 1974) and Lee and Sung (2009).

Figure 3.5(a) shows the mean velocity profiles for the FPG cases for constant Uin = 10.5
m/s. To avoid overcrowding of data points in the plot, every two out of three data points

are removed. The ZPG data is not shown here, therefore the first point is at Station 2

with symbol C followed with data from the subsequent stations. It can be observed that

in the log region (taken to be 50 ≲ z+ ≲ 0.15Reτ ), all profiles collapse with the log law

of the wall, in contrast to the APG cases with constant Uin, discussed previously. The

log region grows with streamwise distance, although this trend is not so easily seen as

in the APG cases. In the outer region, the wake parameter, Π decreases gradually with

streamwise distance. Experiments performed by Jones et al. (2001) show a similar trend,

i.e. decreasing Π with streamwise distance. The turbulence intensities, u2/U2
τ profiles

are shown in Figure 3.5(b). It can be observed that the near-wall peak in turbulence

intensities decreases with streamwise distance. In general, the FPG cases shown here

agree with typical existing data (e.g. Bourassa and Thomas, 2009, Jones et al., 2001).

The analysis of the four parameters in (3.31) which describes the state of a turbulent

flow is now continued, using the current APG cases (with Uin = 15.9 m/s) and the

FPG case (with Uin = 10.5 m/s) shown in Figure 3.5. Furthermore, the existing data

of Marusic and Perry (1995) (10 m/s and 30 m/s) and Jones et al. (2001) (5 m/s with

acceleration parameter, K = 3.59×10−7 and 10 m/s with K = 2.70×10−7) are also added.

The four parameters are shown in Figure 3.6. In the abscissae, Rx = xUin/ν, where x is

measured from the trip point. S in the current APG experiment is observed to follow

the trend in Marusic and Perry (1995), i.e. S increases with the distance from the trip

wire. However as Rx increases, S in the current experiment gets even larger because

of a smaller Uτ obtained from the OFI method (Marusic and Perry (1995) used the

Clauser chart method). Similar effects, and the validity of the Clauser chart have been

discussed in Chapter 2 (in Section 2.3, the Clauser chart method is found to be invalid

as β grows). In the current FPG experiment, S decreases with increasing Rx, contrary

to Jones’ experiments.

Both the current APG experiment and Marusic and Perry (1995) experiment show

increasing Π with Rx. However, at larger Rx values, Π in Marusic and Perry (1995) is
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Figure 3.5: Mean statistics for adverse pressure gradient boundary layers with con-
stant Uin ≈ 10.5 m/s. (a) Mean velocity and, (b) turbulence intensity profiles. Symbols:
C, ▽, y, ⦶ and q refer to Table 2.1 for more details. The solid line shows equation
3.6 with κ = 0.41, A = 5.0, the dashed line shows U+ = z+ and the dashed-dot line

indicates z+ = 15.
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Figure 3.6: The non-dimensionalised parameters that describe the state of boundary
layers. #: Marusic and Perry (1995) 10m/s, ●: Marusic and Perry (1995) 30m/s, ∎:
Jones et al. (2001) 5m/s (K = 3.59×10−7), ◻: Jones et al. (2001) 10m/s (K = 2.70×10−7).
The symbols |, }, ⟐, �, ⊠ represent the current APG experiment at Uin = 15.9 m/s.
The symbols C, ▽, y, ⦶ and q represent current the FPG experiment at Uin = 10.5
m/s. For visualisation purposes, the dashed lines connect the current APG quantities

and the solid lines connect the current FPG quantities.
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larger. This is due to the greater pressure gradient parameter β, a direct consequence

of steeper roof gradient or dP1/dx. For the FPG cases, the current experiment shows a

decreasing Π with growing Rx, similar to Jones et al. (2001). The current experiment

starts at ZPG, therefore a greater value of Π = 0.6 is observed, and from this point

onwards, Π gradually decreases. Note that the values of the acceleration parameter,

K in Jones et al. (2001) are fixed with inlet velocities throughout Rx. However in the

current FPG experiment, the acceleration parameter starts at K = 0 (ZPG), reaching

maximum value quite rapidly and gradually decreasing from this point onwards.

For the current APG experiment, β increases very rapidly with Rx. The same is also

observed in Marusic and Perry (1995) data. For the FPG cases, β only decreases slightly

with Rx for Jones et al. (2001) experiment and for the current experiment, β is constant

throughout all stations. The last term, ζ increases very rapidly with Rx for both velocity

cases in Marusic and Perry (1995) and considerably smaller for the current APG data

(in comparison with Marusic and Perry (1995)). However, ζ is invariant with Rx in all

of the FPG cases considered here. This is clearly due to the fact that the variation in

Π is small for the FPG cases (ζ is a function of dΠ/dx). The calculations of boundary

layer thickness δ, the wake parameter Π throughout the thesis are based on the these

formulations (Perry et al., 2002).

In Perry et al. (2002), δ is calculated by (3.22). The wake factor Π here is calculated

from

∆( U
Uτ

) = 2Π

κ
, (3.33)

where the ∆(U/Uτ) is the maximum deviation from the linear-logarithmic region in

the mean velocity profile. Note that in Jones et al. (2001) and Perry et al. (2002),

the maximum deviation from the log law is determined by ∆(U/Uτ ) (I), illustrated

in Figure 3.7. However, in the current analysis where the mean velocity is scaled with

friction velocity obtained from the OFI method, the maximum deviation from the linear-

logarithmic region in the mean velocity profile is ∆(U/Uτ) (II). The values of κ and A

are also different, as they are based on the OFI analysis. The different methods here

cause different values of Π and subsequent different values of S, β and ζ. Both analyses

assume the log region to be 50 < z+ < 0.15Reτ .
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Figure 3.7: Method for determining Π. The data is taken from Uin ≈ 15.9 m/s at
x = 4.78 m denoted by ⊠ scaled with Uτ obtained from OFI, while the same data is
scaled with Uτ obtained from the Clauser chart denoted by the dotted symbol. ∆U/Uτ

(I) is based on Perry et al. (2002) (3.22) where κ = 0.41 and A = 5. ∆U/Uτ (II) is based
on maximum deviation from the linear-logarithmic region in the mean velocity profile

used in the current analysis, where κ = 0.4009 and A = 3.4751.

3.6 The development of the log region

The APG and FPG data displayed in Figures 3.4(a) and 3.5(a) appear to show a varying

log region depending on the pressure gradient. However, so far this observation is only

based on visual inspection of the peeling-off location from the log-linear region in the

mean velocity profiles. To evaluate more accurately the extent of the overlap region and

the log scaling of the mean velocity, it is helpful to employ the diagnostic function

Ξ = z+dU+
dz+

. (3.34)
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Figure 3.8: Diagnostic function for Uin ≈ 15.9 m/s in APG and constant Uin ≈ 10.5
m/s in FPG. Symbols are the same as in Figure 3.4. Dashed-dotted line shows κ =

0.41.

The log region of a velocity profile occurs in the range of z+ for which Ξ is constant. In

fact, it can be shown by differentiating (3.6) that Ξ = 1/κ in this region.

Figure 3.8 shows the diagnostic function of the APG and FPG cases. The linear region

for the strong APG case is the shortest and the rise in the outer region for this case is

also the largest. In contrast, as the APG reduces to ZPG and subsequently to FPG,

the linear region grows. This is clear evidence that APG shortens, while FPG stretches,

the log region. Similar analyses have been performed e.g. in Jones et al. (2001) and

Bourassa and Thomas (2009), indicating a longer log region that increases with the

degree of FPG.
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3.7 Mean velocity and turbulence intensity profiles for ad-

verse, zero and favourable pressure gradients

The analysis starts by comparing one case each from relatively mild adverse and favourable

pressure gradients (β ≈ 1.7 and -0.4), with a zero pressure gradient case at matched Reτ ≈
3000. This comparison is intended to provide clear and simple evidence of the effects

of pressure gradient on the mean statistics, similar to the analyses of mean velocities

and turbulence intensities profiles of ZPG TBL, channel and pipe flows, shown in Monty

et al. (2007). The comparison of three boundary layers subjected to pressure gradients

is one of the main foci of this study.

Figure 3.9(a) displays the inner-scaled mean velocity profiles for all boundary layer

flows. In the wake region (z/δ > 0.15), the APG mean velocity rises higher than that in

the ZPG case, typical of adverse pressure gradient boundary layers. The ‘strength’ of

the wake is commonly quantified by the Coles wake parameter, Π (essentially a measure

of the maximum deviation from the log law). Calculation of Π requires the explicit

knowledge of the log law that describes the mean velocity data in the overlap region.

That is, the constants κ and A in U+ = 1/κ log(z+) +A must be known. The classical

values for the smooth wall, zero pressure gradient boundary layer are κ = 0.41 and A

= 5.0, which leads to a value of Π ≈ 0.6 for the ZPG case. However, it is not trivial

to determine Π for the APG case, since an examination of the logarithmic region in

Figure 3.9(a) reveals that the APG mean velocity drops below the classical log law.

Nevertheless, the wake factor increases with APG. This is obtained from analysis of the

mean velocity profile with the values κ and A in the log law equation obtained from

oil-film interferometry (OFI) as discussed in Section 2.3. The increased Π in APG has

also have been well documented in other APG studies (Lee and Sung, 2008, Marusic

and Perry, 1995, Nagano et al., 1998).

By visual inspection of Figure 3.9(a), it appears that there is a difference in the extent

of the logarithmic region for the three flows. The logarithmic layer is most commonly

considered as the region of 100 < z+ < 0.15Reτ , however, numerous studies challenge

this (for example, Bourassa and Thomas (2009), Nagib and Chauhan (2008), Österlund

and Johansson (2000), Zagarola and Smits (1998)). For the ZPG case presented here,

the logarithmic region appears to begin at z+ ≈ 70 and extends to z+ ≈ 0.15Reτ , which
is slightly more extensive than generally accepted. Although the log region for the

FPG case begins at approximately the same location, the log region extends all the way

towards z+ ≈ 0.5Reτ . The longer log region in FPG has been observed by Jones et al.
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Figure 3.9: Comparison of APG, ZPG and FPG flows at matched Reτ ≈ 3000 (a)
Mean velocity profiles (b) Broadband turbulence intensity profiles. Symbols: (⊡) APG
(△) ZPG and (⊕) FPG, for other parameters refer to Table 2.1. The solid line shows
log law (3.6) with κ = 0.41, A = 5.0, dashed line shows U+ = z+ and dashed-dotted line

z+ = 15.
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Figure 3.10: Diagnostic function for adverse, zero and favourable pressure gradient
flows at matched Reτ ≈ 3000. For symbols, refer to Figure 3.9. Dotted line shows κ =

0.41.

(2001) and Bourassa and Thomas (2009). Figure 3.10 shows diagnostic function for the

three pressure gradient cases at constant Reynolds number data. This figure shows that

the log region is the longest for the FPG case and shortest for the APG case as expected.

It is also evident that all three cases agree well until z+ ≈ 200, from which point there is

a deviation of the APG data followed by ZPG data at z+ ≈ 400. The diagnostic function
data are noisy (inherent in the spatial differentiation of experimental data), nevertheless,

it could be argued that the wake region of the APG flow has begun as early as z+ = 250
(z/δ = 0.07). Thus there is a very narrow logarithmic region in APG flow at this pressure

gradient and Reynolds number. The values of κ could change depending on the length of

log region employed in the diagnostic function analysis. Monty et al. (2011) showed the

sensitivity of the employed log region towards the value of κ, nevertheless by employing

a log region of 70 < z+ < 0.15Reτ , the value of κ equals 0.37. A lower κ for the APG case

is in agreement with Nickels (2004), Sk̊are and Krogstad (1994) and Nagib and Chauhan
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(2008). The value of κ from the analysis with longer log region for ZPG and FPG data

is 0.41. Similar values of κ in both ZPG and FPG are explained by the mild favourable

pressure gradient in the experiment.

There is an increasing attention given to the scaling of the streamwise turbulence inten-

sity near the wall in canonical turbulent shear flows (for example, DeGraaff and Eaton,

2000, Hutchins et al., 2009, Marusic et al., 2010a,c, Metzger et al., 2001, Smits et al.,

2011). In the case of boundary layers subjected to pressure gradients, far less reliable

data (covering the range of pressure gradients and the Reynolds numbers) is available

to enable the formulations of scaling arguments for the turbulence intensities. Figure

3.9(b) presents turbulence intensities for adverse, zero and favourable pressure gradient

cases at Reτ ≈ 3000. The etched portion of the hotwire sensor has been fixed at l+ ≈
30. The specifically matched Reτ and l+ are required to allow a valid comparison in the

turbulence intensities analysis. Klewicki and Falco (1990) and Hutchins et al. (2009)

demonstrated that in ZPG flows, the scatter in viscous-scaled turbulence intensity in

the near-wall region is due in large part to the competing effects of the Reynolds number

and non-dimensionalised hotwire length. That is, as the Reynolds number is increased,

large-scale structures contribute to an increase in turbulence intensity, however as l+

is increased, the small-scale fluctuations become increasingly attenuated, thus causing

a decrease in turbulence intensity. The effect of l+ in pressure gradient is discussed in

Section 3.11. For this reason, it is necessary to match l+ when turbulence intensities

analysis is performed.

It is immediately clear that the turbulence intensity is highest throughout the flow for

the APG case followed by ZPG and FPG flows. The biggest difference occurs in the outer

region, where a secondary hump is observed in the APG data. No secondary hump is

observed in the ZPG case despite some persistence in the outer region (z/δ ≈ 0.3). In the

FPG case, the turbulence intensity decays almost monotonically through the logarithmic

region. It is not possible to collapse these profiles with a unique velocity scale; thus

scaling arguments alone will not be able to explain the different statistics in pressure

gradients. The magnitude of the secondary hump is related to energy associated with

the large-scale structures of the flow and a detailed explanation of energy distribution

is provided in Chapter 4.

To demonstrate that the rise in energy in the outer region is not due simply to a scaling

argument, the turbulence intensity profiles have been plotted scaled with U1 in Figure

3.11. In the near-wall region, the intensity is now lowest in the APG case and increases

as the pressure gradient changes sign. However, scaling with U1 in the near-wall region



Mean statistics 58

10
0

10
1

10
2

10
3

10
4

0

0.002

0.004

0.006

0.008

0.01

0.012
10

−3
10

−2
10

−1
10

0

z+

z/δ

u2

U2
1

Figure 3.11: Broadband turbulent intensity profiles for APG, ZPG and FPG data at
Reτ ≈ 3000 scaled with local free-stream velocity, U1. For symbols, refer to Figure 3.9.

is not appropriate since U1 is not a relevant velocity scale so far from the free stream.

In Figure 3.11, the vertical dash-dotted line indicates z+ = 100, if we consider the outer

region taken from this line towards the edge of the boundary layer, it can be observed

that the intensity still rises with pressure gradient.

3.8 Mean velocity and turbulence intensity profiles for con-

stant Reynolds number Reτ ≈ 1900

In the literature review section of this thesis, as well as at the start of this chapter, the

author has highlighted the need to isolate the competing effects of the increased Reynolds

number and pressure gradient parameter. The variations of these parameters shown in

Table 1.1 make it difficult to state the relative importance of each parameter. The

uncertainties are analysed in this section when the Reynolds number remains constant

while β varies.
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Figure 3.12(a) shows the mean velocity profiles for adverse pressure gradient boundary

layers with matched Reynolds number, Reτ ≈ 1900, varying β = 0 − 4.54 and varying

K = 0 − 2.8 × 10−7. Each data set was acquired at a different streamwise location, and

it should be noted that a unique inlet free stream velocity is required to match Reτ ,

see Table 2.1 in Chapter 2. In the outer region, it is obvious that the adverse pressure

gradient causes the wake of the mean velocity profile to increase. The wake factor Π

for the ZPG case is 0.6, as would normally be observed in ZPG boundary layer flows

(Coles, 1962, DeGraaff and Eaton, 2000, Spalart, 1986).

In the region, (z/δ ≳ 0.15), it can be clearly observed that the peel-off from the log region

occurs at a distance closer to the wall for APG cases. In fact there is a systematic change

for the peel-off locations; APG causes the peel-off locations nearer to the wall. A closer

peel-off location suggests a shorter log region (if the log region starts at approximately

same location). This effect can be observed in Figure 3.14. This figure shows that the

log region is gets with APG (70 < z+ < 0.15Reτ for ZPG to 70 < z+ < 90 for β ≈ 4.3 case).

Figure 3.14 demonstrates that APG shortens the log region, and if sufficient APG is

applied to the boundary layers, it is possible to have no log region at all.

Returning to Figure 3.12(a) and focusing on the log region, there is a systematic devi-

ation from the log law (downward) as pressure gradient is increased. Furthermore, the

log region appears to reduce in size with increasing pressure gradient, consistent with

the observation from the diagnostic function. Sk̊are and Krogstad (1994) proposed that

the shift-down from the log law was due to the increased Reynolds number. In this

experiment, the Reynolds number was maintained constant while the pressure gradient

was increased, thus any Reynolds number effect was isolated, so the reduction in scaled

mean velocity must be due to pressure gradient.

In the near-wall region (5 < z+ < 15), the mean velocity profiles are similar across all

pressure gradients. This behaviour was also reported by Krogstad and Sk̊are (1995) and

Nickels (2004). The latter showed that, in the region of z+ < 10, the mean velocity data of

adverse, zero and favorable pressure gradients collapses under inner-scaling (comparison

was made with data of Nagano et al. (1992) and Spalart (1986)).

Figure 3.12(b) shows the broadband turbulence intensity profiles for matched Reτ ≈
1900. Recall that the non-dimensionalised sensor length is maintained constant at l+

= 16 ± 1 for constant Reτ experiments to ensure similar spatial resolution effects. As

noted earlier, the effect of an adverse pressure gradient is to increase the turbulence

intensity throughout the layer. Figure 3.12(b) shows just how the turbulence intensity
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Figure 3.12: Mean statistics for adverse pressure gradient boundary layers with Reτ ≈
1900. (a) Mean velocity and, (b) turbulence intensity profiles. Symbols: (▷) ZPG, (◇)
β = 0.91, (o) β = 1.67, (◻) β = 2.81, (∗) β = 4.54, for other details, refer to Table 2.1.
The solid line shows log law (3.6) with κ = 0.41, A = 5.0, the dashed line shows U+ = z+

and the dashed-dotted line indicates z+ = 15.
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Figure 3.13: Error analysis for β = 4.54, Reτ ≈ 1900. (a) Mean velocity. The
error bars indicate ±2. Symbol: (∗) mean velocity scaled with UτOFI and (●) mean
velocity scaled with UτCl. Dotted line denotes U+ = z+, dashed-dotted line shows
log law (3.35) solid line indicates (3.36). Vertical dashed lines denote z+ = 40 and
z/δ = 0.12 (approximate logarithmic region). In the inset, dashed line denotes error
(∆Ue

+) between U/UτCl and (3.35). Solid line denotes error between U/UτOFI and
(3.36). (b) Turbulence intensity profiles. The error bars indicate ±4. The wall-normal
positions where these error are shown: z+ ≈ 15, z+ ≈ 40, z+ ≈ 100, z/δ ≈ 0.12 and

z/δ ≈ 0.3.
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profile grows with increasing pressure gradient. For the inner region, the peak value

of turbulence intensity rises weakly from ∼ 7.8 – 9. In the outer region, however, the

turbulence intensity increases sharply as the pressure gradient increases. Because the

intensity in the outer region rises faster than in the inner region, at β = 4.54 (the

strongest pressure gradient) the intensity in the outer region almost reaches the near-

wall peak value. This leads to the ‘double-hump’ shape of the turbulence intensity

profile and a further increase in β would undoubtedly lead to a primary peak in the

outer region. Clearly, then, there is a notable change in shape of the profile with β,

which affirms that the adverse pressure gradient causes a change in the distribution of

energy in a turbulent boundary layer. This change can be described as a relocation of

the dominant energetic motions from the near-wall region to the outer region.

To illustrate the deviation of the mean velocity profile from the log law in Figure 3.12,

the data with the largest pressure gradient (β = 4.54) is shown in Figure 3.13. A large

pressure gradient parameter is chosen because the deviation is largest. In Figure 3.13,

the deviation at z+ = 100 is shown by the difference between the two arrows indicated

by (U/UτCl −U/UτOFI) where U/UτCl is evaluated using the log law (3.6), subscript ‘Cl’

stands for the Clauser chart method. U/UτOFI is evaluated by using κ = 0.3758 and

A = 2.8563 obtained from the OFI method. This is summarised as follows

U

UτCl

= 1

0.4100
log (zUτCl

ν
) + 5.0000, UτCl = 0.2760 (3.35)

U

UτOFI

= 1

0.3758
log (zUτOFI

ν
) + 2.8563, UτOFI = 0.2957 (3.36)

In both analyses, the curve fit is performed to the logarithmic region 40 < z+ < 0.12Reτ
of the mean velocity. These differences is later called the deviation from the log law.

A few selected positions are shown to highlight the deviation from the log law in Table

3.1.

It is evident from Table 3.1 that the deviation from the log law for APG with β = 4.54
is (U/UτCl −U/UτOFI) > 1 for most of the logarithmic region. At the approximate start

of the log region z+ = 40, (U/UτCl − U/UτOFI) ≈ 1.3. At the end of the outer region

z/δ = 0.12 ,(U/UτCl −U/UτOFI) ≈ 0.93, however the classical value of κ = 0.41 and A = 5
do not fit the data well as there is an increasing positive deviation of the data from

the log law at this position. In fact, at both ends of the selected log region, the errors
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z position z+ = 40 z+ = 100 z/δ = 0.12

U

UτCl

− U

UτOFI

1.3258 1.1226 0.9252

Table 3.1: Deviation from the log law for data in Figure 3.13.

(∆Ue
+ = U/UτCl - (3.35)), are large, i.e. negative error at z+ = 40 and positive error at

z/δ = 0.12. Such deviation is shown more clearly in the inset of Figure 3.13, located at

the top portion of the inset. Note that the horizontal axis is zUτCl/ν. This deviation is

caused by the slope of the line which is 1/κ = 1/0.41.

Obviously, when κ and A are obtained directly from the curve fit to the mean velocity

profile, the error is much less. This is shown by the bottom plot of the inset, where

(∆Ue
+ = U/UτOFI - (3.36)). Note also the horizontal axis is zUτOFI/ν which is slightly

different from zUτCL/ν, arising from larger value of UτOFI than the value UτCl
3. As

observed in Figure 3.12, the deviation from the log law is expected to be smaller when

pressure gradient is smaller. The deviation is negligible in the case of ZPG flow in Figure

3.12.

It is helpful to understand the extent of the deviation from the log law in comparison

with the experimental uncertainties and errors. The accumulated errors in the friction

velocity discussed in Table 2.2 (uncertainty estimates) is approximately ±2%. Error

bars in Figure 3.13(a) shows the experimental uncertainties i.e. ±2% of the scaled mean

velocity. It is evident from this figure that the deviation from the log law is much

greater than the experimental uncertainties. The same analysis is performed to the

scaled turbulence intensities. Similarly, it is found that ±4% of the turbulence intensities

due to experimental uncertainties is much smaller than the deviation due to Uτ obtained

from the Clauser chart.

Scaling using the friction velocity Uτ has been used to characterise the effect of pres-

sure gradient. Another scaling using the free-stream velocity U1 can also be used to

demonstrate the characteristics of the structures in the outer region and this is shown in

Figure 3.15 at matched Reτ ≈ 1900. Figure 3.15 shows that the newly scaled turbulence

3The difference in Uτ from these two methods, related with the coefficient of friction, can be observed
in the coefficient of friction distribution in Figure 3.1
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Figure 3.14: Diagnostic function for increasing pressure gradient flows at matched
Reτ ≈ 1900. For symbols, refer to Figure 3.12. Dashed-dotted line shows κ = 0.41.

intensity increases with APG in the outer region towards the edge of the boundary layer

(z/δ >0.3), consistent with the results if scaling with friction velocity Uτ as was used as

in Figure 3.12. Nearer to the wall, in contrast to the Uτ scaling, the turbulence intensi-

ties in Figure 3.15 decrease with APG. Such scaling suggests that turbulence intensities

decrease with pressure gradient for z+ <100. The results in Figure 3.15 highlight that the

absolute values of the turbulence intensities tend to decrease with increasing pressure

gradient in the inner region of the boundary layer, as found by Nagano et al. (1998).

However the scaling using U1 in the near-wall region should be read with caution because

U1 is not a relevant scale in the region near the wall.

Different velocity scalings have been used with some success. Zagarola and Smits (1998)

developed a new scaling theory in turbulent pipe flow. The new scaling velocity has the

form of (UCL−U)/uo, where uo is the velocity scale in the outer region. This formulation

works particularly well with high Reynolds number data. Zagarola and Smits (1998)

proposed that for boundary layers, uo = U1δ
∗/δ, here δ∗ is displacement thickness.
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Figure 3.15: Broadband turbulent intensity profiles for ZPG and APG data at Reτ ≈
1900 scaled with free-stream velocity, U1. For symbols, refer to Figure 3.12.

In turbulent boundary layers with pressure gradients, Castillo and George (2001) devel-

oped a new pressure gradient parameter Λ = δ/(ρU2
1dδ/dx)dP1/dx = constant. There

appeared to be three different values of Λ representing three different pressure gradient

cases, the APG, ZPG and FPG flow. It was shown that the boundary layer thickness

follows a power law relation of the free stream velocity, δ ∼ UΛ
1 . Velocity defect profiles

scaled with (U1δ
∗/δ) (originally from Zagarola and Smits (1998)) from the three pres-

sure gradient cases were shown to collapse i.e. (U1 −U)/(U1δ
∗/δ) collapse when plotted

against z/δ. Similar study was also performed in Maciel et al. (2006) where the mean

velocity defect profile appeared to be self-similar. However, throughout the remainder

of this thesis, only friction velocity scaling will be considered, since the focus will be on

identifying changes in the flow caused by pressure gradient relative to the zero pressure

gradient case.

This section reveals the effect of pressure gradient when Reynolds number remains con-

stant. In summary, the mean velocity profiles show increasing deviations from the log

law when the layer is exposed with greater APG. The log region shortens, causing the

peel-off to occur closer to the wall. The magnitude of the wake increases too. Cor-

respondingly, the turbulence intensity increases in the outer region. Now, the effect
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of pressure gradient can conclusively be ascertained as the Reynolds number has not

changed, addressing the lack of information in Table 1.1 and answering part of the re-

search aims pertaining to the effect of pressure gradient in isolation of the Reynolds

number effect.

3.9 Mean velocity and turbulence intensity profiles for con-

stant pressure gradient parameter, β

The analysis in this section is based on two data sets with constant pressure gradient

parameter, β ≈ 1.6 and β ≈ 4.3. In Section 3.8, it has been shown that if the Reynolds

number is constant, pressure gradient causes the wake parameter Π to increase, tur-

bulence intensities to form a second hump in the outer region, and the log region to

shorten. There is also a further deviation from the log law (among other effects). Now,

the focus is to isolate the pressure gradient effect and to vary the Reynolds number,

also in accordance with the main aim of the research. This is similar to performing

increasing Reynolds number in ZPG flows, but with a non-zero pressure gradient that

is kept constant.

Figure 3.16(a) shows the mean velocity profiles for β ≈ 1.6 with varying Reτ = 1700 –

2400. The Reynolds number range is smaller because it was difficult to acquire data with

similar parameter (β ≈ 1.6, l+ ≈ 16). The mean velocity profiles collapse in the inner

and logarithmic regions for all Reynolds numbers. It is difficult to observe any deviation

from the log law in the log region. In the outer region, the difference in the mean velocity

profiles across the Reynolds number is small. However, observations reveal the mean

velocities for the higher Reynolds number data to have longer log regions, therefore,

wake regions for this data occur at larger z+.

Figure 3.16(b) shows the collapse in turbulence intensity profiles in the near-wall region.

The turbulence intensity profiles increases with the Reynolds number at the start of the

log region (z+ > 70). There is a lack of data at higher Reynolds number to draw any

conclusive observations. Reynolds number range needs to be large, e.g. 2000 < Reτ <
10000, in order to observe changes in the turbulence intensities profiles, however, it was

not possible in the current boundary layer wind tunnel.

As discussed earlier, β ≈ 1.6 is too weak to observe any deviation from the log law

and other properties such as the length of the log region and the rise of turbulence

intensities in the outer region. Therefore, a larger β is needed. At β ≈ 4.3, changes
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Figure 3.16: Mean statistics for adverse pressure gradient boundary layers with β ≈
1.6. (a) Mean velocity and, (b) turbulence intensity profiles. Symbols: (d) Reτ = 1750,
(o) Reτ = 1990, (⊗) Reτ = 2010 and (⊛) Reτ = 2400, for other details, refer to Table
2.1. The solid line shows log law (3.6) with κ = 0.41, A = 5.0, the dashed line shows

U+ = z+ and the dashed-dotted line indicates z+ = 15.
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related to the pressure gradient are expected to be more visible. Figure 3.17(a) displays
the mean velocity profiles for β ≈ 4.3 with varying Reτ = 1770 – 3880. The mean velocity

profiles collapse in the inner and logarithmic regions for all Reynolds numbers. These

do not, however, collapse onto the classical log law (3.6), which is shown in the figure

for comparison. It can be observed that there an approximately constant shift-down

from the log law, i.e. the value of κ remains similar but the value of A changes. The

constant shift-down here is expected from the earlier study with β varying. This can

also be related to the constant shift-up between the values of the coefficient of friction

determined from OFI against that obtained from the Clauser chart (Figure 3.2). The

curve fit to the traditional logarithmic region of the mean velocity profile 70 < z+ <
0.15Reτ using friction velocity Uτ obtained from OFI yields an average value of κ =

0.36 and A = 2.2. Deviation from the log law has been documented in Krogstad and

Sk̊are (1995), Nagano et al. (1992) and Lee and Sung (2008).

In the previous section, the measurements performed at a constant Reynolds number

with variable β showed a gradual downward shift of the mean velocity profiles in the

traditional log region as the strength of the APG was increased. This has also been

documented in Monty et al. (2011). In this set of data, having constant β ≈ 4.3, it

appears that it is pressure gradient alone that causes deviation from the log law of the

wall - not the Reynolds number. However, the Reynolds number range is relatively

small, so higher Reynolds number studies should be carried out to confirm this result.

This result has been published in Harun et al. (2010b).

It is difficult to determine the constants in the log law that best describe the overlap

region of the mean velocity. Again, the diagnostic function is employed to give further

insight into the logarithmic behaviour. Figure 3.18 shows the diagnostic function for

constant β ≈ 4.3 data. As expected, the diagnostic function shows the velocity profiles

peeling up at larger wall-normal position from the logarithmic law as the Reynolds

number increases. It can be observed that there is no log region for the lowest Reynolds

number data (Reτ = 1730). Even at the highest Reynolds number (Reτ = 3890), it could
be argued that the wake region still begins as early as z+ = 100 (there is also a weak trend

that the edge of the outer region occurs at larger z+ with larger Reτ ). This supports

the earlier conjecture that the logarithmic region is diminished by the adverse pressure

gradient, such that there is almost no evidence of logarithmic behaviour.

The major conclusion from this section is that β causes a shift-down in the mean velocity

profile regardless of the Reynolds number. From the diagnostic function analysis, it is

again β that causes the log region to shorten. Unlike in ZPG flows, Reynolds number
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Figure 3.17: Mean statistics for adverse pressure gradient boundary layers with β ≈
4.3. (a) Mean velocity and, (b) turbulence intensity profiles. Symbols: (⊞) Reτ = 1730,
(⊠) Reτ = 2500, (�) Reτ = 3510 and (�) Reτ = 3890, for other details, refer to Table
2.1. The solid line shows log law (3.6) with κ = 0.41, A = 5.0, the dashed line shows

U+ = z+ and the dashed-dotted line indicates z+ = 15.
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Figure 3.18: Diagnostic function for increasing pressure gradient flows at matched
β ≈ 4.3. For symbols, refer to Figure 3.17. Dashed-dotted line shows κ = 0.41.

here does not seem to make the log region longer (when scaled with inner variables). The

results of this section addresses another issue pertaining to the effect of the Reynolds

number in a constant APG condition. The lack of literature regarding a constant β

data is now addressed and in particular, Table 1.1 can now be furnished with constant

β data.

3.10 Mean velocity and turbulence intensity profiles for

constant K ≈ -1.4×10−7

The analysis of mean velocities and turbulence intensities for constant acceleration pa-

rameter, K, set of data is not specifically the aim of this thesis. However, this section

is provided to understand the general behaviours in such conditions. The free stream

velocity from this section is used in the analysis of the shape factor in Section 3.12,

where pressure gradient effect is analysed indirectly.
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Figure 3.19: Mean statistics for adverse pressure gradient boundary layers with K ≈
-1.4×10−7. (a) Mean velocity and, (b) turbulence intensity profiles. Symbols: (+)
Reτ = 1950 β = 0.94, (×) Reτ = 2470 β = 1.52, (◁) Reτ = 3270 β = 3.06 and (⋆)
Reτ = 3560 β = 4.73, for other details, refer to Table 2.1. The solid line shows log law
(3.6) with κ = 0.41, A = 5.0, the dashed line shows U+ = z+ and the dashed-dotted line

indicates z+ = 15.
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Figure 3.19(a) shows the inner-scaled mean velocity profiles for a constantK ≈ -1.4×10−7.
The Reynolds numbers in this set of data range from 1950 < Reτ < 3560 and the pressure

gradient from 0.94 < β < 4.73. The most observable trend is the deviation from the log

law as the Reynolds number increases. In the outer region, the wake also increases

dramatically with the Reynolds number. This is similar to the effect of the pressure

gradient parameter on constant Reynolds number boundary layers discussed in Section

3.8, however, since the Reynolds number is also increasing here, the wake region begins

at larger z+ as the Reynolds number increases (for higher Reynolds number data).

Figure 3.19(b) displays turbulence intensities for constant K ≈ -1.4×10−7. The most

notable difference is the wake in the outer region. The magnitude of the outer peak is

greater than that of the inner peak; a greater effect of the pressure gradient when the

Reynolds number is large, here β = 4.73 (when compared with the largest β (β = 4.54)
in constant Reynolds number flow, discussed in Section 3.8).

Scaling with inner variables shown in Figure 3.19(a)and 3.19(b) suggest that K might

not be a useful parameter because no collapse of mean velocity or turbulence intensities

is observed.

3.11 Mean velocity and turbulence intensity profiles for

varying l+ at Reτ ≈ 3000 in APG and FPG

The effect of spatial resolution on turbulence intensities, skewness and flatness in the

near-wall region due to the attenuation of small-scale fluctuations is substantial if the

hotwire sensor length is large (Ligrani and Bradshaw, 1987). Johansson and Alfreds-

son (1983) added that the skewness of the time derivative of the longitudinal velocity

was very sensitive to spatial averaging, because the small-scale ejection events (positive

v, negative u) are attenuated more than the larger-scale sweeps (negative v, positive

u). Hutchins et al. (2009) reassessed spatial resolution effect and proposed that the

near-wall peak turbulent intensities could be described by a newly established empirical

relationship, a function of l+ and Reτ . Hutchins et al. (2009) also explained that the

‘outer hump’ in the turbulence intensities is only a symptom of the spatial resolution

issue, which could be observed when l+ ≳ 60.
Before analysing the spatial resolution effects in boundary layer with pressure gradients,

we review the spatial resolution effect in the near-wall region for any turbulent wall-

bounded flow. Andreopoulos et al. (1984), Antonia et al. (1994) and Durst et al. (1998)
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Figure 3.20: Mean statistics for adverse pressure gradient boundary layers with vary-
ing l+ at Reτ ≈ 3000 in APG, β ≈ 1.6. (a) Mean velocity and, (b) turbulence intensity
profiles. Symbols: (⊙) l+ = 41, (⊡) l+ = 31 and (◾) l+ = 21, for other details, refer to
Table 2.1. The solid line shows log law (3.6) with κ = 0.41, A = 5.0, the dashed line

shows U+ = z+ and the dashed-dotted line indicates z+ = 15.
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have shown in their measurements that the near-wall peak in turbulence intensities

(scaled with inner variable), u2/Uτ
2∣m, decreases with Reynolds number. Similar results

led Mochizuki and Nieuwstadt (1996) to conclude inaccurately that u2/Uτ
2∣m decreases

with Reynolds number. Klewicki and Falco (1990), Ligrani and Bradshaw (1987) and

Hutchins et al. (2009) explained that the spatial resolution effect is due to attenuations

of the small-scale fluctuations, in agreement with many results (Ching et al., 1995,

DeGraaff and Eaton, 2000, Johansson and Alfredsson, 1983, Wei and Wilmarth, 1989).

However, as shown in Section 1.1 (the effect of pressure gradient), following Krogstad and

Sk̊are (1995), Nagano et al. (1992) and Lee and Sung (2009), u2/Uτ
2∣m also increases

with the APG parameter β. This is assumed when Reynolds number differences are

not large compared with the increased magnitude of u2/Uτ
2∣m. Evidence observed in

Figure 3.12(b), when Reynolds number and l+ remain constant, further confirms that

u2/Uτ
2∣m increases with β. Hutchins et al. (2009) noted that their analysis does not

differentiate between data from internal or external geometries. The growing evidence

that the large-scale features in the log and wake regions of internal flows are different

from those of ZPG TBL seen in Abe et al. (2004), Guala et al. (2006), Hutchins and

Marusic (2007a), Kim and Adrian (1999), Tomkins and Adrian (2003) and Monty et al.

(2007) indicate that the near-wall structure may also be different. Hutchins et al. (2009)

added that there should be attempts to differentiate these data, if there is sufficient data.

It is obvious now that at least data for TBL exposed with pressure gradient should be

treated differently as u2/Uτ
2∣m changes with pressure gradients when Reynolds number

and l+ remain constant (Figures 3.9(b) and 3.12(b)).
To analyse spatial resolution effects, a varying sensor length measurement was per-

formed: 20 ≲ l+ ≲ 40 in an APG flows with β ≈ 1.6 at Reτ ≈ 3000. The mean velocity

profiles are shown in Figure 3.20(a) and are expected to collapse. The turbulence inten-

sities are shown in Figure 3.20(b). Turbulence intensities collapse in the outer region;

however, u2/Uτ
2 shows differences in the near-wall region, u2/Uτ

2 is greatest for mea-

surement recorded with the smallest sensor length, l+ ≈ 20.
The mean velocity profiles for the FPG boundary layers at K ≈ 0.77 × 10−7 (β ≈ −0.45)
are shown in Figure 3.21(a). The mean velocity profile for a ZPG boundary layer

at Reτ ≈ 3000 is also shown for reference (symbol: ● with connecting lines). Again,

turbulence intensities collapse in the outer regions. In the near-wall region, u2/Uτ
2 is

highest when the sensor length used is the smallest.

The trend of the turbulence intensities in the APG and FPG flows are expected. To

understand the extent of spatial resolution effect in pressure gradient flows, we consider
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Figure 3.21: Mean statistics for favourable pressure gradient boundary layers with
varying l+ at Reτ ≈ 3000 in FPG, K ≈ 0.77 × 10−7 (β ≈ −0.45). (a) Mean velocity
and, (b) turbulence intensity profiles. Symbols: (⊚) l+ = 48, (d) l+ = 31, (●) l+ = 21
and compared with ZPG case denoted by connected dot symbol (‘.’) l+ = 31, for other
details, refer to Table 2.1. The solid line shows log law (3.6) with κ = 0.41, A = 5.0,

the dashed line shows U+ = z+ and the dashed-dotted line indicates z+ = 15.
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the near-wall turbulence intensities peak u2/Uτ
2∣m for the ZPG, APG and FPG. In ZPG,

u2/Uτ
2∣m ≈ 8.0 at Reτ = 2820 and at l+ = 22 (Figure 10 in Hutchins et al. (2009)), the

near-wall peak gradually increases to u2/Uτ
2∣m ≈ 8.5 as the Reynolds number increases to

approximately 20000. u2/Uτ
2∣m increases further for higher Reynolds numbers (Marusic

et al., 2010a). In APG, u2/Uτ
2∣m ≈ 8.5 at Reτ ≈ 3000 at similar sensor length, l+ ≈

20 (Figure 3.20(b)). In the same way, u2/Uτ
2∣m ≈ 7.5 in FPG at the same matched

conditions 3.21(b)).
Results of detailed analysis of why peak energy is different for APG, ZPG and FPG is

shown in Section 4.3, Chapter 4. At this point, it is sufficient to note that small-scale

attenuations occur for boundary layers subjected to pressure gradients as well, similar

to the effect demonstrated by Hutchins et al. (2009) in ZPG boundary layers.

3.12 Shape factor

The ‘constants’ κ and A in the log law (3.6) have been reviewed many times. For

example, Coles (1962) suggested κ = 0.41 and A = 5, however high Reynolds number

experiments by Nagib et al. (2004), Österlund (1999) have established that κ = 0.384.
Nagib et al. (2007) and Chauhan et al. (2009) established A = 4.17 when using κ = 0.384.
Nagib and Chauhan (2008) demonstrated variations in both ‘constants’ κ and A in

canonical flows for channel, pipe and boundary layer flows. Moreover the latter suggest

that κ exhibits dependence not only on the pressure gradient but also on the flow

geometry. In Section 3.8, it was shown that at a constant Reynolds number, there is

a downward deviation of the mean velocity profile from the log law that systematically

grows with β (Figure 3.12). It was also shown that at Reτ ≈ 1900 and β ≈ 4.54, the

scaled mean velocity is pushed down by ∆U+ ≈ 1 in the log region if κ and A obtained

from the OFI method were used, compared to κ and A obtained from the Clauser chart

method (Figure 3.13).

It is useful to confirm the non-universality of κ from other methods. Another method

to determine κ has been established by Monkewitz et al. (2008) by relating H with κ.

Monkewitz et al. (2008) developed a relationship between H and the Reynolds number

based on displacement thickness, Reδ∗ ; the shape factor continually decreases with in-

creasing Reδ∗ . The formulation for the shape factor as a function of Reδ∗ determined

by Monkewitz et al. (2008) can be written as
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H = (1 − IWW

U+1
)−1

= (1 − IWW

κ−1 log(Reδ∗) +C )
−1

, (3.37)

where

IWW = ∫
0

∞(U1
+ −U+)2dη.

Here η = z/∆ and ∆ = δ∗U+1 , C must be determined by curve-fitting (U+1 , Reδ∗) data. It

has been shown that IWW = 7.11 in zero pressure gradient boundary layers. Therefore,

by knowing H = δ∗/θ, (3.37) could be rearranged to obtain the value of κ.

This section also aims to analyse the behaviour of the shape factor in TBL with pressure

gradients. The behaviour of the shape factor, H, with varying Reynolds numbers has

recently been shown by the work of Monkewitz et al. (2008) for zero pressure gradient

flows. However, with the presence of pressure gradients, the upstream history has a

complex effect on the mean velocity and so the effect on the shape factor is not so

well understood. It has been shown that the shape factor increases with β (Nagano

et al., 1992, Sk̊are and Krogstad, 1994, Spalart and Watmuff, 1993). Therefore, in TBL

with pressure gradients, H is dependent on both Reynolds number and on the pressure

gradient parameter; this further complicates analysis. Many investigations allow both β

and Reτ to vary between experiments (as shown in the survey of existing data in Table

1.1). It is difficult to analyse the behaviour of H unless a wide range of pressure gradient

β and Reynolds number Reτ data is available. In this parametric study, the constant β

and constant Reτ data are very helpful in the investigation of pressure gradient effects

on shape factor.

To evaluate this analysis in the presence of pressure gradients, constant Reynolds num-

ber data (Reτ ≈ 1900) with increasing pressure gradient is used. Furthermore, the

constant β ≈ 1.6 and 4.3 data are also used, shown in Figure 3.22. For the constant

Reτ experiments (note that Reδ∗ does not necessarily remain constant when Reτ is kept

constant), the shape factor increases sharply as pressure gradient increases. In contrast,

the constant β ≈ 1.6 and 4.3 data decrease with increasing Reynolds number, as is the

case for zero pressure gradient boundary layers. The trend here suggests that IWW in-

creases with pressure gradient parameter β. That means any adverse pressure gradient

only causes a vertical shift as shown in Figure 3.22. It is possible to calculate IWW for

the constant β data from the velocity profiles because they exhibit Reynolds number
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Figure 3.22: Shape factor, H vs Reδ⋆ for constant Reτ , constant β data and constant
K data. The solid line represents H=(1- IWW /(κ−1 log(Reδ⋆)+C))−1 established by
Monkewitz et al. (2008) with existing constants for ZPG. The dashed and dotted lines
represent the same function, however with proposed constants for β ≈ 1.6 and 4.3
respectively, shown in Table 3.2. For symbols, refer to Table 2.1. ∎ is additional
data not shown in Table 2.1 included to have bigger Reynolds number, this data was

performed at station three, with parameters U1 = 19 m/s and β = 1.6.

similarity over the range studied (although not shown, velocity defect profiles collapse

throughout the logarithmic and outer regions when β is held constant).

The ZPG data collapses with the IWW formulation by Monkewitz et al. (2008), repre-

sented by the solid line in Figure 3.22. This should be sufficient to indicate that the

current ZPG data follows the prediction of the composite profile studies. The average

value of IWW in (3.37) are 9.28 and 12.6 obtained from the constant β ≈ 1.6 and 4.3

data respectively. The corresponding formulations by Monkewitz et al. (2008) (3.37) are

shown by the dashed line and dotted line respectively.

Note that the symbols ⊞, ⊠, � and � are from the constant β ≈ 4.3 data and the

additional data with symbols ∗ and ⋆ have similar magnitude of β. These data appear
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(Monkewitz et al.)
ZPG β ≈ 1.6 β ≈ 4.3

κ 0.384 0.32 0.32
C 3.3 1.0 2.3

IWW 7.11 9.28 12.6

Table 3.2: Summary of constants in Eq. 3.37 for ZPG and APG cases for β ≈ 1.6 and
β ≈ 4.3.

to lie within the formulation by Monkewitz et al. (2008) (dotted line). Similarly, the

same can be explained for the constant β ≈ 1.6 data with the corresponding dashed line

predicted by (3.37).

The values of κ and C are provided in Table 3.2. The values of κ for constant β data

are about the same and lower than the value for ZPG. Their respective values for C are

also lower than that in ZPG. Lower κ values than the nominal ZPG case for constant

β data have also been observed from the OFI method (via curve fitting of the mean

velocity profile). It should be noted that, due to the limited data available, the values

of the three parameters determined (κ, C and IWW ) are estimates only. Nevertheless,

the formulation for H follows the data very well (the dashed and dotted lines in Figure

3.22).

The author attempted to repeat the analysis with FPG data (at constant β ≈ −0.5),
however the same trend could not be produced. This could be due to the limited data

either in terms of the Reynolds number range or the degree of the favourable pressure

gradient. Therefore, the evidence presented here suggests that the functional form of H

with the Reynolds number is only valid in ZPG and APG flows.

This section demonstrates that the analysis of mean flow similarity laws (Monkewitz

et al., 2008) can be extended in APG flows. This analysis however, would not be

possible without the constant β set of data (with increasing Reynolds number) discussed

in Section 3.9. As mentioned earlier, the analysis is based on limited data and a small

range of Reynolds number4. Therefore, it is recommended that this analysis be expanded

covering more data and a larger Reynolds number range. The section also confirms the

proposal that κ is not universal - it is also a function of the pressure gradient.

4The analysis performed by Monkewitz et al. (2008) was based on more than 300 mean velocity
profiles and larger Reynolds number range (twice the order of the Reynolds number in the current
experiment.)
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3.13 Skewness and flatness

As mentioned in the literature review, the skewness increases when a layer is exposed to

APG (Nagano and Houra, 2002, Sk̊are and Krogstad, 1994). In ZPG flows, Metzger and

Klewicki (2001) demonstrated that it is the large-scale features that contribute to the

rise of the skewness. This section is provided to repeat Metzger and Klewicki (2001)’s

analysis, because it is demonstrated that the large-scale features also increase because

of APG (Lee and Sung, 2009, Rahgozar and Maciel, 2011a, Sk̊are and Krogstad, 1994).

Analysing the large-scale features’ contribution towards the skewness is one of the major

aims. This section also provides the general behaviours of the skewness and the flatness

when the pressure gradient is varied.

The skewness, Sk, and flatness, F , factors are defined as:

Sk = u3

(u2)3/2 , F = u4

(u2)2 . (3.38)

The third moment of a turbulent statistic, such as u3 scaled by (u2)3/2, describes the

skewness Sk, or asymmetry of the probability distribution of u. The function is sym-

metric about the origin, Sk = 0, if u3 = 0. A positive value of Sk implies that large

positive values of u are more frequent than large negative values. Sk = 0 for a Gaussian

distribution. The fourth moment, or flatness, F , of the u distribution is given by u4

scaled with (u2)2, and is a measure of the frequency of occurrence of events far from the

axis. If these are relatively frequent, F will take greater values than the Gaussian value

of 3 (Fernholz and Finley, 1996).

Figure 3.23(a) shows the skewness of streamwise velocity fluctuations for adverse, zero

and favourable pressure gradients at Reτ ≈ 3000. A large difference between the three

pressure gradient cases can be observed. The entire skewness profile is lifted up for

the APG case and shifted down for the FPG case. For FPG, skewness is negative,

starting at z/δ = 0.008 and remaining negative for the entire boundary layer. Skewness

for APG remains positive from the near-wall region towards the wake region (z/δ ≈ 0.3),
while skewness for the ZPG case is between the APG and FPG cases. Thus there is a

difference in skewness caused by the pressure gradient. However, the sensor length l+,

does cause differences in the near-wall region. Johansson and Alfredsson (1983) showed

that skewness varied with sensor length i.e. Sk ≈ −0.2 for l+ = 14; however this changed
to Sk ≈ 0 for l+ = 32 in the near-wall region (20≲ z+ ≲30) at Reh ≈ 50000 in turbulent
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Figure 3.23: (a) Skewness Sk and (b) flatness F for adverse, zero and favourable
pressure gradients at Reτ ≈ 3000. Symbols: (⊡) APG, (△) ZPG and (⊕) FPG. For

other details, refer to Table 2.1.

channel flow experiments (Reh is Reynolds number based on channel height). This effect

(due to changing l+) has been ruled out here, since l+ is constant in the current data

(l+ ≈ 30). Johansson and Alfredsson (1983) compared two flows at relatively high but

different Reynolds number, Reh ≈ 50000 and Reh ≈ 129000, at constant l+ = 33− 34, and
showed that there was a slight difference in Sk. Therefore, the Reynolds number also

does cause a difference in Sk. The data for this thesis’ comparison was acquired at a

constant Reynolds number and l+, thus neither Reynolds number nor l+ effects apply

here and the focus is solely on the pressure gradient.

Figure 3.23(a) shows that the pressure gradient increases the skewness over the whole

boundary layer, as was also reported by Nagano and Houra (2002), Sk̊are and Krogstad

(1994). A large deviation from the Gaussian distribution (Sk = 0) is expected for the

APG case (Dengel and Fernholz, 1990). For the inner region, Nagano and Houra (2002)

suggested that the rise in skewness is caused by ‘structural changes in the near-wall’

region due to the pressure gradient. Johansson and Alfredsson (1982) showed that in

the near-wall region in channel flow, ‘a positive skewness reflects the presence of high

shear events imposed on a background of lower turbulence level’. Here, it is proposed
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Figure 3.24: Probability density function (PDF) at (a) z+ ≈ 15 and, (b) z/δ ≈ 0.3
for adverse, zero and favourable pressure gradients at Reτ ≈ 3000. Symbols: (⊡) APG,

(△) ZPG and (⊕) FPG. For other details, refer to Table 2.1.

that, for high Reynolds numbers (Reτ ≳ 2000), the change in skewness with pressure

gradient is due to the increased large-scale influence in the near-wall region that was

found earlier to be associated with increased β.

Figure 3.23(b) shows the flatness of streamwise velocity fluctuations for adverse, zero

and favourable pressure gradients at Reτ ≈ 3000. Again, noticeable differences can be

observed between the cases, especially in the near-wall region (z/δ ≲ 0.08) and much

further out in the outer region, (z/δ ≳ 0.1). In the near-wall region, the APG case has

the lowest value of F .

As shown in Figure 3.23(a), APG causes the skewness profile to lift upwards, in contrast

FPG causes the profile to shift downwards. It would be informative to learn about the

distribution of the fluctuating velocities, u. Figures 3.24(a) and (b) show representative

probability density function (PDF) plots for adverse, zero and favourable pressure gra-

dients at Reτ ≈ 3000. Figure 3.24(a) shows the PDF in the near-wall region, z+ ≈ 15.
No substantial differences between the three cases can be observed in this figure. How-

ever, in the outer region, at z/δ ≈ 0.3, shown in Figure 3.24(b), dramatic changes can

be observed across the three cases. The PDF of fluctuating velocities for FPG has the

smallest band, and for APG the greatest band.

Metzger and Klewicki (2001) compared low Reynolds number laboratory data with that

from a high Reynolds number atmospheric surface layer. At lower Reynolds numbers,
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Figure 3.25: Skewness Sk for adverse, zero and favourable pressure gradients at Reτ ≈
3000. Symbols: (⊡) APG, (△) ZPG and (⊕) FPG. Filtered data (λx/δ < 1) symbols:

(∎) APG, ZPG (▲) and FPG ( ).

it was found that in the inner region of 10 < z+ < 100, the skewness was negative, while

for the high Reynolds number geophysical flow, the skewness remained positive in the

same region. Upon applying a high-pass filter to the streamwise velocity component to

separate low-frequency, large-scale motions, it was concluded that the increased energy of

large-scale structures caused the increase in skewness from a negative to a positive value.

In this study, a high-pass filter was applied to the adverse, zero and favourable data,

using a cut-off wavelength of λxc = δ. The selection of cut-off wavelength is discussed in

detail in Chapter 4.

The skewness profiles of the filtered data from the adverse, zero and favourable at Reτ ≈
3000 is shown in Figure 3.25. It can be observed that the skewness profiles for all three

cases are shifted down for the region z+ < 100, which is similar to the observations in the

study by Metzger and Klewicki (2001). The most distinguishing features of Figure 3.25

are in the outer region. The difference in the outer region, almost arbitrarily selected

at z/δ = 0.3, is very large (Sk ≈ −0.15 for APG and Sk ≈ −0.35 for FPG). Interestingly,

the filtered data shows a resemblance to a Gaussian distribution (Sk ≈ 0) for all three

cases. The effect of a high-pass filter in this region is to increase the values of Sk,

contrary to the effect of filtering in the near-wall region. Returning to Figure 3.23(a),
the increased skewness in the near-wall region can now be confirmed to be associated

with the large-scale features in APG flows.
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Figure 3.26: Probability density function (PDF) at (a) z+ ≈ 15 and, (b) z/δ ≈ 0.3 for
adverse, zero and favourable pressure gradients at Reτ ≈ 3000. Symbols: (⊡) APG, (△)
ZPG and (⊕) FPG. Filtered data (λx/δ < 1) symbols: (∎) APG, ZPG (▲) and FPG

( ).

Metzger and Klewicki (2001) explained that a high-pass filter procedure systematically

eliminates any additive effect of large-scale, low-frequency motions on measured statis-

tics. In the near-wall region, small-scales are predominant. Therefore, the effect of

high-pass filtering is caused only by the large-scales’ influence onto the small-scales.

However, in the outer region, small-scales co-exist among and within large-scales. A

high-pass filter has a far-reaching effect when the large-scale components are removed.

Figures 3.26 show PDFs of the filtered data at z+ ≈ 15 and z/δ ≈ 0.3 for the three

pressure gradient cases. In the near-wall region, the high-pass filtered data is slightly

less skewed (towards positive velocities), resulting in lower positive skewness values in

Figure 3.26(a). These effects are however quite small. In the outer region, high-pass

filtered data not only causes the skewness to increase (from large negative towards zero),

but also causes the PDF width to thin i.e. the standard deviations are reduced. This

suggests that the large-scales are responsible for the negative skewness (this is in con-

trast with the effect of large-scales in the near-wall region where Sk rises with increasing

small- and large-scale interactions).

Figure 3.27(a) shows the skewness of streamwise velocity fluctuations for varying adverse

pressure gradients. For the zero pressure gradient case, the skewness is negative in the

lower part of the traditional logarithmic region, 0.01 < z/δ < 0.03. Further from the wall

(0.03 < z/δ < 0.15), the PDF of streamwise velocity closely follows a Gaussian distribution
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Figure 3.27: (a) Skewness Sk and (b) flatness F for constant Reτ ≈ 1900. Symbols:
(▷) ZPG, (◇) β ≈ 0.9, (o) β ≈ 1.6, (◻) β ≈ 2.8 and (∗) β ≈ 4.4. For other details, refer

to Table 2.1.

(i.e., Sk ≈ 0). These trends are consistent with previous findings (for example, Balint

et al., 1991).

Figure 3.27(b) shows the flatness, F , of the streamwise velocity fluctuations for the

constant Reτ data. The zero pressure gradient flow has the lowest value of flatness

in the near-wall region and, in general, the flatness increases with pressure gradient.

In the outer region, the flatness is nearly invariant with pressure gradient. A rise in

flatness is often attributed to a rise in intermittency (Dengel and Fernholz, 1990). This

interpretation leads to the conclusion that there is a weakly increasing intermittency in

the near-wall region of the boundary layer as the pressure gradient increases.

Figures 3.28 show the skewness (a) and flatness (b) of streamwise fluctuating velocity

for the constant pressure gradient parameter, β ≈ 4.3 data with varying Reτ . As with

the lower-order statistics, the skewness collapses for all Reynolds numbers in the log-

arithmic and outer regions (the deviation near the wall is due to outer scaling of the

wall-normal coordinate, z). The invariance of skewness with Reynolds number shows

that the Reynolds number range is not great. At this pressure gradient, the skewness
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Figure 3.28: (a) Skewness Sk and (b) flatness F for constant β ≈ 4.3. Symbols: (⊞)
Reτ ≈ 1700, (⊠) Reτ ≈ 2500, (�) Reτ ≈ 3500, (�) Reτ ≈ 3900.

remains positive through most of the layer, consistent with the data in Figure 3.27(a).
Similarly, flatness collapses for all of the constant pressure gradient data in the logarith-

mic and outer regions and, as with the skewness, a relatively constant deviation from a

Gaussian distribution of velocity in the logarithmic and outer regions is observed.

The skewness analysis suggests that the interactions of the small-scales in the inner

region with the large-scales in the outer region cause the Sk to deviate in a positive

direction from the Gaussian distribution. This is similar to the trend of increasing Sk

with Reynolds number, attributed to a higher degree of interactions between the small-

and large-scales (Metzger and Klewicki, 2001). The large-scales are directly responsible

for the positive skewness in the outer region. The effect of a high-pass filter in the

outer region brings Sk closer towards Gaussian distribution, suggesting the large-scales

are responsible for negative skewness in this region. The flatness increases with the

pressure gradient parameter in the near-wall region however this effect reduces in the

outer region.
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3.14 Skewness relationship with amplitude modulation

Mathis et al. (2009) and Marusic et al. (2010b) have shown that the skewness is related

to the amplitude modulation of the near-wall, small-scale motions by the large-scale

structures. These studies also report the rise in skewness with higher Reynolds numbers

for ZPG flows and show that this is explained by the increased amplitude modulation.

The behaviour of the skewness observed in Figure 3.27(a) indicates that the large-scales
are not only increasing in strength, but are also increasingly amplitude modulating the

small-scales as the pressure gradient increases.

Schlatter and Örlü (2010) critically argued against the amplitude modulation parameter

proposed by Mathis et al. (2009) because of the similarity of the amplitude modulation’s

coefficient with the skewness coefficient. Mathis et al. (2011) expanded Sk using a

decomposed signal such that u+ = u+L + u+S , where subscripts L and S denote large and

small scale components, therefore

Sk = u+3

(u+2)3/2 =
u+3L + 3u+2L u+S + 3u+Lu+2S + u+3S

(u+2)3/2 , (3.39)

can be simplified as

Sk = ũ+3L + 3̃u+2L u+S + 3̃u+Lu+2S + ũ+3S , (3.40)

where ãb = ab/ (u+2)3/2. Mathis et al. (2011) has chosen a cut-off filter of λ+x = 7000,

however, in this analysis, the cut-off filter is λ+x ≈ Reτ = 3000. The cut-off filter selection

is discussed in Energy Spectra, Section 4.1.

The skewness and each term of decomposed skewness factors for an APG turbulent

boundary layer flow at Reτ ≈ 3000 and β ≈ 1.7 is shown in Figure 3.29. The small-scales

term ũ+3S and cross-term 3̃u+Lu
+2
S appear to account for the majority of the Sk up to

z+ ≈ 30. Mathis et al. (2011) also found these two terms to be important contributors

to Sk in ZPG boundary layer flow. However, much smaller contribution from 3̃u+
L
u+2
S

is

observed in Mathis et al. (2009) when compared with current APG data.

The larger cross product term 3̃u+
L
u+2
S

coefficient in Figure 3.29 (which is in APG), than

observed in Mathis et al. (2011) (in ZPG) needs further analysis. Therefore, it is helpful
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Figure 3.29: Skewness Sk for APG at Reτ ≈ 3000. The skewness factors are expanded
following u+ = u+L + u+S. The expanded terms are shown in (3.40).

to compare this term from all pressure gradient cases. We analyse these two significant

terms which are ũ+3
S

and 3̃u+
L
u+2
S
.

Figure 3.30(a) displays the small-scales term ũ+3
S

of the expanded Sk for APG, ZPG

and FPG at Reτ ≈ 3000. The term ũ+3S is slightly larger in APG than in ZPG and than

in FPG in the log region 40 ≲ z+ ≲ 0.15Reτ . In the outer region, the small-scales ũ+3S

term’s contribution to Sk collapses for all pressure gradient cases.

Figure 3.30(b) displays the cross product term 3̃u+
L
u+2
S

for APG, ZPG and FPG at

Reτ ≈ 3000. The cross product term 3̃u+
L
u+2
S

is larger for APG than for ZPG and FPG.

This could be related to the fact that there are more large-scales in the near wall region

as the boundary layer is exposed to APG (Krogstad and Sk̊are, 1995, Lee and Sung,

2009, Monty et al., 2011). In ZPG, Mathis et al. (2011) proposed that the cross product
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Figure 3.30: Skewness terms and amplitude modulation AM comparison of APG,

ZPG and FPG flows at matched Reτ ≈ 3000 (a) the small-scale term ũ+3S and (b)

the cross product term 3̃u+Lu
+2
S . Symbols: (⊡) APG (△) ZPG and (⊕) FPG skewness

terms. The AM are denoted by the solid symbols: (∎) APG, (▲) ZPG and (●) FPG.
The skewness is expanded as explained in Figure 3.29.
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Figure 3.31: Skewness terms 2 × 3̃u+Lu+2S and amplitude modulation AM comparison
of APG, ZPG and FPG flows at matched Reτ ≈ 3000. Symbols: (⊡) APG (△) ZPG
and (⊕) FPG skewness terms. The AM are denoted by the solid symbols: (∎) APG,

(▲) ZPG and (●) FPG.

term 3̃u+
L
u+2
S

to be an alternative to the amplitude modulation scheme by Mathis et al.

(2009) because of their robustness over a wide range of Reynolds numbers 2800 < Reτ <
19000. The term 3̃u+Lu

+2
S in the current ZPG data also bears a resemblance to the AM

coefficient (calculated by the method used in Mathis et al. (2009)) in Figure 3.30(b).
However, 3̃u+

L
u+2
S

coefficients are obviously much smaller than AM for the APG case

in z+ ≲ 0.15Reτ . The most important observation here is that 3̃u+Lu
+2
S share the same

resemblance of the AM for all three pressure gradients cases.

In order to collapse AM and 3̃u+
L
u+2
S

terms in Figure 3.30(a), another plot is displayed
in Figure 3.31, however the cross product term’s multiplier 3 is changed i.e. 2× 3̃u+

L
u+2
S
.

Now it can be seen that AM and 2× 3̃u+Lu+2S collapse for all the pressure gradient cases.
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Figure 3.32 shows the reconstruction of the skewness without the cross term 3̃u+
L
u+2
S
, i.e.

S̃k = ũ+3L + 3̃u+2L u+S + ũ+3S . For ZPG, S̃k in the log region 40 ≲ z+ ≲ 0.15Reτ approaches 0,

similar to the results by Mathis et al. (2011). However, for the APG case S̃k coefficients

are larger. The contribution can be observed in Figure 3.29 to come from the term ũ+3
S

for the region z+ ≲ 30 and from the term ũ+3
L

in the log region 40 ≲ z+ ≲ 0.15Reτ . In

contrast, the S̃k coefficient for the FPG case is much smaller than the ZPG and APG

cases.

For completeness, the same procedure to decompose the fluctuating velocity into small-

and large-scale components can be performed for the flatness. Following the notation in

(3.40), the expanded terms can be shown as
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Figure 3.32: Skewness terms reconstruction without cross term 3̃u+Lu
+2
S i.e. S̃k =

ũ+3L + 3̃u+2L u+S + ũ+3S for APG, ZPG and FPG flows at matched Reτ ≈ 3000. Symbols:
(⊡) APG (△) ZPG and (⊕) FPG skewness terms.
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Figure 3.33: Flatness F for APG at Reτ ≈ 3000. The Flatness factors are expanded
following u+ = u+L + u+S. The expanded terms are shown in (3.41).

F = ũ+4
L
+ 4̃u+3

L
u+
S
+ ̃6u+2

L
u+2
S
+ 4̃u+

L
u+3
S
+ ũ+4

S
, (3.41)

where ãb = ab/ (u+2)2. The flatness and each term of decomposed flatness factor for APG

turbulent boundary layer flow at Reτ ≈ 3000 and β ≈ 1.7 is shown in Figure 3.33. The

small-scales term ũ+4
S

decreases with increasing wall-normal distance and in contrast the

large-scales term ũ+4
L

increases with wall-normal distance. Both cross products 4̃u+3
L
u+
S

and 4̃u+Lu
+3
S are almost negligible however the

̃
6u+2L u

+2
S terms is consistently a significant

contributor to F for the entire boundary layer thickness.



Mean statistics 93

3.15 Turbulence production

When the large-scale features are removed from the flow, the positive deviation in the

skewness in APG flow as compared with the ZPG flow in the near-wall region is reduced

(Figure 3.25). This is the first evidence in the thesis to demonstrate that the APG

causes large-scale features to increase. Marusic et al. (2010a) showed that the large-

scale features in the logarithmic region in high Reynolds number ZPG TBL flows become

increasingly important in terms of sustaining and producing turbulence, as compared to

the near-wall cycle. In this section, turbulence production is analysed to demonstrate

the influence of the large-scale features (now known as a consequent of increasing APG)

on turbulence production. This section is therefore important to address the aim of the

thesis.

DeGraaff and Eaton (2000) showed a collapse of turbulence production for ZPG and

mild FPG cases in the near-wall region. However Bourassa and Thomas (2009) clearly

indicated that turbulence production is higher for the ZPG case (X/L=-2.5) across the

boundary layer as compared with the FPG/highly accelerated flow cases. The same

trend was observed in Aubertine and Eaton (2005), where turbulence production seems

to increase with APG across the entire boundary layer. Bradshaw (1967a) observed that

turbulence production increased especially in the outer regions, he attributed that the

large eddies (inactive motion) increase in strength relative to the rest of the turbulence as

APG level increases. Nagano et al. (1992) showed that turbulence production decreases

with APG, just the opposite to the other APG many studies. The conflicting trends

found in the literature could be due to scaling issues, as turbulence production has been

normalised with a range of scalings.

There could also be Reynolds number effects, as these experiments or simulations were

performed at different Reynolds numbers. The Reynolds number effect is known to alter

turbulence energy production in the outer region (Marusic et al., 2010c). Therefore, to

evaluate the pressure gradient effect, the Reynolds number has to be constant. The

constant Reynolds number set of data with Reτ ≈ 3000 for the APG, ZPG and FPG

flows data is considered in turbulence production analysis.

The general equation for turbulence production is given by

Pr = −uiuj Sij, Sij = 1

2
(∂Ui

∂xj
+ ∂Uj

∂xi
) , (3.42)
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where ui are the fluctuating velocity components. Subscripts ‘i’ and ‘j’ denote all

possible velocity components. Sij is known as the rate of strain tensor and Ui is the

mean velocity component (Pope, 2000). Here, the mean spanwise velocity is zero, which

reduces the general equation considerably so that the turbulence production, Pr+ scaled

with inner variables, can be written as

Pr+ = −uw+∂u+
∂z+
− u2+ ∂U+1

∂x+
+w2

+∂U+1
∂x+

. (3.43)

where w is the fluctuating velocity in the wall-normal direction. Since all experiments

performed in this study used only single hotwire sensors, the wall-normal component

of velocity w, is missing. To proceed however, it is sufficient to accept that w2
+
is

O(1) for all wall distances in the energy-containing region, i.e. 1 < z+ < δ+ (Kunkel

and Marusic, 2006). It is instructive to consider the orders of magnitude of each term

in equation (3.43): the first term, −uw+∂u+/∂z+ is O(10−1), while −u2+∂U+1 /∂x+ and

w2
+
∂U+1 /∂x+ are O(10−4), thus the second and third terms are negligible. Since w was

not measured, uw+ in the first term of equation (3.43) was estimated from formulations

described in Perry et al. (2002). Figure 3.34(a) shows the Reynolds shear stress, uw+

profiles for each pressure gradient. Given that this plot is only an estimation, we simply

note here that the APG case has much higher uw+ magnitude, while the uw+ profile

in the FPG case is only slightly lower than for ZPG. It is certainly the outer region

that distinguishes the three pressure gradient cases as earlier observed in the streamwise

turbulence intensity profiles. The increased Reynolds shear stress trend in the outer

region is well in agreement with the increasingly adverse pressure gradient results of

Bradshaw (1967a), Nagano et al. (1992) and Lee and Sung (2009) and on the other

hand, it is expected that the opposite would hold i.e. a decrease in Reynolds shear

stress in the outer region for an increasingly favourable pressure gradient, as in Jones

et al. (2001).

The estimated turbulence production, Pr+(z+), is shown in Figure 3.34(b). Turbulence
production is highest in the near-wall region as shown by experimental and numerical

studies. For example, Robinson (1991) summarised that the thin, near-wall buffer region

is the most important zone of the boundary layer in terms of the production of turbulence

energy. In the near-wall region, there is almost no observable change across the three

cases. In previous FPG studies, in contrast, it has been shown that a high acceleration

parameter K acts to reduce turbulence production in the near-wall region (Bourassa
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and Thomas, 2009, Fernholz and Warnack, 1998). Similarly, Skote et al. (1998) also

found that Pr+ increases in APG cases (when compared with a ZPG case). Near the

wall, Fernholz and Warnack (1998) stressed that ‘there is a strong absolute increase of

production term in the near-wall region during acceleration’. However, DeGraaff and

Eaton (2000) found that Pr+ collapses across all acceleration parameters except for the

lowest Reynolds number data (attributed to a low Reynolds number effect). It is possible

that the ‘changes’ in Pr+ in the near-wall region documented in many of the previous

studies are due to the Reynolds number effects, as many of them were performed at

relatively low Reynolds numbers. Another possible reason why no difference between
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pressure gradients was observed in the near-wall region is that the pressure gradients

in the current study are mild, i.e. ∂U+1 /∂x+ < O(10−4). For comparison, ∂U+1 /∂x+ in

Nagano et al. (1998) for the strong APG cases is five times bigger than in our APG case

and ∂U+1 /∂x+ in Bourassa and Thomas (2009) at position x/L = 0.25 (strong FPG case)

is one order of magnitude larger than the current FPG case.

Considering the outer region in the FPG case, Fernholz andWarnack (1998) and Bourassa

and Thomas (2009) have shown that a high acceleration parameter, K acts to reduce

turbulence production. In the outer region of the APG case, there is an increase in tur-

bulence production with pressure gradient strength (Aubertine and Eaton, 2005, Nagano

et al., 1992, Skote et al., 1998, Sk̊are and Krogstad, 1994). It is noted that Nagano et al.

(1992) and Sk̊are and Krogstad (1994) have used outer scaling when presenting pro-

duction statistics, however a rise (with pressure gradient) in the outer region in those

studies is still observed if inner scaling is used. In the current data, only a slightly differ-

ent shape is observed if δ is used as the length scale, thus for the rest of this section, the

discussion is based on inner-scaled quantities. Figure 3.35 shows turbulence production

scaled with δ (and Uτ ).

Marusic et al. (2010a) have shown that the Pr+ representation of Figure 3.34(b) visually
underestimates the importance of the contribution in the log region when using semi-

logarithmic axes. Instead, Marusic et. al. propose that one should plot Pr+z+ on these

axes since the total production can be written as

Pr+tot = ∫ δ+

0
Pr+ dz+ = ∫ δ+

0
Pr+z+ d(log z+). (3.44)

Therefore, on a plot of Pr+z+ versus log z+, equal areas represent equal contributionc to

the total production. In ZPG or in mild pressure gradient cases where the second and

third terms in equation (3.43) can be neglected, the contribution to the bulk production

can be written as

Pr+z+ = −uw+ ∂U+
∂z+

z+ = −uw+Ξ. (3.45)

It is now seen that the pre-multiplied form of the production is simply the Reynolds shear

stress, −uw+ multiplied by the diagnostic function, Ξ = z+∂U+/∂z+. The diagnostic
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function profiles for all pressure gradient cases are shown in Figure 3.34(c) and the pre-

multiplied turbulence production Pr+z+ profiles are shown in Figure 3.34(d). It can be

observed from the velocity profiles in Figure 3.9(a) that the inflection in the wake of the

velocity profile causes a peak in Ξ in the outer region. This peak, combined with the

peak in uw+, gives a large contribution to Pr+z+ in the outer region; the APG case,

therefore, exhibits the largest Pr+z+, followed by the ZPG and FPG cases.

In the near-wall region, Pr+z+ is observed to be almost invariant with pressure gradient.

The reason for this invariance can now be explained. Ξ will change only weakly with

pressure gradient near the wall (negligible change for weak pressure gradients such as

these), so long as Prandtl’s law of the wall holds. The Reynolds shear stress near the wall

also does not change much compared with the outer region for these pressure gradient

strengths. To understand this, consider the two main contributors to the near-wall
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motions; small-scales from the near-wall cycle and the ‘foot-print’ of the large-scales

which acts to modulate the small-scales. Now, the large-scale structures themselves do

not contribute directly to uw+ near the wall in contrast to u2
+
(they are ‘inactive’

is this sense). It will be shown in the next chapter that there is considerably more

energy in the large-scales in the APG flow, however, there is no evidence of changes to

the small-scales near the wall. As such, the small-scales may experience more or less

modulation with pressure gradient (due to energy difference in the large-scales), but the

mean uw+ will be insensitive to the pressure gradient.

The results from this analysis reveal that the APG does not cause significant change

towards the turbulence production in the near-wall region. The statistical analyses

indicate that it is again the outer region that contains the distinguishing features for

the three pressure gradient cases either in the turbulence production plot or in the pre-

multiplied turbulence production plot (Figures 3.34(b) or (d)). The stronger influence

of the APG on turbulence production in the outer region as compared with the near-wall

region is in agreement with such an effect in the mean velocity and turbulence intensity

profiles seen in Figures 3.9, and in the skewness and flatness profiles in 3.23 (even

though quite significant change is observed in the near-wall region of the skewness).

This phenomenon can be related to the fact that the large-scale features increase in

the outer region5. This relationship is however not an explicit one, as the large-scale

features are not identified in this section. The flow structures can be identified using the

energy spectra analysis. Chapter 4 attempts to provide some insights into the structures

that contribute to the change in spectral statistics with different pressure gradients as

observed above.

5large-scale features are associated with the outer region (Adrian et al., 2000, Hutchins and Marusic,
2007a)



Chapter 4

Energy distribution

This chapter analyses the energy spectra of TBL flows exposed to pressure gradients.

The spectra indicate the energy associated with different length-scales, which can be used

to infer characteristics of the structures of the flow. This chapter also analyses the effect

of hotwire sensor length on the spectra. Finally, a comparison of energy distribution of

APG, ZPG and FPG flows are shown to demonstrate the effect of pressure gradients

at the same Reynolds number and sensor length parameter as in Monty et al. (2009)’s

ZPG TBL, channel and pipe flows comparison. Therefore, this chapter is important

to address the aims of the thesis i.e. to identify pressure gradient effect on the flow

structures.

Via a two-sensor correlation study, Sk̊are and Krogstad (1994) showed that the APG

shortens the large-scale structures in the outer region. In contrast, in FPG flows, the

structure gets flattened and longer with stronger FPG (Bourassa and Thomas, 2009).

The behaviour of the turbulence characteristics in terms of energy distribution when

exposed to different pressure gradients in the outer region is not only relatively well

documented, but the trends of such behaviour are found to be similar across different

studies.

However, there is still conflicting information about the effect of pressure gradients in

the near-wall region. Lee and Sung (2009) showed that the streak spacing quadruples to

λ+y = 400 in mild pressure gradient. This is quite a significant change, as streak spacing

is known to be nominally λ+y ≈ 100 in ZPG (Kline et al., 1967) and slightly longer in

FPG, λ+y > 100 (Bourassa and Thomas, 2009). Prior to Lee and Sung (2009)’s study,

the streak spacing was also found to be longer in the APG, e.g. λ+y ≈ 130 in Skote and

99
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Henningson (2002). The effect of pressure gradient on streak spacing will be discussed

in detail in Chapter 5, however the information above highlights the disparity in the

literature. These streaks interact with features in the outer portion of the flow, and it

is felt that this process plays a dominant role in turbulence production (Kline et al.,

1967). Therefore, any remarkable change in streak spacing indicates major structural

change in the near-wall region and it is the intention here to evaluate such change in an

energy spectral density study.

This chapter consists of two relevant main topics: the energy spectra and scale decom-

position. To limit the extent of the discussion without missing any important issue, only

the comparison of adverse, zero and favourable pressure gradients at constant Reynolds

number (Reτ ≈ 3000) and at an increasing pressure gradient, constant Reynolds number

(Reτ ≈ 1900), are used. This chapter also attempts to evaluate the relationship between

the rise in the mean velocity and turbulence intensity profiles in the outer region with

the increased large-scale features. A scale decomposition analysis is also used to demon-

strate the increased large-scale features. The extent of the small-scale attenuation due

to large l+ in pressure gradient flows is also analysed.

4.1 Energy spectra

A useful way to study and compare the energy content is to present the energy distri-

bution in the form of a pre-multiplied energy spectra map for the streamwise velocity

fluctuation, as published by del Álamo and Jiménez (2003) and Hutchins and Maru-

sic (2007a). The map displays contours of the pre-multiplied Power Spectral Density

(kxφuu/U2
τ ) plotted against wall-distance z+ and non-dimensional wavelength λ+x. Here

kx = 2πf/Uc is the wave-number, f is the frequency and Uc is the convection velocity,

taken to be the local mean velocity (invoking Taylor’s frozen turbulence hypothesis).

In many cases, when the Reynolds number (Reτ ) is constant, another axis with outer

scaling is shown (λx/δ and z/δ). These representations are simply a reflected mirror

image of conventional kxφuu/Uτ
2 versus log(kxδ) (in comparison with kxφuu/Uτ

2 versus

λx/δ plot), and the equal area under the curve represents equal contribution to energy

(refer to Hutchins and Marusic, 2007b, Nickels et al., 2005).

In ZPG flow, there is a highly energetic peak in the near-wall region occurring at z+ ≈ 15
and λ+x ≈ 1000, called the ‘inner peak’. The inner peak is due to the inner wall cycle of

streaks and quasi-streamwise vortices (Kline et al., 1967). The energy shifts to a larger
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wavelength, growing with the distance from the wall. Hutchins and Marusic (2007b)

showed that there is a second peak in the boundary layer spectra map at z+ ≈ 0.06δ,

corresponding to superstructures of wavelength λx/δ ≈ 6. Mathis et al. (2009) later

refined the location of this peak to be Reynolds number dependent, z+ ≈ (15Reτ )1/2.
The current data were carefully acquired with the non-dimensionalised sensor length

remaining constant at l+ ≈ 30, to account for the attenuation in turbulence intensities

due to spatial resolution uncertainties in the near-wall region. The Reynolds number

was also kept constant to isolate any potential Reynolds number effects.

Figures 4.1(a) to (c) show such maps for all three flows; (a) for APG, (b) for ZPG and

(c) FPG cases. The overall shape of the three maps remain similar, however, there are

substantial differences appearing in the outer region. At first glance, for all the maps, a

similar highly energetic peak can be observed near the wall at z+ ≈ 15, centred around

λ+x ≈ 1000 (marked by the symbol ‘×’). This is the ‘inner peak’, the well-known near-wall

cycle energetic signature described earlier.

In these figures, the contours denote iso-pre-multiplied energy, kxφuu/U2
τ . Contour levels

are from 0.16 to 1.6 in steps of 0.16. Some contour lines are highlighted with their

magnitudes indicated; these lines are intercepted with ‘+’ signs. The white dash-dotted

lines indicate λx/δ = 1. The ‘outer peak’ for the ZPG case reported by Hutchins and

Marusic (2007b) and Mathis et al. (2009) is denoted by the symbol ‘▲’, located at z+ ≈
(15Reτ )1/2 at wavelength λx/6 ≈ δ. It can be seen in Figure 4.1(b) that this peak occurs

at a slightly lower wall-normal distance and a shorter wavelength. This is indicated

by the location of maximum energy in this region i.e. contour line kxφuu/U2
τ = 1.12.

The outer peak for the APG case is not clearly seen from the contour map, however an

outer hump can clearly be observed (because of the rather wider region in which these

features become energetic). It will be shown later that the peak in the APG case occurs

at z/δ ≈ 0.3 at wavelength λx/δ ≈ 3, this is denoted by the symbol ‘∎’. The existence

of this peak is observed to be weak in FPG. This suggests that one of the effects of the

adverse pressure gradient is to significantly strengthen the large-scale motions.

It can be observed that in the ZPG case, the contour line that corresponds to kxφuu/U2
τ =

1.6 overlaps the λx/δ = 1 line, while in the FPG case, the same energy is shifted away

from this line (towards smaller wavelengths). Thus, there is evidence of more large-

scale contribution in the near-wall towards turbulence intensities for the APG case.

Nonetheless, the location of the near-wall peak is approximately the same for other

cases. For the APG case, in Figure 4.1(a), the near-wall peak in the kxφuu/U2
τ may
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occur at wavelength longer than λ+x ≈ 1000. This is one of the foci of the thesis, to be

revisited in Section 4.3.

It is known that as the pressure gradient parameter β gets larger, the boundary layer is

getting close to separation from the wall. Near separation, the coefficient of friction, Cf ,

value is very small, and at incipient separation, before reversed flow is encountered, Cf

is zero. Therefore as β increases to very large values, there is less energy in the near-wall

region. In a mild pressure gradient flow such as in this experiment, friction velocity Uτ

decreases with increasing APG (refer to Figure 3.1), since the spectral energy density

results are scaled with Uτ (to compare the small– and the large-scale features), the

larger-scale features in the APG case are observed to have increased relative to the ZPG

case. Therefore, it shall be noted that when a reference is made to the strengthened

or energised large-scale motions due to APG, it means the large-scale energy increases

relative to the small-scale energy. This description is used throughout the thesis.

Figures 4.2(a) - 4.2(c) show a repeat of Figures 4.1(a) - 4.1(c), with only contours.

These contours are finer than in Figures 4.1(a) - 4.1(c) i.e. the contour levels are 0.12

to 1.8 in steps of 0.12. The darkened contour lines for every three steps are shown for

better comparison of these figures. The darkened contour line kxφuu/U2
τ = 1.44 in the

near-wall region for the APG flow extends further beyond λx/δ = 1 when compared with

the ZPG and FPG cases. As shown in Figures 4.1(a) - 4.1(c), this effect is due to the

increased larger-scale features in the near-wall region.

To observe the differences caused by pressure gradient, it is useful to subtract the extra

energy due to APG as compared with the ZPG flow. In contrast, the difference between

ZPG and FPG can also be shown by subtracting the energy of the FPG flow from the

energy in the ZPG flow. The general equation for this calculation is

ψuu∣PG

U2
τ

= kx[(φuu)∣PG − (φuu)∣ZPG]
U2
τ

. (4.1)

The energy difference between the APG and ZPG flows ψuu∣APG/U2
τ is shown in Figure

4.2(d) and ψuu∣FPG/U2
τ is shown in Figure 4.2(e). It can be seen that a significant

amount of energy is added in the outer region for the APG flow and in contrast, energy

is reduced for the FPG flow in this region. Interestingly, the peak energy difference

occurs at approximately the same location z/δ ≈ 0.2 - 0.3, and the same wavelength

λx/δ ≈ 2 - 3, for both APG and FPG cases. Even though the additional large-scale
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energy is centred in the outer region, there is also significant additional energy in the

near-wall region for the APG case.

From the overall picture of the energy content of the three flows given in Figure 4.1, it

is evident that the most significant differences appear in the outer part of the boundary

layers, although there are some discrepancies remaining close to the wall (clearly evident

in the total streamwise energy plot of Figure 3.9(b)). To further analyse the effect of

pressure gradients on energy distribution, it is helpful to compare energy spectra for

each pressure gradient case at selected wall-normal locations. The wall-normal locations

chosen are (a) z+ ≈ 15, (b) z+ ≈ 100, (c) z+ ≈ (15Reτ )1/2, and (d) z/δ ≈ 0.3.
The pre-multiplied spectra scaled with friction velocity, kxφuu/U2

τ at each wall-normal

location are shown in Figures 4.3(a) to (d). In the near-wall region, (Figure 4.3(a)), all
flows show a similar energy distribution with the inner peak clearly visible at λ+x ≈ 1000.
It can be seen that the intensity of the inner peak is of the same magnitude (within

experimental uncertainties), suggesting that the small-scale features remain mostly un-

affected by the pressure gradient. However, there is a rise of the energy in the larger

wavelengths (λx > δ) as the pressure gradient turns sign from FPG to APG. This is

an evidence of the strengthening of the ‘footprint’ of the large-scales as described by

Hutchins and Marusic (2007a) as the adverse pressure gradient increases.

At z+ ≈ 100 shown in Figure 4.3(b), the large-scale structures clearly dominate the flow

in the APG case as compared with the ZPG case. The most energetic structures here

are at λx/δ ≈ 6. The large-scale structures are energised in APG however the small-scale

motions are only weakly energised with the changing pressure gradient. For the FPG

case, it seems that the contributions from the small- and large scale features are about

balanced resulting in a almost flat kxφuu/U2
τ for 0.5 ≲ λx ≲ 6.

In the geometric centre of the log region, z+ ≈ (15Reτ )1/2 as shown in Figure 4.3(c),
the large-scale structures have a clear peak wavelength of λx/δ ≈ 6, the same as found

previously (Hutchins and Marusic, 2007a, Mathis et al., 2009). The λx/δ = 6 line is

shown by the solid vertical line in this figure. However, in the APG case, the most

energetic structures seem to occur at λx/δ ≈ 3, (half as long as in the ZPG case), shown

by the vertical dashed-dotted line. The large-scale motions’ signature is not clearly seen

in the FPG case. Shorter structures observed in the outer region in the APG case is

consistent with finding by Sk̊are and Krogstad (1994). This figure suggests that the

higher turbulence intensities in the outer region due to increasing pressure gradient seen

in Figure 3.9(b), come from the enhanced energy of the large-scale features.
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Figure 4.3: Pre-multiplied energy spectra, kxφuu/U2
τ at constant Reτ ≈ 3000 and l+ ≈

30 at four selected wall-normal locations, (a) z+ ≈ 15, (b) z+ ≈ 100, (c) z+ ≈ (15Reτ)1/2,
and (d) z/δ ≈ 0.3. (⊡) APG (△) ZPG and (⊕) FPG. The solid line indicates λx/δ = 6

and dashed dotted line indicates λx/δ = 3.

There is definitely more energy in the outer region in the APG case than in the ZPG and

FPG cases. Figure 4.3(d), shows that the energy for the APG at z/δ ≈ 0.3 is strongly

intensified; the magnitude of the energy in the APG case is double that of the FPG case

across all wavelengths. The most energetic structures in this region centre at λx/δ ≈ 3,
invariant with the pressure gradient. It has been shown that the dominant mode in the

outer region in channel and pipe flows is similar (Balakumar and Adrian, 2007, Monty

et al., 2011), and this mode is termed the ‘large-scale motion’ (LSM). In APG, the LSM

is strongly energetic, the ‘outer peak’ with the wavelength signature λx/δ ≈ 6 may still
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λx/δ = 2

exist in the log region, however being ‘swamped’ by the LSM. There seems to be two

energetic modes overlapping in these regions, the LSM (strong both in log and outer

regions) and the λx/δ ≈ 6 structures (only strong in the log region).

Since it is not clear how turbulent fluctuations scale in pressure gradients, a second

scaling is tried here. The energy distribution is now scaled with the free stream velocity,

U1, as shown in Figures 4.4(a) to (d). In the near-wall region, z+ ≈ 15, energy is

closer across the three flows for large wavelengths; this is shown by the dashed-dotted

line λx/δ = 2 in Figure 4.4(a). Note that a different convection velocity is used to scale
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Figure 4.5: Pre-multiplied energy spectra of streamwise velocity fluctuation kxφuu/U2
1

at constant Reτ ≈ 3000 and l+ ≈ 30 at z+ ≈ 15 using convection velocity of Uc = 0.82U1.
(⊡) APG (△) ZPG and (⊕) FPG.

energy in the near-wall region. When convection velocity is taken as Uc = 0.82U1 (Dennis

and Nickels, 2008) shown in Figure 4.5, again a similar effect as in Figure 4.4(a) can
be observed for large wavelengths. Therefore the trend observed for the large-scale in

Figure 4.4(a) is not simply due to the scaling used.

At z+ ≈ 100, shown in Figure 4.4(b), there is a little more energy in the larger-scales

in the APG case. This is indicated by the slight increase in energy at λx/δ ≈ 6. As

the distance increases further away in the log region, the large-scales are more energetic

relative to the small-scales especially in the APG case. A milder effect can be observed in

the ZPG and FPG cases as well, this is shown in Figure 4.4(c). In the outer region, the

small-scales are weaker for all three pressure gradient cases, the large-scales dominate

the flow. This is shown in Figure 4.4(d).
Both scaling with friction velocity Uτ and free stream velocity U1, consistently indicate

that energy increases in the outer region are due to the increased large-scale content.
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This energy, centred at λx/δ ≈ 3, is not only prominent in the turbulent boundary

layer flows, but as mentioned earlier, also in pipe and channel flows. As can be seen

in Figure 4.3(d), the peak energy in the ZPG and FPG cases is reduced compared

with APG, however, distributions appear similar. To check this, it is useful to plot

the energy spectra scaled with its maximum magnitude, kxφuu/kxφuu∣max. The pre-

multiplied energy spectra of streamwise velocity fluctuation kxφuu/kxφuu∣max for APG,

ZPG and FPG cases is shown in Figure 4.6. This figure shows that the distribution of

energy in the outer region (z/δ = 0.3) is the same for all three pressure gradient cases.

The energy spectra analysis shows that the most influenced features in boundary layers

subjected to different pressure gradients are the large-scales, in the outer region. Large-

scale motions are energised with APG and in contrast they are attenuated in FPG. It

is important to understand the contributions from the small– and large-scale features

due to the introduction of pressure gradient in more detail. In fact it is possible to
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perform such an analysis by adopting a separation of scales procedure. Such separation

of features is discussed in the following section.

4.2 Scale decomposition

This section attempts to highlight the effect of pressure gradients on the small– and

large-scale features via scale decomposition. The decomposition method is similar to

that proposed by Hutchins and Marusic (2007b) and Mathis et al. (2009), a cut-off

wavelength is defined based on an analysis of the pre-multiplied energy spectra map

of the streamwise velocity component. A cut-off length-scale equal to the thickness of

the boundary layer (λxc = δ) was chosen. This cut-off length scale was used by Mathis

et al. (2009) in the quantification of amplitude modulation of the small-scales of wall-

turbulence in zero pressure gradient boundary layers. These lines are shown in Figures

4.1(a) to (c). It can be observed in these figures that there may be an insufficient

scale separation at these Reynolds numbers particularly in FPG. For example, there is

significant large-scale component (λx/δ > 1) that actually contributes to the inner peak.

However the ‘leak’ here is considered too small to affect any significant outcome.

Figure 4.7 shows the decomposed turbulence intensity profiles (from Figure 3.9(b)) for

the three pressure gradient flows. It is observed that the energy from the large-scales is

dominant in the outer region for all three cases. However the large-scale energy contri-

bution for the APG case is much higher throughout the flow, particularly in the outer

region (where a secondary peak in the broadband turbulence intensities is present). Al-

though there is also increased energy in the small-scales in the outer region of the APG

boundary layer, it is the large-scale energy increase that is the major contributor to the

high turbulence intensities in this region. The large-scale component is also energised

in the log region and down to the near-wall region in the APG case. Since the small-

scale component is almost invariant with the pressure gradient, it is the difference in

the large-scale content that is the greater contributor in the near-wall region as well.

The insignificant change in the small-scale component in the inner region (z+ ≲ 50) sug-
gests that the near-wall cycle remains similar despite the pressure gradient introduction.

Hutchins and Marusic (2007a) reported that the increased magnitude of the broadband

turbulence intensities at z+ ≈ 15 is due to greater influence of the large-scales or the

‘foot print’ in ZPG. Monty et al. (2011) proposed that foot-print is stronger with APG,

as observed here. The increase of the near-wall turbulence intensity in the APG case is

due to the increased influences and other activities of the large-scale structures in the
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Figure 4.7: Decomposition of the broadband turbulence intensity profiles u2/Uτ
2

into a small- and a large-scale components for constant Reτ ≈ 3000 and l+ ≈ 30. Small-
scale components (λx/δ < 1) symbols: (∎) APG, (▲) ZPG and ( ) FPG. Large-scale
components (λx/δ ≥ 1) symbols: (⊡) APG, (△) ZPG, (⊕) FPG. Dashed-dotted line

denotes z+ = 15.

near-wall region, and the converse: the reduction in the near-wall turbulence intensity

for the FPG case seen in Figure 3.9(b) is associated with reduction of such activities of

the large-scale structures.

The near-wall turbulence intensity peak is not only related to the effect caused by the

large-scales in the near-wall region (the effect of large-scales increases with Reynolds

number), it is also directly associated with the attenuation of the small-scales due to

large non-dimensionalised hotwire sensor length, l+. Therefore, a closer look at l+ and

influences of pressure gradient on energy spectra is required.
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4.3 The effect of sensor length

It is certainly exciting to observe the ‘longer’ features than the nominal value of λ+x ≈ 1000
detected for the inner peak in the APG case shown in Figure 4.1(a). If this is true, there
may be structural changes in this most important region of the boundary layer (Kline

et al., 1967), this will be addressed in this section. Before proceeding into the details

of experimental set-up and analysis of this section, it is helpful to review important

features of the l+ effect in ZPG boundary layers.

Ligrani and Bradshaw (1987) explained that turbulence intensities become increasingly

attenuated as the hotwire sensor length l+ increases. Therefore, l+ ≈ 20 − 25 was sug-

gested so that turbulence intensities are sufficiently resolved in this region. Using the

scale decomposition method and energy spectra analysis as described in the previous

sections, Hutchins et al. (2009) elaborately explained that the large-scale contribution

to turbulence intensities for the entire ZPG boundary layer collapses at a given Reynolds

number, invariant with l+ in ZPG. However, the small-scale contribution in the near-wall

region decreases with increasing l+. The argument is that as l+ increases, the small-scale

structures which advect past the wire, are thin enough relative to the wire length, this

causes the signal triggered by such advections to be averaged with the rest of the sensor

length. This has caused attenuations to the small-scale fluctuations, resulting in under-

resolved turbulence intensities in the near-wall region. While the effects of l+ have been

studied in great length in ZPG, there has been no such study in boundary layers with

pressure gradients. This has left experimenters (and even researchers in computational

studies focusing on spatial resolution) to assume that recommendations from l+ stud-

ies in ZPG flows are also valid for pressure gradient flows. However, cautions shall be

exercised because the large-scale features in the near-wall region detected by a given

l+, previously invariant in ZPG, have now varied with pressure gradient (as shown in

Section 3.13, Lee and Sung, 2009, Sk̊are and Krogstad, 1994).

Hutchins et al. (2009) established an empirical equation determining the relationship

between the magnitude of the near-wall peak in the turbulence intensities as a function

of l+ and Reynolds number. However, in pressure gradient flows, the magnitude of

the near-wall peak is also a function of the pressure gradient parameter β, shown in

Monty et al. (2011). Even though no explicit form was established, the latter has

conclusively shown that the near-wall turbulence intensities peak increases with β when

l+ and Reynolds number remain constant. Thus, the empirical relationship proposed

by Hutchins et al. (2009) fails to predict the behaviour of turbulence intensities with
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the presence of a pressure gradient1. It has been shown in Figures 4.7(a)-(d) that the

presence of large-scales is responsible for the rise in the turbulence intensities for the

entire boundary layer profile. This phenomenon has warranted a closer look at the

effect of l+ and pressure gradient on turbulence intensities. To perform this analysis,

comparisons of varying l+ in a constant Reynolds number and constant pressure gradient

are needed, as well as increasing Reynolds number experiments performed at different

pressure gradients (similar to testing l+ in ZPG). While it is relatively easy to perform

varying l+ with constant Reynolds number, the effect of varying Reynolds number could

not be performed here due to laboratory limitations. The Reynolds number needs to be

very large, for example Reτ ≈ 6000 for any significant behaviour to be observed. This is

not possible to achieve with the current wind tunnel set-up.

Figure 4.8 shows the decomposed turbulence intensity profiles for varying l+ for the

APG case (β ≈ 1.6) at Reτ ≈ 3000. Clearly, the small– and large-scale contributions to

u2/Uτ
2 collapse in the outer region, are invariant with l+. In the near-wall region, there

is a trend of a decreasing small-scale contribution with increasing l+, in agreement with

Hutchins et al. (2009).

To clearly observe the energy distribution due to the varying l+, it is helpful to look at

the spectra map of these cases. Figures 4.9(a) - (c) show the spectra map at Reynolds

number (Reτ ≈ 3000) with varying l+. Contour levels are from 0.12 to 1.8 in steps of

0.12. For every three steps, the contour is highlighted with thicker lines. The values of

these thicker lines are indicated on the plots; the corresponding line is intercepted by

the symbol ‘+’. In the outer region, the magnitudes of kxφuu/U2
τ are about the same

across l+. Among the three cases, it can be seen in Figure 4.9(a) that the l+ ≈ 20 case

has the highest kxφuu/U2
τ ’s near-wall peak magnitudes. This is indicated by the contour

line kxφuu/U2
τ = 1.8 in Figure 4.9(a) (Figures (b) and (c) do not have the contour line

kxφuu/U2
τ = 1.8). This effect can be observed in Figure 4.8 too; moving from FPG to

APG shows a larger wall-normal distance where this peak occurs. Now the relationship

between pressure gradient and the location of the near-wall peak highlighted at the

start of this section is established, i.e. APG causes the near-wall peak to occur at longer

wavelength.

It is interesting to learn that the location of inner peak has ‘changed’ in the case of

l+ ≈ 40. This is in fact different from the observations in the ZPG case, where the

most energetic structures in the near-wall region remain at the same wavelength, i.e.

1Demonstration of how the prediction by Hutchins et al. (2009) should distinguish data from TBL
exposed to pressure gradient is shown in Section 3.11.
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Figure 4.8: Decomposition of the broadband turbulent intensity profile u2/Uτ
2 into a

small- and a large-scale components at Reτ ≈ 3000 for APG with varying l+. Symbols:
(◾) l+ ≈ 20, (⊡) l+ ≈ 30 and (⊙) l+ ≈ 40. Small-scale components (λx/δ < 1) are
denoted by dashed-lines and large-scale components (λx/δ ≥ 1) are denoted by solid

lines. Dashed-dotted line denotes z+ = 15.

(λx ≈ 1000) across l+ (Hutchins et al., 2009). Note that in Figure 4.1(a), the greatest

contour line value is kxφuu/U2
τ = 1.6, less than specified here (in Figure 4.9, the greatest

contour line value is kxφuu/U2
τ = 1.8). Therefore, in Figure 4.1(a), the inner peak falls

within a wider region of iso-kxφuu/U2
τ = 1.6 and consequently, it seems that the near-wall

peak is marginally disturbed by the pressure gradient. In Figure 4.9(a), the symbol ‘o’

refers to λ+x = 1500 and z+ = 15, an approximate centre of kxφuu/U2
τ = 1.44. Note that
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this is not only observed in Figure 4.9(c) - the same trend could also be sensed in Figure

4.9(b). The centre of iso–kxφuu/U2
τ = 1.68 (contour value not shown) occurs at a slightly

longer wavelength λ+x > 1000.
As pointed out by Hutchins et al. (2009), there is an attenuation of the small-scale

fluctuations in the near-wall region as l+ increases. In APG, this is further complicated

by the significant rise of longer structures in this region. To evaluate this, the energy

spectra in the longer l+ cases could be subtracted from the energy spectra in the l+ ≈ 20
case to create energy deficit:

ψuu∣m
U2
τ

= kx[(φuu)∣l+≈20 − (φuu)∣l+=m]
U2
τ

. (4.2)

The energy deficit for l+ ≈ 30 is shown in Figure 4.9(d). There is an energy deficit from

the small-scale fluctuations originating from the near-wall region. The deficit consists of

structures well shorter than λx/δ = 1 (albeit that a little loss of signatures for features

longer than λx/δ = 1 could be observed). Figure 4.9(e) displays energy deficit for case

l+ ≈ 40. As expected, there is a great deficit of shorter structures centred at λ+x ≈ 1000
in the near-wall region. This is in agreement with Hutchins et al. (2009) and Chin

et al. (2011). However, unlike in the ZPG cases in these citations, the effect of large

l+ not only reduces the near-wall turbulence intensities, it also causes the large-scales

to superficially dominate the flow. The immediate, preliminary conclusion from these

observations is that the near-wall peak occurs with longer structures (as seen in Figure

4.9(c)).
This effect is shown more clearly in Figures 4.10(a) to (d). Figure 4.10(a) shows pre-

multiplied energy spectra for different l+ in the near-wall region, z+ ≈ 15. The λx/δ = 1
lines in Figures 4.9 is shown again in Figure 4.10(a) by the dashed-dotted line. Note

that the contribution of the large-scales (λx/δ ≳ 1) collapses across l+. The λ+x = 1000
is shown by the solid line. It is now obvious that the peak for the case l+ ≈ 20 occurs

at λ+x = 1000, however, as l+ grows, the peak seems to shift to longer length scales.

Figures 4.10(b) to (d) exhibit similar small– and large-scales contribution for the outer

regions, similar to results in the varying l+ case in Hutchins et al. (2009). Therefore, the

preliminary conclusion from Figure 4.9(c), in which the most energetic features have

a length scale of λ+x ≈ 1500 is indeed inaccurate. The ‘change’ of the near-wall peak

location in turbulence intensities (Figure 4.8) for large l+ can now be explained; it is due

to spatial resolution issues.
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Figure 4.9: Plots (a) -(c): pre-multiplied energy spectra of streamwise velocity fluc-
tuation kxφuu/U2

τ at constant Reτ for the APG, (β ≈ 1.6) with varying l+. Contour
levels are from 0.12 to 1.8 in steps of 0.12. Plots (d) and (e): missing energy, ψuu/U2
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Figure 4.10: Pre-multiplied energy spectra, kxφuu/U2

τ at constant Reτ ≈ 3000 for the
APG, (β ≈ 1.6) with varying l+ case at four selected wall-normal locations, (a) z+ ≈ 15,(b) z+ ≈ 100, (c) z+ ≈ (15Reτ)1/2, and (d) z/δ ≈ 0.3. Symbols: (◾) l+ ≈ 20, (⊡) l+ ≈ 30
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The same procedure of varying l+ in constant Reynolds number is repeated for the FPG

case. Figure 4.1(c) (spectra map for FPG case) does not exhibit any particular deviation

from the ZPG case, except that the outer peak is significantly diminished. Figure 4.11

shows the decomposition of the small– and large-scales for varying l+ for the FPG case

(β ≈ −0.4, K ≈ 0.78 × 10−7), at constant Reynolds number, Reτ ≈ 3000 with a cut-off

filter λxc = 1. As expected, this figure shows the collapses of small– and large-scale

contributions in the outer regions. The collapse of the large-scale contribution in the

near-wall region is remarkable. Note that the largest sensor length here is l+ ≈ 48 (as
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Figure 4.11: Decomposition of the broadband turbulent intensity profile u2/Uτ
2 into

a small- and a large-scale components at Reτ ≈ 3000 for the FPG case (β ≈ −0.4, K ≈
0.78 × 10−7), with varying l+. Symbols: (⊚) l+ ≈ 48, (⊕) l+ ≈ 30 and (●) l+ ≈ 20. Small-
scale components (λx/δ < 1) are denoted by dashed-lines and large-scale components

(λx/δ ≥ 1) are denoted by solid lines. Dashed-dotted line denotes z+ = 15.

compared with the largest l+ in the APG cases, l+ ≈ 40). Thus, a greater effect of the

small-scale attenuation could be observed. It is also interesting to note that the small-

scale contribution to the turbulence intensities for any l+ is: u2/Uτ
2 < 4 while for the

APG cases, the small-scales contribution is: u2/Uτ
2 > 4. The l+ in both the APG and

FPG cases are similar (l+ ≈ 20, l+ ≈ 30, except for the largest one, l+ ≈ 40 in the APG

case, against l+ ≈ 48 in the FPG case).

Now that the effect of large l+ in the near-wall region is known, it is imperative that an

accurate experiment and assessment be performed at small l+. Analysis at the smallest

l+ here, (l+ ≈ 20) will therefore provide a better result in observing the behaviour of

the small-scale features in the near-wall region. Figures 4.12(a) and (b) show pre-

multiplied kxφuu/U2
τ at constant Reτ ≈ 3000 and l+ ≈ 20 for the APG case and FPG case

respectively. Note that, for the APG case, Figure 4.1(a) is reproduced in Figure 4.12(a)
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Figure 4.12: Pre-multiplied energy spectra of streamwise velocity fluctuation
kxφuu/U2

τ at constant Reτ ≈ 3000 and l+ ≈ 20 for the APG case (a) and for the FPG
case (b). Contour levels are from 0.12 to 1.8 in steps of 0.12. Energy difference, ψuu/U2

τ(c). Contour levels are from 0.1 to 0.9 in steps of 0.10. The symbol ‘×’ denotes the
location of z+ = 15, λ+x = 1000, dashed-dotted lines denote λx/δ = 1.

to facilitate visual comparison with the FPG case. The near-wall peak for both APG and

FPG flows occurs at z+ ≈ 15, λ+x ≈ 1000. However, as expected, the large-scale structures
are more energised in the APG case. This is shown by the contour line kxφuu/U2

τ = 1.44
that crosses the λx/δ = 1 line in the APG case (the same contour line barely crosses

the λx/δ = 1 in the FPG case). The resulting energy difference, ψuu/U2
τ is shown in

Figure 4.12(c). Note that the contour line for energy difference starts at ψuu/U2
τ = 0.1.
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The key for ψuu/U2
τ = 0.0 − 0.1 is not shown to avoid too much of darker colour in the

plots, not to avoid any noise inherited from such calculation. The energy deficit analysis

in the region where the near-wall peak occurs (marked with ‘×’ in Figure 4.12(c)) is

small (ψuu/U2
τ < 0.1). Therefore, it is clear now that the energy difference in the near-

wall region is negligible. These results confirm two main issues. Firstly, the selection

of l+ ≳ 30 will cause a near-wall peak to occur with a superficially longer wavelength,

λ+x > 1000. Secondly, changing pressure gradients such as these (−0.4 < β < 1.7) do not

significantly change the structure in the near-wall region.

In summary, these analyses have shown that the small-scale attenuation in the near-wall

not only produces a lower near-wall peak magnitude in turbulence intensities, it also

superficially causes the inner peak to occur at a longer length scales than the nominal

value of λ+x ≈ 1000. The insignificant effect across the pressure gradient observed in

energy spectra analysis in the near-wall region is in contrast to recent findings by Lee

and Sung (2009), Skote and Henningson (2002). Such disparity warrants a closer look

especially into the structure of the streaks in this region; this shall be analysed in Chapter

5 (Streamwise velocity correlation). A further observation arising from this analysis is

that the empirical form in Hutchins et al. (2009) fails to predict the behaviour of near-

wall turbulence intensities at large l+ in APG flows.

4.4 The rise of large-scales in APG

Section 4.1 shows that large-scale structures are more energised in APG. The pressure

gradient parameter for the APG case in Section 4.1 is mild, i.e. β ≈ 1.7. In the liter-

ature, experiments in APG have been carried out with a wide range of β, as discussed

in Chapter 1. Some of these existing experiments discussed the increased large-scale

structures, such as Sk̊are and Krogstad (1994) and Lee and Sung (2009). However, the

cited experiments did not address the rise of the large-scales with a specific pressure

gradient parameter, in fact, no study explicitly addresses this relationship.

The data from constant Reynolds number, (Reτ ≈ 1900), with increasing pressure gradi-

ent parameter, β have been used to analyse this effect. It is stressed here that l+ = 16±1.
This is important, as the near-wall small-scale attenuation is reduced, as discussed in

Section 4.3. Figures 4.13(a) to (d) show the pre-multiplied energy spectra of streamwise

velocity fluctuation kxφuu/U2
τ at constant Reτ ≈ 1900 at selected heights from the wall

with varying β.
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Figure 4.13: Pre-multiplied energy spectra of streamwise velocity fluctuation
kxφuu/U2

τ at constant Reτ ≈ 1900 at selected heights from the wall. β increases with
line in increasing thickness. Symbols: (▷) ZPG, (◇) β = 0.91, (o) β = 1.67, (◻) β = 2.81,

(∗) β = 4.54. Solid line denotes λx/δ = 6 and dashed-dotted line denote λx/δ = 2.

In the near-wall region, (z+ ≈ 15), shown in Figure 4.13(a), kxφuu/U2
τ increases from the

ZPG case towards strong APG cases. The near-wall peak occurs at λ+x ≈ 1000 for all

matched Reτ data. The large-scale structures are observed to be energised slightly as β

is increased2. This is shown by the increasing large-scale contribution (λx/δ ≳ 1). This

confirms the finding based on Figure 4.3(a)3.
2The attenuation for small-scale fluctuations is greatly reduced here, thus it can be observed that the

most energetic length for the near-wall region is λ+
x
≈ 1000 for all cases.

3Based on the spectra map comparison of APG, ZPG and FPG at Reτ ≈ 3000, there is a rise of
energy in the larger wavelength as the pressure gradient turns sign from FPG to APG.
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In Figure 4.13(b) at z+ ≈ 100, the pre-multiplied energy kxφuu/U2
τ reduces for all flows.

As β increases, the structures with greater energy have become more concentrated at

λx/δ ≈ 3. At low β, kxφuu/U2
τ has the shape of a plateau, showing that the energy

contributions from the small– and large-scales are balanced. At greater β, the large-

scale features have become more energised.

Figure 4.13(c) shows the pre-multiplied energy kxφuu/U2
τ at z+ ≈ (15Reτ )1/2 ≈ 160. This

figure shows that the peak energy in the geometric centre of the log region occurs at

smaller wavelengths as β increases. Note that for the ZPG case, the outer peak occurs

at λx/δ ≈ 6, in agreement with Hutchins and Marusic (2007a) and Mathis et al. (2009).

This is shown by the solid line (the outer peak occurs at slightly shorter than λx/δ = 6
here is due to the low Reynolds number). However, the peak seems to concentrate

at λx/δ ≈ 2 in the case of β = 4.54, shown by the dashed-dotted line. This behaviour

supports the findings in Lee and Sung (2009) that large-scale features break up, creating

shorter structures.

At z/δ ≈ 0.3 shown in Figure 4.13(d), kxφuu/U2
τ concentrates at λx/δ ≈ 2. This is similar

with the most energetic length scales in the varying pressure gradient shown in Figures

4.3(d). With this set of data, it can be observed that the rise of the large-scale energy

systematically increases with β. The gradual change that is observed in the outer region

(in Figures 4.13(b)-(d)) suggests that β is an important parameter in characterising the

behaviour of the large-scale features.

The 3δ energy or LSM observed at large β values is a very important feature in APG.

These structures seem to have swamped the 6δ energy. To confirm the prominence of the

3δ energy in the log region, the difference in energy could be calculated by subtracting

the energy in the ZPG case from the APG cases. The energy difference is shown by the

following equation

ψuu∣n
U2
τ

= kx[(φuu)∣β=n − (φuu)∣β=0]
U2
τ

. (4.3)

Figures 4.14(a) - (e) show the pre-multiplied energy spectra, kxφuu/U2
τ maps for constant

Reτ ≈ 1900 data. In the ZPG case, (4.14(a)), the inner peak can be observed very clearly

to occur at z+ ≈ 15 with wavelength λ+x ≈ 1000. The outer peak could not be observed

clearly due to the low Reynolds number. In the APG cases, the inner peaks also occur

at z+ ≈ 15 with wavelength λ+x ≈ 1000.
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Figure 4.14: Pre-multiplied energy spectra of streamwise velocity fluctuation
kxφuu/U2

τ (a - d) and energy difference (f - i) for constant Reτ ≈ 1900. Symbols:
(▷) ZPG, (◇) β = 0.91, (o) β = 1.67, (◻) β = 2.81, (∗) β = 4.54. The signs ‘×’ denote

near-wall peaks z+ ≈ 15, λ+x ≈ 1000 and ‘#’ denote z/δ = 0.4, λx/δ = 2.
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The occurrence of the outer peak is becoming clear with increasing β. This trend can be

observed when comparing Figure 4.14(b) downwards until Figure 4.14(e). In the case

of largest β, the outer peak seems to occur at z/δ = 0.3, λx/δ = 2.
The energy difference, ψuu/U2

τ is shown on the right hand side of Figure 4.14. Figure

4.14(f) shows that at small pressure gradient (β = 0.91), ψuu/U2
τ is only slightly different

in the outer region. Note that the color key for kxφuu/U2
τ is different from that for

ψuu/U2
τ . The energy difference, ψuu/U2

τ is markedly increased in Figure 4.14(g), the same

trend continues until Figure 4.14(i) where the pressure gradient, β = 4.54. The signs ‘#’
in Figure 4.14(e) and (i) denote z/δ = 0.3, λx/δ = 2, this is approximately the location for

outer peak in the APG cases. However, the wall-normal location where energy difference

is maximum (ψuu/U2
τ ∣max), is shifted slightly further away from the wall. It can be shown

that ψuu/U2
τ ∣max occurs at z/δ = 0.4. It is likely that the wall-normal location where

ψuu/U2
τ ∣max occurs, increases with pressure gradient. The occurrence of ψuu/U2

τ ∣max at

higher wall-normal location can be generally related to the rise of turbulence intensities

as observed in Figures 3.9(b) or 3.12(b) (turbulence intensity profiles for APG, ZPG

and FPG flows at constant Reτ ≈ 3000 and turbulence intensity profiles for increasing

β flows at constant Reτ ≈ 1900). In the near-wall region, there is no drastic change

for the λ+x ≈ 1000 structures. There is however an increased energy for structures with

wavelengths of 100 < λ+x < 300.
The main conclusions resulting from energy spectra and scale decomposition analyses

are:

1. Despite recent findings that pressure gradient causes structural changes in the

near-wall region, for example Nagano et al. (1998) and Lee and Sung (2009) in

APG and Bourassa and Thomas (2009) in FPG, the energy spectral density study

shows that there is only insignificant structural change. It is reminded that the

pressure gradients are mild (-0.4< β <1.6) and performed in the intermediate range

of Reynolds number (Reτ ≈ 1900 and 3000). In APG however, these are about the

range of the pressure gradient parameters used in Nagano et al. (1998) and Lee

and Sung (2009) studies (refer to Table 1.1).

2. APG causes 3δ energy to emerge as the most dominant structures, swamping the

6δ energy. The 3δ energy also appears in other wall-bounded flows i.e. channel and

pipe flows (Balakumar and Adrian, 2007, Guala et al., 2006, Monty et al., 2009).

These structures however are so energised in APG as compared with other flows
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that they are responsible for the rise in the outer region in the mean velocities and

turbulence intensities.

3. The outer peak in APG no longer occurs in the approximate centre of the log

region z+ ≈ (15Reτ )1/2 or z/δ ≈ 0.06, instead it occurs further away from the wall,

z/δ ≈ 0.3. The large scale structures are energised for the entire log region (starting

from z+ ≈ 100) towards a great percentage of the outer region (z/δ ≈ 0.8), before
they rapidly decay towards the edge of the boundary layer.

4. When a longer sensor length, e.g. l+ ≈ 40 is used in an APG flow, the near-wall

peak appears to occur with superficially longer wavelength, e.g. λ+x ≈ 1500 in the

spectral density analysis. This is the immediate result from the combination of the

small-scale attenuations and the rise of the large-scale in the near-wall region due to

APG introduction. Therefore, it is suggested that the sensor length should be small

e.g. l+ ≲ 20 in APG. Since β is an important factor in determining the magnitude of

the near-wall peak in turbulence intensities, the empirical formulation by Hutchins

et al. (2009) will not be able to predict such magnitude in APG flows. It would be

interesting if a study similar to Hutchins et al. were repeated in boundary layers

with pressure gradients.



Chapter 5

Streamwise velocity correlation

Two-point hotwire measurements have been performed at various wall-normal locations

with one sensor stationary and the other travelling in the wall-normal or spanwise di-

rection. Throughout this thesis the stationary sensor is referred to as sensor 1 and the

travelling sensor is referred to as sensor 2. A typical set-up for a two-sensor measurement

is shown in Figure 5.1. In this figure, the left hand-side is called sensor 1 and the right

hand-side, sensor 2.

Figure 5.1: Typical hotwire sensors at the start of an experiment with sensor 1 on
the left and sensor 2 on the right. The smooth and shiny floor reflects the image and

is captured in the photograph.

The two-point correlation equation is

Ruu(∆x,∆y) = < u(x, y)u(x +∆x, y +∆y) >
σu(x, y)σu(x +∆x, y +∆y) , (5.1)

126
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∆y

Figure 5.2: Hotwire diagram.

where u is the fluctuating velocity, ∆x and ∆y are the separations between the two

sensors in the streamwise and spanwise directions respectively and σ is the standard

deviation. The requirement of fixed l+ ≈ 16 is maintained for both sensors. There are

two types of two-point hotwire measurements for the correlation conducted:

(a). Wall-normal - sensor 1 is stationary and sensor 2 travels in the wall-normal direction

and

(b). Spanwise - sensor 1 is stationary and sensor 2 travels is the spanwise direction.

An elevation, front-view drawing of the hotwire sensors, with their holders are shown in

Figure 5.2. In this figure, the sensors’ centre-to-centre distance ∆y is indicated.

Some settings and results of the two experiments are discussed in Section 5.1 and Section

5.2. For brevity, one case each of zero, favourable and adverse pressure gradients was

used as an example to characterize the effect of the pressure gradient on boundary

layers. In order to isolate the Reynolds number effect, the chosen boundary layer cases

are approximately at Reτ = 1900. The ZPG and APG cases are from the constant

Reτ ≈ 1900 experiments (from Station 1 and 3 respectively), while the FPG case is from

the constant Uinlet =15 m/s experiment (Station 3). The Reynolds number for the FPG
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case is slightly higher than the target Reτ ≈ 1900, however the difference in the Reynolds

number here is too small to cause any significant Reynolds number effect. Refer to Table

2.1 for details.

5.1 Structure inclination angle

The hotwire and the hotfilm measurements and analysis of Brown and Thomas (1977)

have shown that organised structures exist in a boundary layer and these structures have

an inclination angle of nominally 15o from the wall at Reθ ≈ 10000. An array of four

hotwire sensors located at different wall-normal locations and a hotfilm sensor on the

wall for wall-shear stress signature were used. For each hotwire sensor (at different wall

normal locations), there is a peak value of the cross-correlation coefficient. Assuming

the Taylor hypothesis of frozen turbulence, the distance at which this peak occurs can

be found and, from this, an inclination angle can be calculated.

A V-shaped array of hotwire sensors were used by Wark and Nagib (1991) to measure

the streamwise and spanwise stresses on the wall of ZPG boundary layers. A similar

correlation method as that used by Brown and Thomas (1977) for obtaining the in-

clination angle was employed, but at a lower Reynolds number (3000 < Reθ < 9000).

The cross-correlation analysis yields an average inclination angle of greater than 20o in

APG flows (Krogstad and Sk̊are, 1995) and smaller than 10o in FPG flows1. From these

results, Krogstad and Sk̊are (1995) suggested that APG causes the structures in the

outer region to rise and breakup, while Dixit and Ramesh (2010) explained that FPG

stretches and flattens the structures.

Adrian et al. (2000) presented PIV measurements and analysis of vortex structure of

ZPG boundary layers. It is shown that hairpin vortices self-organize to form coherent

vortex packets of different sizes. Close to the wall, the hairpins in a packet appear to

have a mild inclination angle of 12o. It was also observed that the inclination angle grows

with distance from the wall. Marusic and Heuer (2007) showed that the inclination angle

of the structure is invariant with Reynolds numbers (13o to 15o), extending over almost

three decades of Reynolds numbers (103 < Reτ < 106). Thus, there should not be any

concern of Reynolds number effect as discussed at the start of this chapter.

1In ZPG flow, the nominal structural inclination angle is 13 - 18o (Adrian et al., 2000, Brown and
Thomas, 1977, Ganapathisubramani et al., 2003, Marusic and Heuer, 2007, Robinson, 1991)
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Ganapathisubramani et al. (2003) noted that the large-scale features sometimes extend

up to 2δ in streamwise length with an angle of 10o to 20o by using a feature extraction

method on their PIV data. Also using PIV, Hutchins et al. (2005) observed that the

inclination angle is on the larger end (20o). It was also observed that the inclination

angle increased with distance from the wall.

For boundary layer flows in adverse pressure gradients, there have been studies which

elaborate the effect of the pressure gradient on the inclination angle. Krogstad and

Sk̊are (1995) found that the inclination angle is 45o for almost all through the boundary

layer at large adverse pressure gradient (β ≈ 20). Note that in ZPG boundary layers,

the inclination angles are shallower in the near-wall region and grow with distance from

the wall up until the log region where it maintains approximately constant. The steep

angle in the near-wall region may be explained by the following: the pressure gradient

parameter was large (β = 20). In this condition, the boundary layer is thickened and

the coefficient of friction is close to zero (near separation from the wall). The active

structures are shifted further away from the wall when compared with the ZPG case.

This causes the inclination angle to be greater.

The correlation analysis in the near-wall region could have been affected by the modu-

lating large-scale features in the log and outer regions. Considering that the experiment

was performed at large Reynolds numbers (40000 > Reθ > 50000), the modulating effect

was stronger. This is demonstrated at the end of the chapter, where it is found that the

small-scale velocity fluctuations are enveloped by the large-scale fluctuations. Two-point

correlation in the near-wall region largely picks up the enveloping movements, resulting

in the coefficient of correlation to scale with the outer variable. This result has been

published in Harun et al. (2011).

Lee and Sung (2009) found that the vortex packets in the outer region have an inclination

angle of 18o in DNS data of 1200 < Reθ < 1400, in APG flow where β = 1.68. They

used Galilean decomposition to detect swirling motions. The same method yields an

inclination angle of 13o for their ZPG case. Both Krogstad and Sk̊are (1995) and Lee

and Sung (2009) APG found that the spanwise and vertical extents in Ruu are larger

than those of the ZPG flow. In ZPG flow (e.g., Head and Bandyopadhyay, 1981)

indicated that the dominant structures consist of vortex loops or the swirling motions.

Lee and Sung (2009) indicate that the swirling motions in the streamwise direction for

APG flows are stronger than in the ZPG flows.
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In FPG flows, Dixit and Ramesh (2010) have reported a structural inclination angle

that decreases with acceleration parameter K. The (favourable) pressure gradient is

large (in reverse-transitional sink flow boundary layers). The inclination angle decreases

systematically from 14o at K = 0.77 × 10−6 to 5o at K = 4.5 × 10−6. For measuring the

wall-shear stress, the surface hotwire (SHW) sensor was used. It consisted of a hotwire

sensing element soldered to the tips of two sharp needles protruding out from the surface

of a Teflon plug, which was flush-mounted with the test surface. Interestingly, the wall-

normal extent of the correlation coefficient was found to be invariant with the pressure

gradient, though the streamwise extent was remarkably stretched.

Table 5.1 summarizes these studies; the Reynolds numbers, pressure gradients and the

structural inclination angles, θstruc, are shown. There are numerous studies in ZPG

boundary layers however only two studies are listed in the table. There are somewhat

limited studies that focus on the structural inclination angle in pressure gradient TBL

flows. A general trend can be deduced from the existing studies: θstruc ≈ 15o in ZPG,

grows to as much as 45o in strong APG and in contrast flattens to as shallow as 5o

in strong FPG. While the general trend of the structural inclination angle is quite

obvious from the table, the extent to which the turbulent features behave in the wall-

normal direction in the presence of pressure gradients remains in question. This section

systematically analyses the effect of pressure gradient on turbulent structures by the

correlation method, and subsequently calculates the inclination angle.

The structure inclination angle can be calculated by

θstruc = tan−1 z

∆xpeak
, (5.2)

where z refers to the wall-normal height at which the correlation is calculated and ∆xpeak

is the spatial difference where the maximum correlation occurs. Assuming Taylor’s

hypothesis of frozen turbulence, the time series data is converted into space via ∆xpeak =
Uc∆t, where Uc is the convection velocity or local mean for sensor 2. The structure

inclination angles for FPG, ZPG and APG in the current experiments (inclusive but not

limited to data used for in Figure 5.3) range from 11o to 18o with a tendency of a milder

slope for the FPG case and a steeper slope for the APG case. The ZPG boundary layers

have nominal values of 12o < θstruc < 16o.
To highlight the wall-normal extent of the features in the boundary layer, a contour map

reconstructed from individual wall-normal Ruu is plotted and shown in Figure 5.3. In the

figure, sensor 1 is stationary at ∆tUc/δ = 0 in the streamwise direction and z/δ ≈ 0.004
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Figure 5.3: Two-point wall-normal correlation Ruu for ZPG (▷), APG (o) and FPG
(◇) flows at Reτ ≈ 1900. Contour levels are from Ruu = 0.025 in increments of 0.05
starting with thick blue colour contour line in the outside. For details, refer to Table

2.1.

(z+ ≈ 7), while sensor 2 moves from z/δ ≈ 0.016 (z+ ≈ 30) in the wall-normal direction

along ∆tUc/δ = 0. All three pressure gradient cases are shown here. The Ruu coefficient

changes are indicated by the colour: red for the high correlation region and blue for

the low correlation region (refer to key). It can be observed that the region with highly

correlated activity in the FPG is closer to the wall and in contrast, extends further from

the wall in the APG. These observations are especially significant in the log region. In

a physical sense, on average, the FPG suppresses the features while the APG extends

the features outward. This finding is in agrement with Krogstad and Sk̊are (1995), who

then attributed this effect to ‘inrushing fluid which is squeezed out laterally near the

wall and to some degree reflected back to the flow’.
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Workers Reθ Pressure Gradient Inclination angle, θstruc

Dixit and Ramesh (2010) 220 – 1300 FPG, K = 4.5 × 10−6 - 5 − 14o
0.77 × 10−6

Wark and Nagib (1991) 3000 – 9000. ZPG 15o

Adrian et al. (2000) 930-6845 ZPG 12o close to wall
15-70o, typically 45o in outer layer

Marusic and Heuer (2007) 1 × 102 − 1 × 105 ZPG 15
Krogstad and Sk̊are (1995) 39100 – 51000 APG β ≈ 20 45o throughout

boundary layer
Lee and Sung (2009) 1200-1400 APG, β = 1.68 18o

Table 5.1: A review of structural inclination angles in FPG, ZPG and APG boundary layers.
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5.2 Streamwise and spanwise correlation

Streamwise auto-correlation and two-point correlation in the spanwise direction can be

used to analyse the effect of pressure gradients in the near-wall and outer regions. The

streamwise auto-correlation gives the streamwise extent of the structure, as shown by

Krogstad and Sk̊are (1995) and Ganapathisubramani et al. (2005). The instantaneous

multi-point spanwise correlation from a rake-like hotwire sensor set up by Hutchins and

Marusic (2007a) reveals long and meandering features in the log region. Two-point

spanwise correlation gives statistical information about the width and spacing of coher-

ent structures in ZPG boundary layers, (Blackwelder and Kaplan, 1976, Hutchins et al.,

2005, Monty et al., 2007). A number of papers where two-point spanwise correlation is

employed in the boundary layers subjected to pressure gradient have also been published

(Dixit and Ramesh, 2010, Krogstad and Sk̊are, 1995, Lee and Sung, 2009). In this sec-

tion, from the two-point sensor experiment and correlation analysis, pressure gradient

effects on the structure in the near-wall and outer regions will be shown.

Streak spacing is one of the turbulent flow properties that could be identified from

correlation analysis. It has been found that the streak spacing is affected by pressure

gradient. Streaks are defined by Kline et al. (1967) as well-organised spatially and

temporally dependent motions within the laminar sub-layer. The streak spacing in ZPG

was found by Kline to be approximately 100 viscous wall units. Lee and Sung (2009)

found that the near-wall streaks are weakened and the spanwise spacing is 400 viscous

wall units in APG flow. Streak spacing in FPG is also found to be above the nominal

ZPG value of 100 viscous wall units (Bourassa and Thomas, 2009). A review of streak

spacing for boundary layer flows is shown in Table 5.2. From this table, it seems to be

evident (by the change in streak spacing) that a pressure gradient actually causes the

structure in the near-wall to change.

All these studies have been performed at different Reynolds numbers, as shown in Table

5.2. The streak spacing in Table 5.2 is shown in non-dimensionalised length scaled with

Uτ , λ
+
y , where y denotes the spanwise direction. In order to perform the correlation anal-

ysis properly, certain important parameters have to be made constant. These parameters

are the sensor length, l+, and the Reynolds number. The reasons for keeping l+ small

and constant are discussed in Chapter 4. The Reynolds number effect is known to alter

certain turbulence statistics in the outer region, e.g. turbulence intensities, turbulence

production and more importantly the emergence of footprint in high Reynolds number
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flows (Hutchins and Marusic, 2007a, Marusic et al., 2010a). To isolate any Reynolds

number effect, the Reynolds number has been maintained at Reτ ≈ 1900.

Due to time constraints, the two-point spanwise measurements were performed at four

selected wall-normal locations only. These particular wall-normal locations are selected

because of the following: z+ = 15 is obviously the location where energy is maximum

in the near-wall region (Hutchins and Marusic, 2007a), z+ = 100 is approximately the

start of the log region, z+ = (15Reτ )1/2 is the geometric centre of the log region (Mathis

et al., 2009) where outer peak occurs in ZPG, and z/δ = 0.3 is the location where the

same occurs for APG (Harun et al., 2010a).

Figure 5.4 shows the outer scale two-point correlation for the streamwise velocity fluc-

tuation Ruu(∆x,∆y) correlation map at four wall-normal locations. The columns show

flows in different pressure gradients (FPG - left column, ZPG - middle column and APG

- right column). The rows show the wall-normal locations at which measurements were

performed (z+ ≈ 15 - first row, z+ ≈ 100 - second row z+ ≈ (15Reτ )1/2 - third row and

z/δ ≈ 0.3 - last row). Contour levels are -0.08, 0.08, 0.25, 0.5 and 0.75 with the dashed

lines showing negative contours and solid lines showing positive contours. The general

trend that can be observed in these plots is that the negative-positive-negative correla-

tions are more obvious in the outer region than in the near-wall region. The FPG case

does not show any negative correlation except at z/δ ≈ 0.3. Therefore, at first look, the
FPG case has the weakest negative-positive-negative correlation in the near-wall and log

regions.

It is a little bit difficult to gauge the effect of pressure gradient when the contour maps

are not shown on a common axis. Thus it is helpful to view the contour with the three

pressure gradient cases on one plot. A slice of Ruu at ∆y = 0 or auto-correlation of each

pressure gradient case and each wall-normal height is shown on the left-hand side of

Figure 5.5, while the spanwise correlations (∆x = 0) are shown on the right-hand side.

Comparing the plots on the left-hand side of Figure 5.5 from top to bottom reveals the

streamwise length of the correlation collapse in the near-wall region. The streamwise

length of the APG case appears to be shorter than that of the ZPG and FPG cases in

the log region (z+ ≈ 100 and z+ ≈ (15Reτ )1/2. In the outer region z/δ ≈ 0.3, the shorter

streamwise length of the APG case is much more pronounced. This effect has been

observed in a much stronger adverse pressure gradient by Krogstad and Sk̊are (1995).

The latter attributed this affect to a much less efficient streamwise vortex stretching

when a boundary layer is subjected to an APG. The long tails in streamwise correlations



Streamwise velocity correlation 136

−0.2

0

0.2

0.4

0.6

0.8

1

−0.2

0

0.2

0.4

0.6

0.8

1

−0.2

0

0.2

0.4

0.6

0.8

1

−3 −2 −1 0 1 2 3
−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.5 0 0.5 1

Ruu

Ruu

Ruu

Ruu

∆x/δ ∆y/δ

FPG y
ZPG ▷
APG o

(a) (b)

(c) (d)

(e) (f)

(g) (h)

z+ ≈ 15

z+ ≈ 100

z+ ≈ (15Reτ )1/2

z/δ ≈ 0.3

Ly

Lymin

Figure 5.5: Streamwise (left) and spanwise (right) two-point correlation Ruu for
FPG (y), ZPG (▷) and APG (o) flows at Reτ ≈ 1900 at z+ ≈ 15 (a, b), z+ ≈ 100 (c, d),
z+ ≈ (15Reτ)1/2 (e, f) and at z/δ ≈ 0.3 (g, h). In (d), the vertical dashed lines indicate
the Lymin and the vertical dashed-dotted lines indicate Ly for the APG case. In (h),
the vertical solid, dashed and dashed-dotted lines indicate occurrences of minima Ruu

for APG, ZPG and FPG respectively.
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Workers Reθ Pressure Gradient Streak spacing, λ+y

Bourassa and Thomas (2009) 4590 FPG, K ≈ 4.4 × 10−6 > 100
Finnicum and Hanratty (1988) - FPG, K ≈ 2 × 10−6 105-110
Robinson (1991) review paper Reθ ≤ 6000 ZPG 100

Adrian et al. (2000) 930-6845 ZPG 100
Skote and Henningson (2002) 300-700 ZPG to strong 100 (ZPG) -

APG (separated) 130
Lee and Sung (2009) 1200-1400 APG, β = 1.68 400

Table 5.2: A review of streak spacing in FPG, ZPG and APG boundary layers.

in the ZPG case have been observed by Kovasznay et al. (1970) and more recently by

Ganapathisubramani et al. (2005). Ganapathisubramani et al. (2005) attributed the long

tails in streamwise correlation to the existence of vortices organised within packets. The

coherent structures of hairpins in packets are in agreement with Adrian et al. (2000).

The shorter structures in the APG case suggest that an APG causes the steamwise

structures to break up and get shorter. This result is in agreement with the finding from

energy spectra analysis where the most energetic wavelength has been reduced by half

(from 6δ in ZPG to 2 - 3δ in APG, shown in Section 4.4). This effect is more prominently

observed in the outer layer (z/δ ≈ 0.3), both in spectra and correlation analyses.

Though the APG case shows shorter structures in the log and outer regions compared to

the ZPG case, Ruu for the FPG case collapses well with the ZPG case, indicating that the

streamwise length scale does not change going from ZPG to FPG. This is in contrast

with the recent finding of Dixit and Ramesh (2010) where structures get elongated

with FPG. The contrast is explained by the strength of the acceleration parameter K;

the current FPG case is exposed to only approximately one-tenth of the acceleration

parameter strength in Dixit and Ramesh (2010).

All of the spanwise two-point correlations, Ruu, are scaled with δ, shown on the right-

hand side of Figure 5.5. Again, going down the column shows spanwise Ruu with in-

creasing wall-normal location. The first thing to note is the negative-positive-negative

correlation trend that gets amplified with the distance from the wall. The correlation

in the near-wall and log regions appears to collapse well for z+ ⩽ (15Reτ )1/2. However,

there is a slight deviation in the outer region, where the minimum-to-minimum distance

changes with pressure gradients as shown in Figure 5.5(h).
Note that there are 40 spanwise measurements which span over 1.2δ with equal space

(except between the first and second measurement). The markers in the spanwise plots
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5.5(b) and subsequently 5.5(d) ,(f) and (h) have been reduced, leaving only solid lines.

The solid lines are spline-fit from the data. This is done to facilitate visualisation,

especially at locations where Ruu reaches its minimum. Scaling with outer variable δ is

chosen following the findings by Hutchins and Marusic (2007a), Hutchins et al. (2005).

The most interesting point of the spanwise Ruu result would be if there is an indication

of a change in the near-wall structures due to pressure gradient. A change in either

the streak spacing or the streak width would indicate a structural change. In Table

5.2, the wide range of Reynolds number data shows that streak spacing concentrates in

the order of y+ ≈ 100, therefore, the correlation coefficients should have minima in the

region of y+ ≈ 50 for the near-wall region. The separation at which this minimum occurs

provides an estimate of the mean separation between the high- and low-speed fluid, i.e.

the streak spacing is approximately twice the distance Kim et al. (1987). Figure 5.5(b)
shows that the minima are approximately 0.5δ suggesting the structure’s spacing is 1δ

for all pressure gradient cases. This is obviously not in agreement with existing data as

shown in Table 5.2. We shall come back to this after going through the entire spanwise

Ruu.

Before going deeper into the analysis, a few more parameters are defined. The first is

Ly, the characteristic spanwise length scale determined on the intercept with a given

threshold, th in Ruu plot (th = 0.05 in the thesis). The definition here is the same as in

Ganapathisubramani et al. (2005), Hutchins et al. (2005) and Monty et al. (2009). The

definition of Ly is shown in Figure 5.5(d); Ly is the width indicated by the vertical solid

lines, intercepting with th = 0.05 . The second parameter is the introduction of Lymin,

the characteristic spanwise length scale when minima in Ruu occur. These definitions

are shown in Figure 5.5(h).
Figure 5.5(d) and (f) show spanwise Ruu collapse for all three pressure gradient cases in

the log region. The stronger negative-positive-negative correlation trend with wall dis-

tance is indicative of alternating regions of low- and high-speed regions (Ganapathisub-

ramani et al., 2005, Hutchins et al., 2005, Monty et al., 2009) in the outer regions, despite

pressure gradients.

Figure 5.5(h) shows spanwise Ruu collapse only for ∆y/δ < 0.2δ for all three pressure

gradient cases in the outer region, however Ruu does not collapse for the FPG case

beyond 0.2δ. In ZPG boundary layers, Hutchins et al. (2005) noted that the spanwise

correlations scale with outer variables and that the growth of the spanwise length scale

is approximately linear with distance from the wall.
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Figure 5.6: The characteristic spanwise length scale, Ly/δ. Symbols: (y) FPG, (▷)
ZPG and (o) APG. The thick lines show fitted data from ZPG data from Hutchins
et al. (2005). The thin lines show channel flow data compiled by Monty et al. (2007).
Dashed-lines indicate curve-fit of existing data for z/δ < 0.15 while solid lines indicate

curve-fit of existing data beyond z/δ > 0.4.

The characteristic spanwise length scale, Ly/δ, of the three pressure gradient cases is

shown in Figure 5.6. To compare this with other boundary layer data, results from

Hutchins et al. (2005) are inserted. These are denoted by the thick solid line (for

z/δ < 0.15) and thick dashed line (z/δ > 0.4). For the region z/δ < 0.15, Ly/δ for the

current experiment is slightly greater than the ZPG data of Hutchins et al. (2005),

indicating wider turbulent structure in the current experiments. However, Ly/δ for

current ZPG and APG data collapse well with Hutchins et al. (2005) (shown by the

collapse with the solid thick line for z/δ > 0.4). Ly/δ for the current FPG data is slightly

wider. The channel flow data from Monty et al. (2007) is also shown in this figure.

The thin solid and thin dashed line denote Ly/δ from Monty et al. (2007) (thin dashed

line for y/δ < 0.15 and thin solid line for z/δ > 0.4). In general Ly/δ for FPG data for

z/δ > 0.4 lies between existing ZPG data and channel flow data.

Further to the characteristic spanwise length scale analysis, the occurrence of a minimum

in spanwise Ruu, Lymin, for the right hand side of Figure 5.4 is also calculated, shown

in Figure 5.7. It can be seen that the FPG case has slightly wider structures at all wall-

normal positions considered, compared with the ZPG and APG cases. The difference is
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Figure 5.7: The occurrence of minima Lymin in Ruu for FPG (y), ZPG (▷) and
APG (o) flows at Reτ ≈ 1900 at z+ ≈ 15 (dotted line), z+ ≈ 100 (dashed-dotted line),

z+ ≈ (15Re)1/2 (dashed line) and at z/δ ≈ 0.3 (solid line).

greatest at z/δ = 0.3, where Lymin for the FPG case is wider by approximately 10% than

in the ZPG/APG cases. If this figure is compared with Figure 5.6, we can clearly see

the effect of pressure gradient on the width of the structures in the flow. Considering

Ly and Lymin at z/δ = 0.3, the large-scale structures which dominate the log and outer

region for the FPG case have a width that is on average between that of ZPG/APG and

channel flows.

5.3 The large scale effect

Thus far, it has been shown that the spanwise Ruu on the right hand side of Figure 5.5

collapses well for the APG and ZPG cases from the near-wall to the outer regions. The

FPG case has on average approximately 10% wider structures. While in the log and

outer regions, the observed spanwise width in the Ruu can be associated with the large-

scale structures; the same cannot be applied to the near-wall region. The trend to note is

that the widths from the outer towards the near-wall regions scale with δ. Returning to

the near-wall Ruu in Figure 5.5(b), it is immediately clear that the correlation analysis is

giving a misleading description of the turbulent structures, i.e. the correlation analysis

in the near-wall region has picked up the pattern of the large-scale events in the log
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and outer regions. Without this precaution, one would infer that the most significant

structures in the near-wall have a length scale of δ. This effect grows with Reynolds

number. The large-scale structures cause a foot-print in the near-wall region (Hutchins

and Marusic, 2007a).

Therefore a tool to separate the large- and small-scale structures, or to extract only

the small-scale features is needed. A spatial-filter is one of the ways to filter out the

enveloping large-scale effect. This study adapts the filtering method by Hutchins and

Marusic (2007a) and Mathis et al. (2009), where the cut-off length scale λx/δ = 1 is

chosen (refer to Chapter 4). For smaller Reynolds numbers such as in this experiment

(Reτ = 1900), there could be an insufficient of scale separation. With an insufficient

of scale separation, the large- and small-scales features cannot be completely filtered

out, and this may affect subsequent correlation operations for the filtered signals. The

original signal from sensor 1 shown in Figure 5.8(a) (top) is filtered into large-scale

fluctuation (u+1l); λx/δ ≥ 1 (the thick line in the middle) and small-scale fluctuations

(u+1s); λx/δ < 1 (the thin line at the bottom). The mean local velocity U+c is subtracted

for the original fluctuating velocities and filtered signals. The procedures are repeated

for sensor 2. Note how the large-scale structures signal (u+1l) acts like an envelope which

modulates the small-scale fluctuations, (u+1s). Since only the small-scale fluctuations are

needed, u+1s and u+2s are extracted for correlation analysis.

Figure 5.9 shows spanwise correlation for the small-scale velocity fluctuations u+1s and

u+2s. This is later called Ruuss. The lines indicated in this figure are spline-fit from

the data. Ruu collapses for the FPG and ZPG cases however the APG case seems to

have a thinner average turbulent structure width (smaller spanwise spacing between the

alternating high- and low-speed regions). This still does not follow the trend shown

in Table 5.2, which is explained by the fact that there is not enough resolution in the

spanwise spacing of the sensors, as sensor 2 is located at y+ ≈ 90 - 100 from sensor 1

(at initial position). This is towards the experimental limit of the facilities used. Figure

5.2 (front view of hotwire diagram) at the start of this chapter shows this limitation.

In Figure 5.2, both sensor 1 and two as well as their holders are obstacles in reaching a

small enough initial spanwise spacing between the two sensors, ∆y.

Nevertheless Figure 5.9 shows that the correlation’s negative-to-negative distance to be

y+ ≈ 160−200. This is very different to when unfiltered data was used, as shown in Figure

5.5(b) i.e. y+ ≈ 1900 (negative-to-negative distance scales with δ). The effect of high-pass

filtering of the fluctuating data is to reduce the minimum-to-minimum distance. Now

this phenomenon explains the reason why 5.5(b) shows negative-to-negative distance
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Figure 5.8: Sample of fluctuating velocity u signal in the near-wall region at z+ ≈ 15
at Reτ ≈ 1900 for ZPG data. (a) Shows u for the first sensor, u+1 . The raw data at the
top is filtered into large-scale fluctuations (u+

1l); λx/δ ≥ 1 (the thick line in the middle)
and small-scale fluctuations (u+1s); λx/δ < 1 (the thin line at the bottom). Dashed-lines
show local mean velocity U+c . U

+
c is subtracted for original fluctuating velocities and

filtered signals. (b) Shows u for the second sensor, u+2 .

of 1δ; this is simply due to the influences of the large-scale structures on the small-

scales fluctuations in the near-wall region. The conclusion above explains the reason

for ‘increased’ streak spacing in Lee and Sung (2009)’s analysis. The correlations of

unfiltered data in Lee and Sung (2009) which was performed at relatively low Reynolds

number has yielded minimum-to-minimum correlations distance that scales with δ. This

information should not have been taken as the streak spacing.

The choice of λx/δ = 1 is indeed a good start when trying to filter out the large-scale

fluctuations. Trials with a fraction of, or greater than δ as filter cut-off yield less negative

correlation, but this procedure does not change the shape of Ruu. The conclusion from

the near-wall spanwise Ruuss is that the FPG and ZPG cases have a similar spanwise

streak spacing and, the APG case has a shorter spanwise streak spacing.

Previous studies show that these three cases have different turbulent structures in the

near-wall and the outer regions. The energy spectra analysis indicates that the near-wall

structures have a similar streamwise length scale of λ+x ≈ 1000 in all pressure gradient
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Figure 5.9: Ruuss for small-scale fluctuations u+1s and u+2s in the near-wall region at
z+ ≈ 15 at Reτ ≈ 1900 for three pressure gradient cases. Symbols: (y) FPG, (▷) ZPG

and (o) APG.

cases. The streak spacings are in the same order for the APG, ZPG and FPG cases

(even though the APG case might have slightly thinner streak width).

A few important features are established in the streamwise velocity fluctuations analy-

sis. In APG, the large-scales are broken-up and become approximately shorter by half

their average streamwise length in the ZPG boundary layer. In FPG, the large-scale

structures’ width grow by 10%, though the length stays the same. The big differences in

the three boundary layer cases are especially evident in the outer region. The differences

get smaller in the log region and even smaller in the near-wall region. Correlation of

small-scale velocity fluctuations reveals that the streak spacing does not significantly

change across the pressure gradient cases, in contrast to several recent reports.



Chapter 6

History effect

This chapter discusses the effect of the streamwise distance for which the boundary

layer is exposed to pressure gradient. This term is simply called the ‘history effect’. An

example is presented to discuss the statistics from APG flows at matched conditions.

The only one variable in these two flows is that one flow is exposed to APG for a much

longer streamwise distance than the other. The distances for which these boundary

layers are exposed to APG are 9.8δ and 20.2δ respectively. The analysis shows that the

mean velocity, skewness and flatness profiles collapse, however, there are more large-

scales when the boundary layer is exposed for longer distance to APG, leading to higher

turbulence intensity profile in the outer region.

One way to evaluate the extent of the history effect is to compare turbulent statistics from

flow with the same pressure gradient parameter, β however with different streamwise

distance, therefore the history that these two flows have experienced at the measurement

points are different. The other variables concerning the state of the flows proposed by

Perry et al. (2002) shown in (3.31) i.e. Π, S = U1/Uτ , β, ζ = SδcdΠ/dx shall be constant.

Furthermore, any other variables that affect the measurement such as l+, should also be

fixed.

The current experimental set up is based on a linearly increasing coefficient of pressure,

CP arising from constant dP1/dx and at the same time a moderate pressure gradient.

In order to obtain another measurement with the same pressure gradient parameter, β

but with a longer exposure to APG, a milder roof gradient is necessary. Therefore, the

author has set-up the wind tunnel ceiling to achieve a milder dP1/dx. The resulting CP

is shown by the symbol ‘◻’ in Figure 2.5 (Chapter 2). In order to achieve a comparable

144
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Figure 6.1: Comparison of the mean statistics for APG boundary layers with constant
Reτ ≈ 1900, but at milder coefficient of pressure gradient, dCpdx = 0.1144 identified as
Case 1 (⧈) versus dCpdx = 0.2185 identified as Case 2 (◇). (a) Mean velocity and, (b)
turbulence intensity profiles. For other parameters, refer to table 2.1. In (a), the solid
line shows equation 3.6 with κ = 0.41, A = 5.0, the dashed line shows U+ = z+. In (b),

the dashed-dot line indicates z+ = 15 and the solid line indicates z/δ = 0.1.
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Name Exposure Stn, x (m) Cp
dCP

dx
Π S = U1

Uτ

β ζ = SδpdΠ
dx

⧈ Case 1 20.2δ 5, 4.78 0.1941 0.2185 0.91 27.58 0.81 ≈ 0.5◇ Case 2 9.8δ 2, 3.50 0.1904 0.1144 0.95 27.55 0.91 1.45

Table 6.1: Parameters for comparison of APG flows with a shorter and a longer
streamwise exposure to APG at Reτ ≈ 1850 and l+ = 16.

Reynolds number, different inlet velocities were used. The flow that is exposed to a longer

streamwise distance with a milder dP1/dx from the new wind tunnel set-up is identified

as Case 1 and shown along with existing flow with a shorter streamwise APG exposure,

identified as Case 2. The distance for which these boundary layers are exposed to APG

is taken from the start of the APG section, i.e. x = 2.9m. The non-dimensionalised

exposure lengths are 9.8δ and 20.2δ respectively. The other parameters are shown in

Table 6.1. As shown in the table, Case 1 is from Station 5. Case 2 is from the constant

Reynolds number Reτ ≈ 1900 data set shown earlier in Table 2.1. As mentioned earlier,

the Reynolds number and sensor length are constant: Reτ ≈ 1850 and l+ ≈ 16. The

parameters in Perry et al. (2002) are also shown in the table (in bold); these parameters

are constant except for ζ. Note that the calculations for ζ = SδpdΠ/dx for Case 2 is

an approximation because the measurements with the new ceiling only included station

4 and station 5. Initially, the term dP1/dx was calculated based on two measurement

points only (the value for the dΠ/dx is based on a smaller streamwise span, i.e. dx =

4.78 - 4.46 = 0.32 m), this may not yield an accurate result. Since Π for ZPG is known

to be in the region 0.5 < Π < 0.6 (e.g. Monkewitz et al., 2008, Nagib and Chauhan, 2008),

therefore this approximation is now extended over a longer distance, x, i.e. it includes

the ZPG point at station 1 (x = 2.90 with assumed Π = 0.6).
Figure 6.1(a) shows the comparison of mean velocity profiles for Case 1 and Case 2. The

mean velocity profiles scaled with inner variables collapse well for the entire boundary

layer. As friction velocity, Uτ from both flows were obtained from oil-film interferometry,

(OFI), both profiles show deviations from the log law of the wall.

Figure 6.1(b) displays the turbulence intensities profiles, u2/Uτ
2. In the near-wall region,

u2/Uτ
2 collapse well when scaled with inner variables. However, in the outer region,

z/δ ≳ 0.1, u2/Uτ
2 for Case 1 is slightly higher. This suggest that there is more energy
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Figure 6.2: (a) Skewness S and (b) flatness F for adverse, zero and favourable pressure
gradients at Reτ ≈ 1900 and β ≈ 0.9 for Case 1 (⧈), and Case 2 (◇). For other

parameters, refer to Table 6.1.

for the flow exposed longer in APG, therefore energy spectra analysis is required to

further understand the energy distribution.

Figure 6.2(a) shows the comparison of the skewness, Sk for Case 1 and Case 2. Sk

profiles for both cases collapse with inner variables. It can also be shown that Sk also

collapses if scaled with outer variable, δ (not shown). Figure 6.2(b) shows the flatness,

F for both cases, again F collapses well. F also collapses if scaled with outer variable,

δ (not shown).

The pre-multiplied spectra scaled with friction velocity, kxφuu/U2
τ for Case 1 and Case 2

at each wall-normal location are shown in Figure 6.3(a) to (d). In the near wall region,

in Figure (a), the inner peak occurs at λ+x ≈ 1000. There is no particular deviation in the

energy distribution at z+ ≈ 100 in Figure (b). In the geometric centre of the log region,

z+ ≈ (15Reτ )1/2 in Figure (c), the most energetic wavelength occurs at λx/δ ≈ 6 as in

ZPG cases. The λx/δ = 6 is shown by the solid vertical line. Note that in Chapter 4, in

the strong APG parameter, β cases, the most energetic wavelength occurs at λx/δ ≈ 2,
however, for these very weak cases (β ≈ 0.9), no substantial difference from the ZPG

cases is observed, as expected. In the outer region, z/δ ≈ 0.3 shown in Figure (d), Case
1 has more energy than Case 2. The most energetic structures are still at λx/δ ≈ 3,
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Figure 6.3: Pre-multiplied energy spectra, kxφuu/U2
τ at constant Reτ ≈ 1900 for

Case 1 (⧈), and Case 2 (◇), at four selected wall-normal locations, (a) z+ ≈ 15, (b)
z+ ≈ 100, (c) z+ ≈ (15Reτ)1/2, and (d) z/δ ≈ 0.3. Solid line indicates λx/δ = 6. For

other parameters, refer to Table 6.1.

this could be shown when energy in the outer region is scaled with its maximum value,

kxφuu/kxφuu∣max as in Chapter 4 (not shown).

For brevity, the pre-multiplied spectra scaled with local free stream velocity, kxφuu/U2
1

are not shown. However, it can be shown that kxφuu/U2
1 for both cases collapse at

z+ ≈ 15, z+ ≈ 100 and z+ ≈ (15Reτ )1/2. However, kxφuu/U2
1 for Case 1 is higher than

Case 2, similar to the trend in Figure 6.3(d). This suggests that the flow with a longer

exposure to APG does have a higher energy in the outer region, as any discrepancies

due to the scaling employed are ruled out.

The higher energy shown in Figure 6.3(d) is related to the higher turbulence intensities

seen in Figure 6.1(b). At this juncture, the reason for the higher energy in Case 1

is not known. Therefore it is helpful to decompose the energy in to a small– and a

large-scale component as in Chapter 4. Figure 6.4 shows the decomposed turbulence

intensity profiles for Case 1 and Case 2. The vertical line is z/δ = 0.1, where turbulence
intensities between the two flows start to show differences. The difference is caused by
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Figure 6.4: Decomposition of the broadband turbulence intensity profiles u2/Uτ
2 into

a small- and a large-scale components at constant Reτ ≈ 1900 for Case 1 and Case 2.
Small-scale components (λx/δ < 1) symbols: (◾) Case 1 and (◆) Case 2. Large-scale
components (λx/δ ≥ 1) symbols: (⧈) Case 1 and (◇) Case 2. Dashed line denotes z+ =

15 and solid line denotes z/δ = 0.1.

more large-scale contribution in Case 1. Further away from the wall at z/δ ≈ 0.4, there
is also increased contribution from the small-scales in Case 1.

Even though most of the turbulence statistics (mean velocity, skewness and flatness

profiles) collapse when two APG boundary layers with a similar APG parameter β are

compared, the turbulence intensities are higher in the outer region if the boundary layer

is exposed to APG spatially long enough. In this case, the difference in exposure distance

is approximately twice (20.2δ for Case 1 and 9.8δ for Case 2 ). It is proposed that as

the exposure distance increases, both small– and large-scale features increase in the

outer region - the reason for the increased turbulence intensities here. These differences

may be associated with ζ, refer to Table 6.1. Nevertheless, the changes observed in the

turbulence intensities and spectra are small and it is felt that the effect of history does

not give significant change to the analysis in the Chapters 3 and 4.



Chapter 7

Concluding remarks and outlook

The overall goal of the project is to determine the effect of pressure gradient on the

structure of boundary layers. Several experiments were performed, the most important

ones being the constant inlet velocities both in APG and FPG flows. Furthermore, in

order to isolate the Reynolds number effect, constant Reτ experiments were performed.

As spatial resolution is getting more important, these measurements were performed

complying with the generally accepted sensor length (Hutchins et al., 2009). In fact, the

effect of the sensor length, l+, is studied by varying l+ in pressure gradient flows. Other

requirements to ensure resolved measurements, such as the boundary layer turnover

times and sampling frequency, are adhered to.

The main conclusions of these studies are as follows:

1. The oil-film interferometry method was used to determine the wall shear stress

and it was shown that results obtained were different from those of the Clauser

chart method, for stronger pressure gradients (β ≳ 2). These deviations however

are quite small in FPG flows.

2. In the traditionally accepted logarithmic region of the flow, there is a systematic

decrease in mean velocity below the log law with increasing APG strength. Further

inspection of this region via the diagnostic function revealed that the wake of the

mean velocity profile begins much closer to the wall in APG than in the ZPG flows.

This leads to the conclusion that, for mild to strong adverse pressure gradients,

there is no identifiable logarithmic region (within the Reynolds number range of

the study, 1500 ≲ Reτ ≲ 4000). In contrast, when subjected to stronger FPG, the

log region extends further towards the edge of the boundary layer.
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3. Reynolds number similarity is observed in the mean velocity profiles when β is held

constant and the shape factor formulation of Monkewitz et al. (2008), developed

for ZPG flows, appears to follow the data closely. There are two set of experiments

to demonstrate this which are the constant β ≈ 1.6 and the constant β ≈ 4.3. This
evidence is further confirmation towards Reynolds number similarity in constant

APG parameter β, as the mean velocity profiles of these data also show a constant

deviation from the log law.

4. Skewness profiles show that increasing APG strength causes a rise in the skewness

and in contrast, FPG reduces skewness. A high-pass filter reduces the skewness

profile in all pressure gradient cases in the near-wall region, confirming the results

of Metzger and Klewicki (2001). In the outer region, a high-pass filter brings the

skewness close to Gaussian distribution from large negative values. The skewness

relationship with amplitude modulation (AM) in ZPG (Mathis et al., 2011) is

repeated in pressure gradient flows. It is shown here that the cross product term

3̃u+
L
u+2
S

of the expanded skewness (into large– and small-scale components, Sk(u+L+
u+S) resembles the AM profiles proposed by Mathis et al. (2009). This is especially

apparent when a multiplier of 2 is introduced to the cross product term i.e. 6̃u+Lu
+2
S

is similar to the AM profiles proposed by Mathis et al. (2009).

5. From energy spectra considerations, the large-scale structures in the turbulent

boundary layer are clearly energised more strongly than the small-scale structures

by the presence of the adverse pressure gradient. The increased energy of these

large motions is felt throughout the layer, which can also be observed from the de-

composition of the turbulence intensities into small- and large-scale contributions.

The rise of the large-scale energy due to pressure gradient is observed to be much

more substantial than that due to Reynolds number. The large-scale structures

are broken down (in the streamwise direction) due to APG, the most energised

structures in the outer region occur at λx/δ ≈ 3 and the outer peak occurs at a

much further wall-normal distance, z/δ ≈ 0.3. This is in contrast with ZPG flow,

where the most energetic structures have a wavelength of λx/δ ≈ 6 and they reside

in the log region, z/δ ≈ 0.06 or z+ ≈ (15Reτ )1/2 (Hutchins and Marusic, 2007a,

Mathis et al., 2009).

Scaling the energy spectra results with local free stream velocities, or simply with

the maximum value of the energy spectra magnitude itself, revealed that the

shorter structures are not due to the scaling used. This agrees with Sk̊are and
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Krogstad (1994), however there is no clear evidence from the energy spectra re-

sults that there is a stretching of the structures in FPG, as was reported by Dixit

and Ramesh (2010).

6. The spatial resolution of hot-wires for boundary layers exposed to pressure gradient

is also analysed in the thesis. In general, small-scale attenuations occur in pressure

gradient boundary layers similar to the ZPG boundary layers, as described in

Hutchins et al. (2009). However, as one of the effects of APG is to increase the

presence of large-scale structures in the near-wall region, measurement with large

enough l+ will misleadingly indicate the most active structure in the near-wall

region to be longer than the nominal λ+x ≈ 1000 on the one-dimensional energy

spectra map. At l+ ≈ 40, the most energised structures were detected to occur

at λ+x ≈ 1500, therefore it is recommended that studies in APG be performed at

l+ ≲ 20. Varying l+ in FPG does not change the detected wavelength of the most

active structures i.e. λ+x ≈ 1000.
7. Two-point correlation shows that APG increases the structural inclination angle

to θstruc ≈ 20o (nominal values of 12o < θstruc < 18o in ZPG). FPG suppresses the

structural inclination to θstruc ≈ 11o. The difference in the structural inclination

angle between the three pressure gradients cases are however small because of the

mild pressure gradients.

The streamwise slice of the correlation maps shows that streamwise length of the

correlation is less for the APG than for the ZPG and FPG cases. This result,

together with the energy spectra results, confirms that APG breaks the structures

(they are shorter in the streamwise direction).

8. Energy spectra, turbulence production and two-point correlation analysis have

shown that the near-wall region is not disturbed by pressure gradient. Given a

similar adverse pressure gradient parameter β as in Lee and Sung (2009), the streak

spacing remains similar as compared with Lee and Sung (2009). However, with a

high-pass filter applied to the fluctuating velocities u, the near-wall streak spacing

seems to be y+ ≈ 150 − 180 regardless of pressure gradients. This indicates that

the streak spacing is insensitive1 to pressure gradients and the changes reported

by Lee and Sung (2009) i.e. increasing streak spacing with APG, is only due to

the footprint effect of the large-scale features in the outer region.

1There may be some changes in the near wall motion as discussed in Section 3.15 (Turbulence pro-
duction) and Chapter 4 (Energy distribution), however these changes do not cause the streak spacing
increase or decrease by the magnitude shown in Lee and Sung (2009) i.e. three to four times
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7.1 Recommendations for futures work

A few settings could be improved in the current experimental set-up. In the two-point

correlation, the closest distance between two sensors is only y+ ≈ 80. This is towards

the experimental capability of the current set up, however the laboratory is actively

testing much smaller sensor sizes. This would enable measurement of, for example

streak spacing, to be performed more accurately.

The Reynolds numbers of the current experiment is in the range 1500 ≲ Reτ ≲ 4000. More

points in the high Reynolds numbers are needed to confirm some of the analysis. For

example, in the energy spectra analysis, at Reτ ≈ 3000, there may be an insufficient scale

separation. In another example, the analysis of the shape factor similar to Monkewitz

et al. (2008), was performed at relatively low Reynolds numbers.

The entire experiment was performed with normal hotwires, therefore spanwise and wall-

normal velocity fluctuations v and w were not measured. Thus, statistics concerning v

and w could not be analysed and when necessary, as in the case of turbulence production,

were approximated.



Appendix A

Equipment

A.1 List of equipment

The following equipment was used for hotwire and OFI measurements:

Equipment Makes/Model

Hotwire equipment

1 Anemometer DISA /AA LAB/ Melbourne Uni. Constant
Temperature Anemometer (MUCTA)

2 Pressure sensor Sensor Technique
3 Encoder Renishaw RGH24H
4 Temperature sensor Termistor Omega Engrg
5 Data Acquisition System Data Translation
6 Pressure Transducer MKS Baratron 10Torr
7 Signal conditioner MKS Type 670
8 Scanivalve 69 Channel
9 Laptop Dell Latitute 6400 with Matlab

continue on next page
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from previous page

OFI equipment

1 Lamp OSRAM Vialox SON-E 70 or 90 watt
2 Camera Nikon D90
3 Lense 105 mm micro Nikkor
5 Another laptop Dell Latitute 6400 with Matlab
6 A tripod
7 Syringes

The pressure sensor, pressure transducer, signal conditioner and temperature sensor
from hotwire equipment were utililised.

Table A.1: List of equipment

A.2 Oil-Film Interferometry (OFI) Silicone Oil Calibra-

tion

Oil-Film Interferometry (OFI) measurements were performed for the particular hotwire

measurements in ZPG, APG and FPG. The locations where OFI measurements were to

be carried out, were first identified with very high accuracy. The wind tunnel floor was

drilled with a special drill to avoid chipping of the round edge. Eight sets of aluminium

plugs and frames were constructed. Five of these plugs were installed on the wall, while

the remaining three, were retained as spares. The frames were installed in stages to

ensure that the epoxy applied around the aluminium frame (and the non-metal edge of

the wind tunnel) did not create dips or bulges. During the installation, good care was

taken not to scratch the floor of the wind tunnel and to avoid any of the pressure taps

getting stuck.

Calibrations were performed for the used silicone oils by Jean-Daniel Ruedi and given

to the author via private communications. The calibration details are given in tables

A.2 and A.3.

The calibration used here has been used in Chauhan et al. (2010). An in-house cali-

bration has also been carried out and internally and the calibration curve and equation

is shown in Figure A.1. Since the oil has been used within the calibrated temperature

limits, there should not be any issue with viscousity. It is noted that since the tem-

perature sensor is located slightly away from the viewing window/glass plug (where oil

is dropped), it is possible that sometimes, the temperature of the glass plug is slightly

higher than the sampled temperature (used for calculation). However, it has been in
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Silicon oil
Date : 25 Apr. 2008
Silicon oil 20 cst : from EPFL-LMF (Lion d’or)
Refraction index : 1.4
Oil density : 951 kg/m3

Equipment

Thermo-regulated Lauda bath E200
Capilary viscometer : Schott 50120 II, k: 0.1022
type 28540061 App 1036705, Tcorr = 0 for t > 80
Handheld thermometer : Flucke 52II SN: 74690102

Coefficients for 20 cst oil

General model : aebx, 95% confidence bounds
a : 5.015e-05 (4.913e-05, 5.116e-05)
b : -0.01896 (-0.01976, -0.01816)
sse : 3.7074e-15
rsquare : 0.9998
dfe : 2
adjrsquare : 0.9997
rmse : 4.3055e-08

Table A.2: Silicone oil 20 cst Calibration

practice that whenever illumination is not required, the bulb is covered with a piece of

paper to prevent it from heating the glass plug.
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Figure A.1: Calibration of 20 cSt oil performed at the University of Melbourne.
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Silicon oil
Date : 2 June 2008
Silicon oil 200 cst : from EPFL-LMF (Lion d’or)
Refraction index : 1.4
Oil density : 968 kg/m3

Equipment

Thermo-regulated Lauda bath E200
Capilary viscometer : Schott 53223 IIc, k: 0.3129
No 73835
Handheld thermometer : Flucke 52II SN: 74690102

Coefficients for 200 cst oil

General model : aebx, 95% confidence bounds
a : 3.320e-04 (3.287e-04, 3.353e-04)
b : -1.918e-02 (-1.957e-02, -1.878e-02)
sse : 1.6106e-13
rsquare : 0.9999
dfe : 3
adjrsquare : 0.9998
rmse : 2.3170e-07

Table A.3: Silicone oil 200 cSt Calibration



Appendix B

Additional discussions

B.1 Skewness

The analysis and results in this section highlight the differences between the external

geometry-flows (APG, ZPG and FPG TBL flows) with the internal geometry-flows (pipe

and channel flows) obtained from Monty et al. (2009) and Mathis et al. (2009). These

comparisons are not the main focus of the thesis, however they provide insightful knowl-

edge into these two types of flows. Understanding the internal and external geometry-

flows at a certain point helps explain the differences between the three TBL flow cases

better. To ensure that spatial resolution issues are accounted for, the Reynolds number

and the sensor length are constant, Reτ ≈ 3000 and l+ ≈ 301. It is important to have

a constant sensor length parameter, l+, as the attenuations to the small-scale features

in the near-wall region is known to change the skewness (Section 3.13, Johansson and

Alfredsson (1983)).

Figure B.1(a) shows the skewness of streamwise velocity fluctuations for APG, ZPG,

FPG TBL flows as well as for pipe and channel flows at Reτ ≈ 3000. In the near-wall

region, z/δ < 0.01, the skewness collapse (Sk ≈ 0) for the internal geometry-flows and the

FPG flow. The skewness is slightly higher for the ZPG, however it is evident that the

skewness is much higher (Sk ≈ 0.2) for the APG flow. Analysis from Section 3.13 has

shown that the large-scale features are responsible for the increase in the skewness. In

the outer region (z/δ ≈ 0.3), the same trend is observed.

1It is noted that for the APG case, the attenuations of the small-scale structures are significant. These
attenuations cause much lower u2/Uτ

2 in the near-wall region and analysis of energy spectra for such
spatially-unresolved data yields an inner peak that occurs at superficially longer wavelengths (Section
4.3).
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Figure B.1: (a) Skewness Sk and (b) flatness F for adverse, zero, favourable pressure
gradients, pipe and channel flows at Reτ ≈ 3000. Symbols: (⊡) APG, (△) ZPG, (d)

FPG, (☆) pipe and (▽) channel flows. For other details, refer to Table 2.1.

The flatness shown in Figure B.1(b) collapses for the internal geometry-flows and the

FPG flow in the near wall region, z/δ < 0.02. The minima in the flatness profiles occur at

z/δ ≈ 0.005. Here, the flatness is lowest (F ≈ 2.5) for the internal geometry-flows and the

FPG flow. The flatness is higher for the ZPG flow, and highest (F ≈ 2.7) for the APG

flow. At z/δ ≈ 0.3, the flatness almost collapses for the internal geometry-flows, together

with the APG and ZPG flows, however interestingly, the flatness for FPG deviates from

this trend.

Figures B.2(a) and (b) compare probability density function (PDF) for the internal

geometry and external geometry-flows at Reτ ≈ 3000. The large negative skewness for

the internal geometry-flows in Figure B.1(a) is shown more clearly by the larger negative

deviation from (u −U)/Uτ = 0 in Figure B.2(a). There appear to be two collapses, one

for the internal geometry-flows and the other (near-collapse) for the external geometry-

flows. In the outer region, only the internal geometry-flows collapse. The range for

velocity fluctuations is largest in the APG case and smallest in the FPG case.
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Figure B.2: Probability density function (PDF) at (a) z+ ≈ 15 and, (b) z/δ ≈ 0.3 for
adverse, zero, favourable pressure gradients, pipe and channel flows at Reτ ≈ 3000. (⊡)

APG, (△) ZPG, (d) FPG, (☆) pipe and (▽) channel flows.

In order to understand the effect of the larger-scale features in the internal geometry-

flows on the skewness, it is useful to analyse the fluctuating velocities when the larger-

scale features are removed. In Section 3.13, it was shown that APG causes the larger-

scales to be more energised in the near-wall region. Consequently, the skewness also
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Figure B.3: Skewness Sk for adverse, zero, favourable pressure gradients, pipe and
channel flows at Reτ ≈ 3000. Symbols: (⊡) APG, (△) ZPG, (d) FPG, (☆) pipe and
(▽) channel flows. Filtered data (λx/δ < 1) symbols: (∎) APG, ZPG (▲), FPG ( ),

pipe (★) and channel flow (▼).
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increases2. A high-pass filter with a cut-off wavelength of λxc = δ was employed and the

corresponding skewness profiles are shown in Figures B.3. Generally, a high-pass filter

causes the skewness to decrease in the near-wall region. The shift-downs in the values of

the skewness coefficients for the internal geometry, ZPG and FPG flows are ∆Sk ≈ 0.1,
however for the APG flow the value is double, ∆Sk ≈ 0.2. This indicates that in this

region, the large-scale features have more significant roles in the APG flow than in any

other flows considered here. The trend observed in the near-wall region persists until

the log region. At z/δ = 0.3, the high pass brings the distribution of the skewness closer

to the Gaussian distribution.

B.2 Spectra

Similar analysis as in Section B.1 is provided here for energy spectra to compare the

internal and external geometry-flows. Figures B.4(a) to (d) show pre-multiplied spectra

scaled with friction velocity, kxφuu/U2
τ at four selected wall-normal locations similar to

Figures 4.3(a) - (d). However in these figures, the energy spectra for pipe and channel

flows discussed in Monty et al. (2009) and Mathis et al. (2009) are added. Figure B.4(a)
shows that energy distribution in the near-wall (z+ ≈ 15) is similar for ZPG, FPG, pipe

and channel flows, however, there is more large-scale contribution for the APG flow.

The energetic peaks for all flows occur at λ+x ≈ 1000, as shown by Monty et al. (2009)

and in Section 4.1. This suggests that the near-wall cycles of streaks are similar for all

except for the APG case where it is slightly different.

At the approximate start of the log region, at z+ ≈ 100, Figure B.4(b) reveals that the

energy distributions for the pipe and channel flows are similar to that of the FPG flow,

however, there is slightly more contribution from the larger-scale features. The 2-6δ

features are most significantly energised in the APG case, followed by the ZPG, pipe &

channel and the FPG flows.

At the approximate start of the log region, z+ ≈ (15Reτ )1/2, the structures break down

in the APG case, creating shorter structures with the most energetic structures at wave-

lengths of 2δ. This is in agreement with the correlation experiment and analysis in

Section 5.2 and in Lee and Sung (2009), Sk̊are and Krogstad (1994). The most energetic

2The increased large-scale features in APG flow causes the skewness to increase as shown in Section
3.13 similar to the effect of increased large-scale features when the Reynolds number is increased shown
in Metzger and Klewicki (2001).
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Figure B.4: Pre-multiplied energy spectra, kxφuu/U2

τ at constant Reτ ≈ 3000 and
l+ ≈ 30 at four selected wall-normal locations, (a) z+ ≈ 15, (b) z+ ≈ 100, (c) z+ ≈(15Reτ)1/2, and (d) z/δ ≈ 0.3. (⊡) APG, (△) ZPG, (d) FPG, (☆) pipe and (▽)
channel flows. Dotted line indicates λx/δ = 3, dashed-dotted line indicates λx/δ = 6 and

solid line indicates λx/δ = 15.

structures here observed in the pipe and channel flows occur at a wavelength of 10δ,

longer than that for the ZPG and FPG flows, which is at 6δ.

Although there is a slight difference in the APG case in the near-wall region, as well as

some differences in the log region, it is the outer region that distinguishes these flows

the most. At z/δ ≈ 0.3 shown in Figure B.4(d), the differences for the internal and

external geometry-flows are very significant. For the external geometry-flows, there is

one energetic, dominant mode at λx/δ ≈ 3. However, for the internal geometry-flows,
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Figure B.5: Pre-multiplied energy spectra of streamwise velocity fluctuation
kxφuu/kxφuu∣max at constant Reτ ≈ 3000 and l+ ≈ 30 at z/δ ≈ 0.3. (⊡) APG, (△)

ZPG, (d) FPG, (☆) pipe and (▽) channel flows.

there is also another energetic mode at λx/δ ≈ 15. This is shown by the solid line in this

figure. The energy scaled with Uτ shows that the APG case has significantly more 3δ

energy, followed by the ZPG case. The FPG case and the internal geometry flows has

approximately similar kxφuu/U2
τ magnitudes at this wavelength (λx/δ ≈ 3).

To ensure that the conclusions based on the inner scaling in Figure B.4(d) are not af-

fected by the scaling used, the energy is now scaled with its maximum value , kxφuu/kxφuu∣max

as shown in Figure B.5. This figure reveals the second mode in the internal geometry-

flows clearly. The energy for internal flows collapse well at all wavelengths. How-

ever, kxφuu/kxφuu∣max for the internal geometry-flows only collapses with the external

geometry-flows at shorter wavelengths (λx/δ ≲ 3). There is a slight dip in the energy

before kxφuu/kxφuu∣max matches that of channel flow at λx/δ ≈ 3.
The energy spectra analysis for the internal and external geometry-flows indicates that

all wall-bounded flows share similar structures in the near-wall region except in the
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APG case. This may explain similar turbulence intensities for all of this flow except for

the APG case (the turbulence intensities for the pipe, channel and ZPG flows almost

collapse in the near wall region in Monty et al. (2009)). The skewness and flatness also

are almost similar for all flows except for the APG flow. As shown in Figure B.3, the

large-scale features are responsible for these differences.

The outer regions contain the most distinguishing features for every flow. The charac-

teristics of the most energetic scales differ from one flow to another. These large-scale

features are responsible for the differences in the mean velocities, turbulence intensi-

ties, turbulence production, skewness, flatness and etc. In Appendix B.1, it was shown

that if the large-scale features were removed, the skewness profiles in the outer region

(z/δ ≈ 0.3) share similar properties. The point is that the large-scales in the outer region

are responsible for the differences between the different types of flows.

B.3 Dissipation

It was shown in Section 3.15 that the turbulence production Prod at Reτ ≈ 3000 increases
with the pressure gradient in the outer region. This observation extends results from

previous studies, for example by Sk̊are and Krogstad (1994) in APG and by Fernholz and

Warnack (1998) in FPG. It is also concluded in Section 3.15 that the pressure gradient

does not cause a significant impact on the production of turbulence in the near-wall

region. In this section, both turbulence production and dissipation are analysed, with

the addition of data from the pipe and channel flows. Firstly, the turbulence production

analysis is revisited. Turbulence production is given by

Prod = −uw∂u
∂z
− u2 ∂U1

∂x
+w2

∂U1

∂x
. (B.1)

Figure B.6(a) shows turbulence production scaled with δ/U3
τ . The outer region shows

that the pressure gradient causes the APG case to have higher turbulence production.

This effect can be shown clearly with the pre-multiplied turbulence production Prod z

as shown in Section 3.15. The magnitude of Prod observed in the current APG data is

however remarkably lower than the one observed in Sk̊are and Krogstad (1994) because

of the mild pressure gradient. The ZPG, FPG and the internal flow cases have similar

turbulence production in this region.
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Figure B.6: (a) Turbulence production, (b) dissipation rate, ǫ = −uw+U3
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τ /(κz). Dashed lines denote z+ = 50 and z/δ = 0.15.
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In ZPG flows, turbulence production and dissipation are the main contributors to the

turbulence budget except near the edge of the layer (e.g. Bradshaw, 1967a, Spalart,

1988). However, with increasing pressure gradient, the advection and and diffusion terms

become significant, these are shown by Sk̊are and Krogstad (1994) experimentally. This

section attempts to highlight the pressure gradient’s effect on the energy dissipation

rate.

Figure B.6(b) shows dissipation rate ǫ distribution for the internal and external flows.

The dissipation rate calculation is given by ‘local equilibrium’ approximation (e.g. McK-

eon and Morrison, 2007)

ǫ = −uw+U3
τ

κz
= −uw∂U

∂z
, (B.2)

where the rate of production is balanced by the energy dissipation rate. Such approxi-

mation where energy is dissipated close to where it is produced in the log region becomes

more accurate as the Reynolds number increases, so that the net spatial transport be-

comes negligible (McKeon and Morrison, 2007). The approximate log region is shown

in this figure by the region contained by the two dashed lines which are z+ = 50 and

z/δ = 0.15. For the entire log region, Figure B.6(b) shows that ǫ for the APG case is

higher than any other flows considered.

Note that Tennekes and Lumley (1972) showed that ǫ in the log region can also be ap-

proximated by ǫ = U3
τ /κz (by assuming that the Reynolds shear stress in this region is

equal to ρU2
τ , mean velocity gradient is given by Uτ /(κz), therefore turbulence produc-

tion rate −uw∂U/∂z is equal to U3
τ /(κz). It was shown that turbulence is balanced by

the dissipation rate). However, in the favourable and adverse pressure gradient cases, er-

rors due to this approximation become large. Figure B.6(c) demonstrates that Reynolds

shear stress increases remarkably in the log region for the APG case. By omitting the

Reynolds shear stress term, the rise of the uw in the APG case in Figure B.6(c) is

underestimated, resulting in lower dissipation rate magnitude shown by the curve in

Figure B.6(b). A similar effect can also be observed in the FPG case, however in the

opposite direction. The omission of the Reynolds shear stress term cannot be observed

in the ZPG and internal geometry-flows. Therefore, analysis using this approximation

e.g. in Balint et al. (1991) where the uw term is omitted, is accurate. However, such

approximation is not valid in the near-wall region.
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As shown in Section 3.15, the Reynolds shear stresses uw for the boundary layer cases

are approximated by formulations given in Perry et al. (2002) and Kunkel and Marusic

(2006). The Reynolds shear stresses in the pipe and channel flows are approximated by

the momentum equation (Sreenivasan and Sahay, 1997, Tennekes and Lumley, 1972)

dU+

dz+
= 1 + uw+ − z

H
, (B.3)

where H is the channel’s half-width or pipe’s radius.

The turbulence dissipation rate for the current data could also be calculated by assuming

the local isotropy theory. The average turbulent energy dissipation rate ǫ is given by

(e.g. Hinze, 1975)

ǫ = ν(∂ui
∂xj
+ ∂uj
∂xi
) ∂uj
∂xi

. (B.4)

Local isotropy theory has been assumed to simplify the dissipation rate calculation.

The local isotropy hypothesis states that at sufficiently high Reynolds numbers, the

small-scale structures of turbulent motions are independent of large-scale structures

(Kolmogorov, 1941). If the dissipating range of eddy sizes is statistically isotropic,

equation (B.4) can be reduced to

ǫ ≈ 15ν(∂u
∂x
)2. (B.5)

Assuming the Taylor hypothesis, the dissipation energy rate can be approximated by

(Taylor, 1935, Townsend, 1976)

ǫ ≈ 15ν( 1
U

∂u

∂t
)2. (B.6)

Equivalently, the dissipation rate may be obtained from the one-dimensional spectral

density (Batchelor, 1953, Townsend, 1976)
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ǫ = 15ν ∫ ∞

0
k2xφ(kx)dkx. (B.7)

The dissipation rates calculated by both fluctuating velocities (B.6) and energy spectrum

integration (B.7) result in variations of ±5% within these two methods. In the log

region, z/δ = 0.15, the dissipation rate calculated by the local equilibrium approximation,

(B.2) is always at least 10% higher than the isotropic relations (B.6) and (B.7). The

approximation using the isotropic relations is subjected to the spatial resolution issues.

Hutchins et al. (2009) demonstrated that the longer hotwire probe is unable to resolve

the high wave number features shown in the Kolmogorov-scaled energy plots. This effect

is not only present in the inner region, but extends well into the log region, z/δ = 0.15
(Hutchins et al., 2009).

B.3.1 Kolmogorov-scaled energy

The different calculations for energy dissipation make it difficult to draw any conclusion

regarding the pressure gradient effect. Therefore, it is important to employ the right

method. Spatial resolutions issues seem to be the main problem, resulting in inaccuracies

in ǫ from the isotropic relations (B.6) and (B.7). To highlight the spatial resolution effect,

it is useful to discuss the unresolved Kolmogorov-scaled energy in Hutchins et al. (2009).

The Kolmogorov-scaled energy is given by

EK = ǫ−2/3k5/3x φuu. (B.8)

Figures B.7 show Kolmogorov scaled energy at Reτ ≈ 3000 for APG, ZPG, FPG, pipe

and channel flows at constant Reτ ≈ 3000 and l+ ≈ 30 at four selected wall-normal

locations. It is easy to observe that the longer wire l+ ≈ 40 for the APG flow detects less

energy in the range of 0.01 ≲ kxηK ≲ 1. Here ηK is the Kolmogorov length scales, given

by

ηK = ν3/4
ǫ1/4

, η+K = ηKUτ

ν
. (B.9)



Concluding remarks and outlook 170

0.2

0.4

0.6

0.8

1

1.2

10
−4

10
−3

10
−2

10
−1

10
0

0.2

0.4

0.6

0.8

1

1.2

10
−3

10
−2

10
−1

10
0

(a) z+ ≈ 15 (b) z+ ≈ 100

(c) z+ ≈ (15Reτ )1/2 (d) z/δ ≈ 0.3(d) z/δ ≈ 0.3

kxηKkxηK

ǫ−
2
/3
k
5
/3

x
φ
u
u

ǫ−
2
/3
k
5
/3

x
φ
u
u

Figure B.7: Kolmogorov scaled energy at Reτ ≈ 3000 for APG, ZPG, FPG, pipe and
channel flows at constant Reτ ≈ 3000 and l+ ≈ 30. Symbols: (⊡) APG, (△) ZPG, (⊕)

FPG, (☆) pipe and (▽) channel flows. An APG flow at larger l+ ≈ 40: (⊙).

and ǫ is approximated using the energy spectrum method equation (B.7). Figures B.7(a)
-(c) continuously show that the Kolmogorov scaled energy almost collapses in the near-

wall and log regions for all flows considered at l+ ≈ 30 (note symbol ⊙ represents an

APG flow at larger l+ ≈ 40). The only difference is observed in the outer region, where

the smaller wave number structures seem to be more energised for the APG and ZPG

cases than for the other flows. However, the magnitudes of Kolmogorov-scaled energy

ǫ−2/3k
5/3
x φuu do not agree with existing results. The discrepancies can be explained by

the following: consider a sufficiently large Reynolds number flow, with viscous dissipa-

tion negligible over a large range of wave numbers and viscous forces have no direct
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influence on the motions by these components. In such an inertial subrange of the equi-

librium spectrum, the spectrum function should be independent of fluid viscosity and

(Kolmogorov, 1941, Townsend, 1976)

φuu(kx) = CKǫ
2/3k−5/3x , (B.10)

where CK is the Kolmogorov constant. A lot of experimental evidence has been shown

in support of this expression, for example by Falkovich (1994), Ferchichi and Tavoularis

(2000). Saddoughi and Veeravalli (1994) and McKeon and Morrison (2007) supported

that CK is a function of the Kolmogorov-scaled wave number i.e. CK = f(kxηK). In

Sreenivasan and Antonia (2007b)’s review paper, it is proposed that CK ≈ 0.5±0.05 over

a wide range of Reynolds numbers. It is now obvious that the results shown in Figures

B.7 suggests a CK value that is approximately equal to 0.7 (30-40% larger than the

proposed value). The errors could be attributed to the approximation of ǫ, as discussed

previously, and the spatial resolution issues. Assuming that the spatial resolution only

causes much smaller effects in the magnitude of ǫ−2/3k
5/3
x φuu (probe length variations

need to be l+ ≈ 80±60 to cause 10% in ǫ−2/3k
5/3
x φuu in Hutchins et al. (2009)). Therefore,

a larger error must be due to the calculation of ǫ.

Figure B.8(a) at z+ ≈ (15Reτ )1/2 and B.8(b) at z/δ ≈ 0.15 show ǫ−2/3k
5/3
x φuu using the

dissipation rate calculated by the local equilibrium approximation ǫ = −uw+U3
τ /(κz).

It is clear now that the external and internal geometry-flows, with the exception of

the APG flow, support (B.10) with CK approximately within the limits in Sreenivasan

and Antonia (2007b). At z/δ ≈ 0.15 in Figure B.8(b) , the largest magnitude of the

Kolmogorov-scaled energy for the APG flow is approximately 0.6, larger than any of

the peaks for the other flows considered. Furthermore, the features in the APG appear

to be more energetic in the region of 0.01 ≲ kxηK ≲ 1. The spectral bump in Figure

B.8(b) (Falkovich, 1994, McKeon and Morrison, 2007, Saddoughi and Veeravalli, 1994)

approximately located by the dashed lines, kxηK = 0.05, can clearly be observed for the

APG and ZPG flows, but not for the others.

B.3.2 Distribution of dissipation

Figure B.9 shows the distribution of Kolmogorov normalised length scale η+K (B.9) for

turbulent boundary layers, channel and pipe flows at Reτ ≈ 3000 and l+ ≈ 30. Yakhot
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Figure B.8: Kolmogorov scaled energy ǫ−2/3k
5/3
x φuu at Reτ ≈ 3000 for APG, ZPG,

FPG, pipe and channel flows at constant Reτ ≈ 3000 and l+ ≈ 30. Symbols: (⊡) APG,

(△) ZPG, (⊕) FPG, (☆) pipe and (▽) channel flows. Solid lines denote ǫ−2/3k
5/3
x φuu =

0.5. Dashed lines denote kxηK = 0.05 (Falkovich, 1994, McKeon and Morrison, 2007,
Saddoughi and Veeravalli, 1994)

et al. (2010) showed that η+K shall collapse in the region z ≲ 50 for 25 × 103 ≲ ReD ≲
150 × 103. The dissipation rate is approximated by integrating dissipation spectrum

(B.7), the same way as in Yakhot et al. (2010). It is proposed here that η+K collapse

for all internal and external geometry-flows in the region z ≲ 50 as long as the probe

length is constant. It can also be shown that the collapse in η+K extends further, until

the approximate start of the log region (z+ = 100) when the local equilibrium calculation

(B.2) is used. However, η+K for the APG case starts to deviate in the middle of the log

region.

Table B.1 shows the value of η+K at z/δ = 0.15, ǫ is calculated using the equilibrium

calculation (B.2). η+K ≈ 3.8 in this region is however slightly smaller for the APG flow.

The data in the table shows that η+K collapses for the region much further up than

described in Yakhot et al. (2010). In the table, the Taylor microscale Reynolds number

is
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Flow Symbol ReλT η+K Prod δ/U3
τ ǫ δ/U3

τ

eq. (B.1) eq. (B.2)

APG ⊡ 315 3.35 38 25

ZPG △ 250 3.77 19 15
ZPG ⊕ 246 4.00 11 12
Pipe ☆ 326 3.84 11 12

Channel ▽ 290 3.88 15 13

Table B.1: Normalised Kolmogorov length-scale η+K for APG, ZPG, FPG, pipe and
channel flows at constant Reτ ≈ 3000 and l+ ≈ 30 at z/δ = 0.15.

ReλT = λT
√
u2

ν
, λT =

√
u2

(∂u/∂x)2 (B.11)

where λT is known as the Taylor microscale. ReλT number needs to be large, i.e.

ReλT > 150 to observe a plateau in (B.8) (e.g. Ferchichi and Tavoularis, 2000, Saddoughi

and Veeravalli, 1994).
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The magnitudes for turbulence production and dissipation rate scaled with δ/U3
τ at

z/δ = 0.15 are shown in Table B.1. The values consistently show Prod δ/U3
τ ≈ 3.8 and

ǫ δ/U3
τ ≈ 13 except for the APG case, where turbulence production and dissipation

rate are larger by 100% and 50% respectively. Here, ǫ is approximated using the local

equilibrium relationship (B.2), therefore the values shown here do not correspond to

Figure B.9 (where ǫ is calculated using the energy spectrum method (B.7)). The larger

energy dissipation rate for the APG flow in the log region is expected because the

dissipation rate is similar to the turbulence production, which is known to increase in

APG flows (Nagano et al., 1998, Sk̊are and Krogstad, 1994).

The smaller non-dimensionalised Kolmogorov length scale for the APG case (η+K ≈ 3.4
instead of η+K ≈ 3.9 for the rest) suggests that the APG has also caused these small

structures to change. Furthermore, the value of the Kolmogorov constant CK remains

approximately 0.5 for the considered ZPG, FPG and the internal geometry-flows data,

the APG flow appears to deviate from this relationship by overestimating CK by 10%.

In summary, this section concludes that the activated log region brought by APG has

energised the smaller-scale structures. While there may be some changes between the

internal and external geometry-flows, the differences caused in the APG flow are signif-

icantly larger than those in the other flows.
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