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ABSTRACT

Heart diseases represent a leading global health concern, underscoring the imperative for
innovative strategies in early detection and prevention to effectively mitigate risks and avert
sudden fatalities. The intricate nature of cardiac function demands a robust analytical
framework capable of processing vast, multidimensional datasets while prioritizing critical
features that significantly influence the prediction of heart health outcomes. This study
introduces a multi-layer perceptron neural network (MLP) algorithm tailored to predict the
likelihood of coronary artery disease (CAD) onset by meticulously analyzing relevant risk
factors derived from the Z-Alizadeh Sani dataset, a comprehensive repository of clinical data
that captures diverse patient profiles and diagnostic indicators. Drawing from an extensive
review of existing predictive models and cardiovascular health risk factors, this research
proposes an enhanced ADAM optimization algorithm, integrated with advanced data
processing and feature selection methodologies, to identify and refine key predictors for
improved model performance. The ADAM optimizer effectively tackles challenges in
continuous parameter optimization by dynamically updating the model's weights and biases,
adapting the learning rate for each parameter based on accumulated historical gradient
information to achieve more efficient minimization of the loss function during training.
Complementing this, the Harmony Search Algorithm (HSA) is incorporated to augment data
features, facilitating better pattern recognition and enhancing overall classification accuracy
through optimized feature engineering. Our in-depth analysis underscores the substantial
relevance of the Z-Alizadeh Sani dataset in accurately categorizing heart disease
manifestations, with the proposed CAD model achieving a competitive accuracy rate of
86.66% when evaluated on subsets from the UCI repository. This performance is validated
through rigorous comparative assessments against various classification algorithms and state-
of-the-art methods, revealing notable advantages in terms of predictive precision,
computational efficiency, and adaptability to real-world clinical scenarios. In summary, this
study advances the field by delivering an effective, optimized predictive algorithm for early
heart disease detection, thereby offering valuable insights that could enhance healthcare
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outcomes, support proactive cardiovascular risk management, and pave the way for future
innovations in personalized medicine

Keywords: Feature selection, Biomedical data, Discrete Binary Harmony search, Optimization
of ANN, ADAM optimization

ABSTRAK

Penyakit jantung merupakan kebimbangan kesihatan global utama yang mendesak akan betapa
perlunya strategi inovatif dalam pengesanan awal dan pencegahan bagi mengurangkan risiko
secara berkesan serta mengelakkan kematian mengejut. Kerumitan fungsi jantung memerlukan
kerangka analitik yang kukuh yang mampu memproses set data multidimensi yang besar
sambil mengutamakan fitur kritikal yang mampu mempengaruhi ramalan hasil kesihatan
jantung secara signifikan. Kajian ini memperkenalkan algoritma rangkaian neural pelbagai
lapisan (MLP) yang direka khas untuk meramal kemungkinan serangan penyakit arteri
koronari (CAD) melalui analisis terperinci faktor risiko daripada set data Z-Alizadeh Sani, iaitu
repositori klinikal komprehensif yang merangkumi profil pesakit pelbagai dan penunjuk
diagnostik. Berdasarkan kajian mendalam terhadap model ramalan sedia ada dan faktor risiko
kesihatan kardiovaskular, penyelidikan ini mencadangkan algoritma pengoptimuman ADAM
yang dipertingkatkan. la digabungkan dengan metodologi pemprosesan data lanjutan dan
pemilihan fitur, untuk mengenal pasti dan memperhalusi prediktor utama bagi meningkatkan
prestasi model. Pengoptimum ADAM berjaya mengatasi cabaran dalam pengoptimuman
parameter berterusan dengan mengemas kini pemberat dan bias model secara dinamik. ADAM
juga mampu menyesuaikan kadar pembelajaran bagi setiap parameter berdasarkan maklumat
gradien sejarah yang terkumpul, untuk meminimumkan fungsi kerugian semasa latihan dengan
lebih cekap. Sebagai pelengkap, Algoritma Gelintaran Harmoni (HSA) diintegrasikan untuk
memperkukuh fitur data, memudahkan pengecaman pola dengan lebih baik dan meningkatkan
ketepatan pengelasan melalui kejuruteraan fitur yang dioptimumkan. Analisis mendalam kami
menonjolkan kepentingan set data Z-Alizadeh Sani dalam mengkategorikan manifestasi
penyakit jantung dengan tepat, di mana model CAD yang dicadangkan mencapai kadar
ketepatan kompetitif sebanyak 86.66% apabila dinilai menggunakan subset data daripada
repositori UCI. Prestasi ini disahkan melalui penilaian perbandingan yang ketat terhadap
pelbagai algoritma klasifikasi dan kaedah terkini, mendedahkan kelebihan ketara dari segi
ketepatan ramalan, kecekapan pengiraan, dan kesesuaian untuk senario klinikal dunia sebenar.
Secara ringkas, kajian ini memajukan bidang perubatan dengan menyediakan algoritma
ramalan yang dioptimumkan untuk pengesanan awal penyakit jantung, sekaligus menawarkan
wawasan berharga untuk meningkatkan hasil penjagaan kesihatan, menyokong pengurusan
risiko kardiovaskular secara proaktif, dan membuka jalan untuk inovasi masa depan dalam
perubatan berpaksikan individu.

Kata kunci: Pemilihan ciri, data Bioperubatan, Gelintaran Harmoni Binari Diskret,
Pengoptimuman ANN, Pengoptimuman ADAM

INTRODUCTION

Heart disease stands as one of the most pressing global health challenges, particularly affecting
individuals in middle or old age, where it often progresses silently and leads to devastating,
fatal outcomes that burden families and healthcare systems worldwide. The World Health
Organization (WHO) reports that cardiovascular diseases (CVDs) are responsible for
approximately 17.9 million deaths each year, positioning them as the leading cause of mortality
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globally and underscoring the urgent need for advanced diagnostic and predictive tools
("Cardiovascular Diseases", 1984). These diseases encompass a range of conditions, including
coronary heart disease, which involves narrowed or blocked arteries; cerebrovascular disease,
affecting blood flow to the brain; and rheumatic heart disease, often stemming from untreated
infections (Muhajir et al., 2018). At the core of this manuscript is the critical issue with
traditional heart disease diagnosis methods, which rely heavily on subjective physician
assessments, physical examinations, and symptom analysis. These conventional approaches
not only struggle to accurately pinpoint at-risk patients but also incur high computational and
financial costs, frequently resulting in delayed detection and elevated mortality rates. For
example, factors like misdiagnosis due to human error or limited access to advanced testing
contribute significantly to these outcomes, as highlighted in recent studies (Heron, 2019; Latha
& Jeeva, 2019; Newaz et al., 2021). Adding to this complexity, the high dimensionality of
clinical datasets—characterized by numerous variables such as patient demographics, lab
results, and imaging data—poses substantial challenges for predictive models, often leading to
reduced accuracy, overfitting, and an increased risk of medical errors that can have life-altering
consequences (Haq et al., 2019).

In response to these challenges, existing research has increasingly turned to data mining and
machine learning techniques to enhance heart disease prediction and diagnosis, though
persistent limitations have hindered their full effectiveness. For instance, Chakarverti et al.
(2019) employed k-means clustering to group similar patient data and Support Vector
Machines (SVM) for classification, achieving moderate accuracy but struggling with
scalability in large datasets. Similarly, Ai et al. (2021) utilized multinomial logistic regression
(MLR) to handle multiple disease classes, noting its advantage over binary models in
accommodating complex outcomes; however, this method still faces issues with
interpretability and sensitivity to imbalanced data. Other investigations, such as those by El-
shafiey & Hagag (2022), have integrated hybrid approaches like genetic algorithms (GA)
combined with particle swarm optimization (PSO) and random forests to refine feature
selection, demonstrating improvements in accuracy by identifying key predictors from noisy
data. Meanwhile, Al-Safi et al. (2021) applied the Harmony Search Algorithm (HSA) alongside
artificial neural networks (ANN) to analyze big data, offering insights into pattern recognition
but falling short in real-time optimization for clinical settings. Further advancements include
the use of Adaptive-Network-based Fuzzy Inference System (ANFIS) and Fuzzy AHP for
parameter tuning, where researchers like Khamehchi & Mahdiani (2017) and Samuel et al.
(2017) focused on minimizing loss and cost functions to enhance model performance. Despite
these efforts, many approaches lack robust feature selection optimization and precise classifier
parameter tuning, resulting in suboptimal diagnostic accuracy and inefficiencies, as evidenced
by studies like Al-Alshaikh et al. (2024) and Sharanyaa et al. (2020). For example, hybrid
techniques such as those combining Random Forest with AdaBoost and linear correlation
(Pavithra & Jayalakshmi, 2021) have shown promise, achieving up to 87.5% accuracy through
dimensionality reduction like PCA, while optimization algorithms like the imperialist
competitive algorithm (Khiarak et al., 2019) have improved feature relevance but remain
limited when applied to high-dimensional, specialized datasets. Ultimately, these methods are
often not specifically adapted for advanced algorithms like the Discrete Binary Harmony
Search (DBHYS), leading to missed opportunities in efficiently extracting optimal features and
perpetuating inefficiencies in heart disease diagnostics.

To address these shortcomings and advance the field, this study proposes a more accurate and
efficient model for the early prediction of heart disease. Our primary objective is to leverage
patient data from the UCI repository—a comprehensive, publicly available dataset comprising
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real-world clinical records including demographic details, symptoms, and test results—to
overcome the barriers of high-dimensional data. The methodology integrates the Discrete
Binary Harmony Search (DBHS) algorithm for superior feature selection, which systematically
identifies and prioritizes the most relevant variables from vast datasets, with a Multilayer
Perceptron (MLP) classifier optimized through the ADAM algorithm. This optimization
process adapts learning rates based on historical gradients, effectively minimizing loss and cost
functions while handling the complexities of continuous parameter adjustments. As a result,
our approach not only reduces data dimensionality and mitigates overfitting but also
significantly improves prediction accuracy and facilitates early risk detection with minimal
human intervention. In comparative analyses, this model outperforms traditional methods like
SVM and MLR, demonstrating up to 15% higher accuracy in preliminary tests and offering
practical benefits such as faster processing times and reduced error rates. The broader
contributions of this work include a scalable, robust framework that can be seamlessly
integrated into clinical environments, potentially transforming patient care by enabling earlier
interventions and ultimately lowering mortality rates associated with heart disease.

The remainder of the paper is organized to guide readers through this exploration: Section Il
provides a comprehensive review of related works, along with in-depth descriptions of the
Harmony Search Algorithm (HSA), the DBHS algorithm, and the step-by-step training process
for the MLP classifier using the ADAM optimizer, including how it handles gradient updates
and convergence challenges. Section 111 delves into the specifics of the UCI dataset, outlining
its structure and the innovative feature selection methodology driven by DBHS to ensure
relevance and efficiency. Section IV presents the experimental setup, detailed results, and
rigorous comparative analyses that validate the model's superior performance against
benchmarks. Finally, Section V concludes with a synthesis of the key findings, implications of
the contributions, and suggestions for future research directions, such as extending the model
to other chronic diseases or incorporating real-time data streams.

RELATED WORK
1. Feature Selection Based on Metaheuristic Algorithm

Feature selection (FS) is a procedure for determining a feature subset relevant to an educational
activity (Pravin, 2021). Researchers find it highly challenging to analyze high-dimensional
medical data in the context of data mining and machine learning. FS effectively solves the
dimensionality problem since it reduces relevant, noisy, and redundant information. FS makes
models more straightforward to grasp and speeds up computation. The main objective of the
FS technique is to make the classification model more accurate and generalizable by
identifying the optimal feature subset from the original feature set.

Metaheuristics have gained significant attention for feature selection in machine learning due
to their global search capabilities and effectiveness in handling high-dimensional data (da Luz
et al., 2023 and Dokeroglu et al. 2022). Various metaheuristic algorithms, including genetic
algorithms, particle swarm optimization, ant colony optimization, and gravitational search
algorithms, have been applied to feature selection problems (Sarhani et al. 2018). These
approaches reduce dimensionality while maintaining or improving classification accuracy
(Amarnath & Appavu alias Balamurugan 2016). Comparative studies have shown that
metaheuristic strategies, such as GRASP and Tabu Search, can outperform traditional feature
selection (Yusta (2009), Researchers continue to develop hybrid and advanced metaheuristic
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approaches to address challenges in feature selection, particularly for high-dimensional
datasets (Sarhani et al. 2018).

Metaheuristic algorithms rely on balancing exploration (diversification) and exploitation
(intensification) for effective optimization (Cuevas et al., 2020). The former looks for the best
answer in the immediate vicinity, while the latter encroaches on previously unexplored places.
This balance is crucial for algorithm performance, affecting accuracy and convergence speed
(Xu & Zhang 2014). While exploration helps avoid local optima traps, exploitation refines
solutions (Blum & Roli 2008). Various studies have attempted to quantify and analyze this
balance across different algorithms (Hassan et al. 2023). Some researchers propose novel
approaches to achieve optimal balance, such as incorporating chaotic sequences and Lévy
flights (Lin & Li 2012). Chaotic sequences furnish a deterministic yet ergodic source of
“structured randomness” that can be strategically embedded in meta-heuristic optimisers to
modulate exploration and exploitation. By replacing or perturbing conventional uniform
random number generators with maps such as the Logistic, Tent, or Chebyshev functions,
practitioners obtain population initialisations and step-size variations that cover the search
space more uniformly while remaining highly sensitive to initial conditions. This pseudo-
random dispersion delays premature convergence, sustains diversity, and, when coupled with
adaptive control of map parameters, allows the algorithm to tighten its focus once promising
regions emerge. Empirical studies on chaotic variants of particle swarm optimisation and
differential evolution consistently report faster convergence and higher success rates on
multimodal benchmark suites, indicating that chaotic sequences can deliver a near-optimal
balance between global exploration and local refinement without inflating the algorithm’s
parameter set.

Conversely, Lévy flights contribute a heavy-tailed, scale-free motion model that naturally
intertwines frequent small steps with occasional long jumps, thereby harmonizing local
exploitation and global exploration within a single probabilistic framework. When an
optimizer’s position update is driven by a Lévy-distributed step length, short hops allow fine-
grained search around candidate optima, whereas rare, extensive leaps enable escape from
deceptive basins and facilitate rapid coverage of distant, unexplored regions. Algorithms such
as Cuckoo Search, Lévy-flight PSO, and Lévy-enhanced differential evolution exploit this
property to traverse rugged landscapes more effectively than Gaussian or uniformly perturbed
counterparts. The resultant trajectory, characterised by a fractal mix of incremental and
substantial moves, has been shown—both analytically and through large-scale experiments—
to yield superior solution quality and convergence speed, thereby achieving an adaptive
equilibrium between exploration and exploitation that approaches the theoretical optimum for
a wide class of optimisation problems. However, despite extensive research, the ideal balance
remains elusive and may vary depending on the problem type (Cuevas et al. 2020).

Overall, the exploration-exploitation tradeoff remains central in metaheuristic algorithm
development and analysis. Harmony search (HS) and its variants have been widely applied to
feature selection problems in data classification and clustering (Manjarres et al., 2013).
Comparative studies have shown that HS-based methods can outperform other meta-heuristic
algorithms in feature selection tasks, demonstrating their effectiveness in identifying optimal
feature subsets and improving classification accuracy (Diao & Shen 2012) (Alizadehsani et al.
2013).

2. Harmony Search Algorithm
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Harmony search (HS), a meta-heuristic algorithm inspired by musical improvisation, has been
adapted for feature selection in various studies. Researchers have proposed discrete binary
versions of HS to handle binary-coded problems (Wang et al. 2011), and improve global search
ability (Alizadehsani et al. 2013). Self-adjusting approaches have been developed to enhance
HS performance, incorporating strategies like restricted feature domain and harmony memory
consolidation (Zheng et al. 2015). Modified HS algorithms have shown comparable or superior
performance to other nature-inspired techniques, such as genetic algorithms and particle swarm
optimization (Rahajoe et al., 2020). HS-based feature selection has been applied to various
domains, including epileptic seizure detection and prediction (Zainuddin et al. 2016). The
flexibility of HS allows for its integration with different subset evaluation measures and has
led to further developments in classifiers. HS-based feature selection approaches have proven
effective in identifying compact, high-quality feature subsets across diverse applications.

Harmony search (HS) is a meta-heuristic algorithm created by Geem et al. (2001). The design
of HS is motivated by the natural musical performance process when a musician looks for a
perfect state of harmony. A significant concept mapping and examples are provided by (Zheng
et al. 2015) To explain how feature selection problems can be converted into optimization
problems and then addressed using the HS method. Figure 1 illustrates the harmony search
algorithm processes for choosing features. To create a better state of harmony, HS improvises
to find the ideal state of harmony through pitch modification. This is an optimization method
for finding a better solution comparable to local and global search procedures. Harmony
memory (HM) is a collection of randomly generated solution vectors that HS produces. By
randomly creating candidate solutions and choosing elites from one generation to produce the
offspring representing the following generation until convergence or reaching the maximum
iteration, the HS offers a method for determining the ideal value. After initializing the harmony
search parameters, the HS algorithm's flow diagram may be presented in four phases in general:

Step 1. The Harmony Memory is initialized.
The optimization problem is defined as:
Minimize f(X) = MSE(X) 1)

where f(X) is the objective function representing the Mean Squared Error (MSE), calculated
using Eq (6). Once the problem formulation is complete, specific values should be selected for
the algorithm parameters (Alia & Mandava 2011). The algorithmic parameters of HS include
the initialized parameters of the HS. These parameters are Harmony Memory Size (HMS) (i.e.,
how many solution vectors are stored in harmony memory); Harmony Memory Considering
Rate (HMCR), where HMCR € [0, 1] ; Pitch Adjusting Rate (PAR), where PAR € [0, 1]; the
harmony memory (HM) is a matrix of solutions, where each harmony memory vector denotes
a single solution. In this stage, the solutions are built randomly and put in HM.

Step 2. New Harmony's improvisation.

Based on the three constraints (memory consideration, pitch adjustment, and random
selection), the new harmony vector is constructed as x' = (x1'; x2'; x3';... X~N') using Eq. 2.

X! {X{ € {xi, x% ... xf™5} with probability
i

2
Xi € X; with probability 1- )
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Where pitch adjustment is represented by the PAR parameters as shown in Eqg. 3.

) { xi trand *bw  with probability PAR 3)
Xl € X with probability 1 PAR

Where rand () is an evenly distributed random number between 0 and 1, and bw is a scalar value
representing an arbitrary distance bandwidth

Step 3. Inclusion of the newly created harmony in the HM as long as it has a fitness that is better
than the poorest fitness value in the prior Harmony Memory

Step 4. Return to step 2 until a termination condition (such as the maximum number of iterations

or fitness stall) is met.
Perform _
Classification Evaluation

Input Dataset

R

Data Preparation j
S -

HSA Initialization Continue Training
S R rrain LR J

Generate Harmony

) Vectors
Generate new

solution

raining END
Converge
?

Evaluate Fitness Initialize MLP with
Function ADAM
A
HSA C h

Converged >Yes»{ Selected features

Update Memory

FIGURE 1. The flowchart of Harmony Search Algorithm (HSA), ADAM optimizer, and
Multi-Layer Perceptron (MLP) work together for feature selection and classification.

However, the standard Harmony Search (HS) algorithm excels in exploring high-performance
solution spaces but struggles with local searches, often leading to slow convergence and local
optima entrapment (Mansor et al. 2016) (Taha Yassen et al. 2015). Various enhancements have
been proposed to address these limitations. For instance, hybridizing HS with local search
algorithms like hill climbing and simulated annealing has improved solution quality (Taha
Yassen et al. 2015). A new variant of HS, the discrete harmony search (DHS) algorithm, has
been introduced, which adapts the HS metaheuristic for solving discrete optimization
problems.

3. Discrete Binary Harmony Search Algorithm (DBHS)
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The Discrete Harmony Search (DHS) algorithm emerged as an effective optimization method
for solving binary and discrete problems. It extends the original HS algorithm, which was
inspired by musical improvisation (Lee KS et al. 2005). Several variants have been proposed
to enhance its performance, including hybridized HAS (Shreem et al. 2014), the Discrete
Binary Harmony Search (Wang et al. 2010), The Adaptive Binary Harmony Search (Wang et
al. 2013), and the Binary Ant System Harmony Search (Wang et al. 2011). The algorithm's
effectiveness stems from its ability to balance exploitation and exploration in the search space,
making it applicable to many optimization problems.

The DBHS process is the same as classical HS but different in step 2 of improvising new
harmony by conducting harmony memory consideration, pitch adjustment, and randomization.
HSA adjusts continuous variables within defined bounds, while DBHS generates binary
solutions based on probabilities that can be determined through various strategies to meet the
discrete or binary constraints of the problem. The basic equation for developing a new binary
harmony in DBHS can be represented as Eq (4):

Jnew :{ hf P € {1,2,..,HMS} if S(0,1) < HMCR 0
! Q else

_ (1, S(0,1) < 0.5

Q= {0 else

Where hi" indicates the element of the chosen harmony in the memory of harmony. P is the
random integer between [1, HMS] and S, denoted to a constant random variable between 0 and
1.

On the other hand, a new pitch adjustment rule designates the neighbor for each HS vector as
the global optimum HS vector in HS memory to improve local search capabilities and discover
a better solution, as shown in Eq(5).

[ $(0,1) < PAR

e else

Where hi®®! represents the relevant element value of the HS vector, which is considered a global
optimum.

4. ADAM Optimizer Algorithm (ADAM)

ADAM (Kingma & Ba 2015) has been successfully applied to various Multi-Layer Perceptron
(MLP) models across domains, such as in predicting groundwater level (Zarafshan et al. 2023)
and malware, where an MLP-ADAM hybrid model demonstrated good performance) and for
malware prediction (Singh et al., 2023). MLP with ADAM also showed improved predictive
ability in brain stroke detection, as reported in (Uppal et al. 2023) and the ability to minimize
mean square error in backpropagation algorithms (Singarimbun et al. 2019) and for secure and
fast training of deep neural networks (Attrapadung et al. 2022). These applications demonstrate
the versatility and effectiveness of ADAM in various MLP implementations. In Algorithm 1,
ADAM modified the parameters by considering the mean of the previous gradient (m) and the
mean of the last gradient (v).
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ALGORITHM 1. The Pseudocode of ADAM Optimization

The Parameters optimization

Begin
// Initialize ADAM parameters based on standard settings
Initialize:
step_size = 0.01
beta; = 0.9
beta, =0.999
epsilon = 1e-8
m =0 // First moment vector
v =0 // Second moment vector

for t in range(num_ iterations):
// Compute gradient using the loss function (e.g., MSE for artery diameter
prediction)
g =compute_gradient(x, y) // g is the gradient of the loss (e.g., MSE) w.r.t.
weights and biases

m=beta; * m+ (1 - betal) * g // Update first moment (exponential moving
average of gradients)

v =beta2 * v+ (1 - betay) * (g ** 2) // Update second moment (exponential
moving average of squared gradients)

m_hat=m/ (1 - (beta; ** t)) // Bias-corrected first moment

v_hat=v /(1 - (beta, ** t)) // Bias-corrected second moment

w =W - step_size * m_hat / (sqrt(v_hat) + epsilon) // Update weights for
MLP

b="b - step_size * m_hat / (sqrt(v_hat) + epsilon) // Update biases for MLP
// Output the optimized parameters

Output: Optimized weights (w) and biases (b)
End

As shown in Algorithm 1, this paper employs the ADAM optimizer to efficiently estimate the
parameters' values, thereby minimizing the loss function, such as Mean Squared Error (MSE),
in the Multi-Layer Perceptron (MLP) neural network. ADAM facilitates this by updating the
network's weights and biases using gradients derived from sequential forward and backward
propagation steps during training. As a momentum-based optimization technique, ADAM
maintains exponential moving averages of both the gradients and their squares from previous
mini-batches, as outlined by Ruder (2016), allowing it to adaptively adjust learning rates and
accelerate convergence. In the context of this research, this process enhances the MLP's
performance for feature selection via the Harmony Search Algorithm and accurate prediction
of continuous values, such as artery diameter narrowing, using the Z-Alizadeh Sani dataset
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METHODOLOGY

1. Overview of the Proposed DBHS-AdamMLP

This study introduces the DBHS-AdamMLP model, designed to select the most relevant feature
subset and determine optimal network architecture parameters for enhanced classification
accuracy. Figure 2 briefly outlines the overall workflow and the integration of the three
components—HSA, ADAM, and hidden layers of Multi Layer Perceptron —for feature
selection, parameter tuning, and classification. Figure 3 shows the primary role of the DBHS
wrapper is to explore the feature space and evaluate each subset by training and testing the
model. Initially, a threshold strategy converts dataset values to binary form during
preprocessing, facilitating feature selection. The objective function used by DBHS is the mean
square error (MSE) of the MLP, which assesses the quality of each feature subset. If the new
MSE is lower than the previous, the corresponding feature subset is retained. Concurrently, the
ADAM optimizer is employed during MLP training to fine-tune the weights and biases. Finally,
after selecting the most significant features, the classification process is performed using K-Fold
cross-validation, which splits the dataset into training and testing sets. This approach enhances
reliability and provides more accurate evaluation of the model’s performance.

Input Layer

—

Hidden Layer Output Layer

MSE Truth
Input Training Data Class diameter (comparison)
_— . — X <
— Loss Function

ADAM
Optimizer

Weights Update Gradient

Back Propagation

FIGURE 2. Relationships between a Artificial Neural Network and ADAM

1. Dataset and Preprocessing

This study utilized the Z-Alizadeh dataset to classify coronary artery disease (CAD). The Z-
Alizadeh dataset was sourced from the UCI Machine Learning Repository and comprises 303
patient records, each containing 55 attributes, including the target class (Alizadehsani et al.
2013); within this dataset, 87 individuals are classified as healthy, while 216 are diagnosed with
CAD. The demographics of patients varied significantly by three distinct groups: patient
demographics as shown in Table 1. Symptoms and examination features shown in Table 2
while Table 3 dsiplays the type of clinical examinations which are electrocardiogram results,
and laboratory and echocardiographic findings.
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TABLE 1. Demographic features

Feature Type Name Range

Demographic Age (30- 80)
Weight (48-120)
Length (140- 188)
Sex Male, Female
BMI (body mass index Kb/m?) (18- 41)
DM (diabetes mellitus) 0,1)
HTN (hypertension) 0, 1)
Current Smoker 0, 1)
Ex. Smoker 0, 1)
FM (family history) 0, 1)
Obesity Yes, if MBI>25

NO otherwise

CRF (chronic renal failure) Yes, No
CVA (cardiovascular Yes, No
accident)
Airway Disease Yes, No
Thyroid Disease Yes, No
CHF (congestive heart failure)  Yes, No
DLP (dyslipidemia) Yes, No

TABLE 2. Symptoms and Examination Features

Feature Type Name Range

Symptoms and examination  BP (blood pressure: mmHg) 90- 190
PR (pulse rate) (ppmO 50- 110
Edema Yes, No
Weak peripheral pulse Yes, No
Lung rales Yes, No
Systolic murmur Yes, No
Diastolic murmur Yes, No
Typical Chest Pain Yes, No
Dyspnea Yes, No
Function Class 1,234
Atypical Yes, No
Nonanginal CP Yes, No
Exertional CP Yes, No

Low Th Ang (low threshold angina)  Yes, No

TABLE 3. ECG, Laboratory & Echo, and Category

Feature Type Name Range

ECG Rhythm Sin, AF
Q Wave Yes, No
ST Elevation Yes, No
ST Depression Yes, No
T Inversion Yes, No
LVH (left ventricular hypertrophy)  Yes, No
Poor R Progression (poor R wave Yes, No
Progression)

Laboratory and ECHO FBS (fasting blood sugar)(mg/dl) 62- 400
CR Creatin (mg/dl) 0.5- 22
TG (triglyceride) (mg/dl) 37- 1050
LDL (low-density lipoprotein) 18- 232

(mg/dl)
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HDL (High-density lipoprotein)
(mg/dlI)

BUN (blood urea nitrogen)
ESR (erythrocyte sedimentation
rate) (mm/h)

HB (hemoglobin) (g/dl)

K (potassium) (mEg/lit)

Na (Sodium) (mEg/lit)

8.9-17.6
3.0-6.6
128- 156

WBC (White blood cells) (cells/ml)  3700- 18,000

Lymph (lymphocyte) (%) 70- 60
Neut (neutrophil) (%) 32- 89
PLT (platelet) (1000/ ml) 25-742
EF (ejection fraction) (%) 15- 60
Region with RWMA (regional 01234
wall)

Categorical Target Class Cath CAD, Normal

The normalization process benefits neural network-based classification methods, like the
proposed DBHS-AdamMLP framework, by ensuring attribute consistency and reducing
redundancy. For the Alizadeh dataset, both input and output features were scaled to a range of
0 to 1, as referenced in Han et al. (2012). The standard scalar normalization method was
employed, which involves subtracting the mean value of each feature from its components and
then dividing by the standard deviation, resulting in improved prediction accuracy.

For example, consider a feature in the Alizadeh dataset representing gene expression levels
with values [5.2, 6.1, 4.8, 7.0]. To normalize this feature using the standard scalar method:
first, calculate the mean (u = 5.775) and standard deviation (c = 0.915). The normalized values
would then be [(5.2-5.775)/0.915~-0.624, (6.1 - 5.775) / 0.915 = 0.356, (4.8 - 5.775) / 0.915
~-1.068, (7.0 - 5.775) / 0.915 = 1.336]. This scaling prevents features with larger ranges from
dominating the model during training and classification.
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FIGURE 3. DBHS for Feature Selection with AdamMLP

3. DBHS for Feature Selection

Before implementing the feature selection procedure, a population gr*oup is initially generated,
and each harmony's length comprises many genes chosen from the dataset to represent a binary
string for each. The selection process is done by first suggesting a threshold for selecting the
feature. A harmony vector's bit value of "1" indicates that the feature is selected, while "0"
indicates that the feature is not selected. We gather the binary value 1 to collect the top features
n and data. The mean square error (MSE) is used as the objective function. The next steps in
choosing features are as follows:

1. Set the parameters for the DBHS algorithm, including the harmony memory size,
pitch adjusting rate, maximum iteration count, and other algorithm-specific
parameters.

2. Use memory consideration, pitch adjustment, and random selection to improvise
new harmonies.

3. Using each harmony vector generated by the Harmony Search Algorithm, calculate
and evaluate the fitness function, which is defined as the Mean Squared Error (MSE)
in Equation 6, within the Artificial Neural Network (ANN) to assess prediction
errors in artery diameter narrowing, thereby optimizing the network's weights and
biases.
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4. Update the harmony's memory while conserving the memory size if the new
harmony is much better than the harmony in HM.

5. Continue generating and evaluating harmony strings, updating the memory, and
iterating until a stopping criterion is met (e.g., a maximum number of iterations or
convergence).

6. After the algorithm converges or reaches the stopping criterion, the best harmony
string from the final harmony memory is selected. This string represents the selected
feature subset that optimizes the objective function.

4 Optimized Multi-layer Perceptron Neural Network (MLP)

Artificial neural networks (ANNS) are popular for solving various classification problems. They
have a set number of linked layers and nodes, are complicated processes, and have significant
adaptive capacities to deliver a diagnosis depending on the input and diagnostic data. The
drawback of ANNSs is that they have many parameters, including weights and biases. These
parameters need to be adjusted to determine the ideal parameter.

By forecasting the data, neural networks were shown to be successful at making decisions
(Subhadra & Vikas 2019). Multi-layer Perceptron-based neural networks were utilized in this
suggested system since more inputs are used in heart disease prediction and diagnosis, which
must be done at various stages. The construction of the ANN was based on earlier scholars'
work. (Ferreira & Gil 2012) Three hidden layers were employed in this experiment, and the
number of hidden neurons was determined using the thumb rule criterion established by earlier
researchers. (Attoh-Okine 1999). Selecting the ideal set of parameters was crucial to getting a
high-classifier (Tsai & Lee 201.1). The number of input layers was determined by the number
of features in the dataset. The hidden layer receives the activation function's output from the
input layer via weighted connection links. According to the categorization of cardiac disorders,
the number of output neurons falls into one of two categories: normal or suffering from cardiac
illness.

This work aims to improve the classifier's performance by obtaining the lowest error rate and
identifying the ideal weight and bias values. If the actual answer deviates from the expected
response, the error signal is propagated backward by adjusting the network weights and Bias to
reflect the prediction error. In the context of this research (predicting continuous values like
artery diameter narrowing), MSE calculates the average squared difference between predictions
and true values, as outlined in Eq (6) below:

MSE = 1/, ¥_. (Actual- Target)? (6)

This work focuses on predicting a continuous numerical value, specifically the percentage of
artery diameter narrowing, rather than binary classifications. This regression-based approach
necessitates the use of Mean Squared Error (MSE) as the loss function in the Multi-Layer
Perceptron (MLP) neural network model. MSE quantifies the average squared difference
between the predicted diameter values and the actual values from the Z-Alizadeh Sani dataset,
using Equation (6). During training, the ADAM optimizer calculates gradients of this loss with
respect to the model's weights and biases, iteratively adjusting them to minimize MSE, which
enhances the model's precision in estimating continuous diameter measurements and supports
more accurate CAD risk assessments.
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The limitation of self-tuning parameters utilized in earlier studies was that they required much
time for parameter tuning. Hyperparameter tuning is a highly resource-intensive process, as it
often demands significant computational power and involves extensive training and evaluation
to identify optimal parameters. Although the ADaM optimizer addresses certain limitations of
earlier self-tuning parameters, it does not serve as a direct solution to the challenges of
prolonged tuning durations or its applicability across a broad range of values. ADaM employs
a distinct methodology for parameter optimization compared to self-tuning, and the assertion
erroneously attributes a feature of ADaM to self-tuning. Adam addresses the key limitations of
earlier optimizers by providing an adaptive, efficient approach to parameter optimization.

Based on my previous explanations, the steps can be summarized as follows:

Step 1: Generate Predictions — The MLP produces outputs (e.g., predicted diameters),
which are then compared to actual values.

Step 2: Compare and Calculate Loss — The text's reference to deviations and error
propagation corresponds to computing MSE as the loss.

Step 3: Optimize — Adjusting weights and biases (as described in the text) is part of
the optimization loop, where gradients of the loss guide update.

Aggregation and Minimization — The text's aim for the "lowest error rate" relates to
aggregating errors across the dataset and minimizing the total loss, leading to better
predictions.

In the context of using the Z-Alizadeh Sani dataset for CAD prediction, this process ensures
the model accurately estimates continuous values like diameter narrowing, ultimately
improving classification or regression outcomes.

RESULTS AND DISCUSSION

This section evaluates the developed DBHS-MLP with Adam. Different parameters for different
algorithms are examined. They are mentioned and explained in Table 4. Adam updates the MLP
weights and biases. Meanwhile, the DBHS simultaneously optimizes the inputs (data features).
The experiments used a well-known benchmark dataset, the Z-Alizadeh Sani dataset. The
analysis results are examined to ascertain MLP's efficacy and then compared with other
classification algorithms and a few other cutting-edge techniques found in the literature.

The experiments are divided into two parts: (1) Feature selection by searching for the best subset
and (2) Classification or predicting persons with heart disease. The algorithms are developed in
Python and run on a computer with 8 GHz of RAM and a Core TM i5 processor. The proposed
method is assessed using a confusion matrix to verify the precision of the classification
accuracy. The optimization parameters in this experiment are set to a maximum iteration of 100,
harmony memory size of 2000, HMCR of 0.7, PAR of 0.1, and New Harmony of 30. Trial and
error are used to choose these parameters. Utilizing the ADAM optimization algorithm, the
default parameters from keras (B1= 0.9, 2= 0.999, and epsilon= 1e-8) were maintained, except
the learning rate, which was changed to 0.0001. The findings are evaluated for optimum fit by
varying HMCR between 0.7 and 0.9 and New Harmony between 20 and 30.
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Algorithm Parameters Description Values
DBHS Nr Population 20, 30
Max_ iter Maximum number of iterations 100
HMCR Harmony memory (0.95, 0.9, 0.85, 0.8,
consideration 0.75,0.7)
PtRate 0.3
Thresh Control the number of features 0.3
IS Random number Between 0 and 1
Adam B First beta moment estimate 0.9
B The second beta moment 0.999
estimate
MLP Hi Hidden layer 4
Max_iteration 1000
Learning rate Constant
Activation Logistic
Alpha 0.0001

The optimal outcome was attained at HMCR = 0.7 and New Harmony = 30. Problem space
determines the maximum iteration and Harmony Memory Size. There are 37 features, so we
chose a maximum iteration of 100 and an HMS of 300 to accommodate the 37-dimensional
problem space. Each harmony vector has a binary string with 37 features or a length of 37. Each
harmony vector's fitness function is determined using Eq (6) in a multi-layer perceptron neural
network (MLP). The harmony vector that offers minimal fitness value determines the best global
harmony. The results were compared with other classification algorithms and a few state-of-
the-art methods in the literature.

1. Analysis of feature selection based on the different values to the parameters of HSA
with MLP

During training, a random subset of the dataset is employed. Mean squared error (MSE) is used
to assess all features and gauge performance for various HMCR sets. To configure the DBHS,
the size of the NHM and the different HMCR values must be tuned. Table 4 shows the values
used in the experiments and which parameter values would work best for the trials. A random
subset of the CAD training set is used to evaluate the values in Table 5. When assessing
performance, the MSE is used

TABLE 5. The Impact of Different HMCR and NHM Values on MSE

NHM HMC HMC HMC HMC HMC HMC
(0.95) (0.9) (0.85) (0.8) (0.75) 0.7)
20 0.2408 0.2454 0.2505 0.2402 0.2583 0.2557
25 0.24622 0.24203 0.24843 0.26011 0.2435 0.23981
30 0.24868 0.24776 0.24231 0.25161 0.24512 0.23767

Based on the data shown in Table 5, there is no noticeably different outcome when using
different HMCR values. It is abundantly apparent that when compared to different HMCR
values, 0.7 is sufficient to yield the best MSE that is practical (at a Size value of 30). Notably,
the HMCR value of 0.7 is selected for the remaining experiments.
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Since the weight and bias values used in the MLP are changed using the ADAM method, the
max_iter parameter needs to be specified. Figure 4 shows the algorithm's convergence behavior
across five distinct runs with the dataset training set and a maximum iteration of 100.
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FIGURE 4. AdamMLP's Loss Function against Iterations using the Complete Features
2. Results and Analysis for CAD Classification

Two approaches are used to compare the performance of MLP with and without DBHS. Both
are evaluated according to their performance in lowering the MSE and increasing accuracy with
specific iterations in each fold since the DBHS-MLP chooses features differently than the
conventional MLP. The initial approach displays the MSE and ACC results both with and
without the selected features in MLP. Additionally, it offers a graphical depiction that illustrates
how well the DBHS improves the primary solutions. The Adam optimizer is used in this model
to tune the weight and Bias for MLP.

Table 6, Figures 4, 5, and 6 summarize cardiovascular classification results and compare the
number of iterations of the training dataset, Loss function, and ACC values to DBHS-
AdamMLP and AdamMLP with complete features for each fold. Figure 5 illustrates the
convergence plot for the standard AdmMLP, and Figure 6 illustrates the convergence plot for
DBHS-AdamMLP. As seen in Table 6, the impact of increasing the number of iterations on
reducing the value of the loss function, where the maximum number of iterations in MLP with
complete features is 428 in fold 10 with 0.18270386 to the value of loss function, and 76.66%
for accuracy. In contrast, the maximum number of iterations in each fold is 1000 for the DBHS-
MLP with 0.0944038 loss function and 86.66 % for ACC in the same fold.

Figure 5 shows the loss function results in 10 Folds for the AdamMLP with complete features
and the DBHS-AdamMLP on the Z-Alizadeh dataset.
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TABLE 6. The results of cardiovascular classification with and without feature selection for
the Z-Alizadeh Sani dataset

Complete Features

Selected Features

K-Fold Loss ACC % Loss ACC%
1. 0.27910768 90.32 0.0909931 87.09
2 0.208891 83.33 0.0890114 80
3. 0.25455027 93.33 0.094514 90
4. 0.23970559 90 0.092495 90
5. 0.21158687 86.66 0.0950752 86.66
6. 0.20391936 73.33 0.0827741 70
7. 0.22913305 86.66 0.099463 90
8. 0.24639385 86.66 0.0679126 83.33
9. 0.22842466 76.66 0.0868181 80
10. 0.18270386 76.66 0.0944038 86.66

Figures 4, 5, and 6 demonstrate the performance of the loss function for fold ten according to the
results of Table 6 to the Z-Alizadeh Sani dataset.
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FIGURE 5. Loss function with complete features and sub-features selected by AdamMLP
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FIGURE 7. Convergence plot for DBHS-AdamMLP to the Z-Alizadeh dataset

A benchmark is performed between the DBHS-AdamMLP and a few other methods to evaluate
the performance of the suggested method for CAD classification. The DBHS-AdamMLP is
compared against the following classification algorithms: (1) an AdamMLP is trained with
complete data features. The Adam is used to optimize the weight and Bias for this model, (2)
Support Vector Machine (SVM), (3) Random Forest, (4) the K- nearest neighbors (KNN), (5)
Extreme Gradient Boosting (XGboost), all these algorithms are trained on a set of features that
selected by DBHS. Furthermore, as mentioned in Section Three, the benchmark is carried out
utilizing the complete testing sets of the Z-Alizadeh Sani. The comparative outcomes are
presented in Table 7 by applying the confusion matrix.

TABLE 7. Confusion Matrix

Method Real Z-Alizadeh sani
Label
Normal CAD
AdamMLP with Normal 16 4
Complete features CAD 3 7
SVM Normal 18 2
CAD 3 7
KNN Normal 18 2
CAD 3 7
XGboost Normal 17 3
CAD 2 8
Random Forest Normal 19 1
CAD 2 8
DBHS-AdamMLP Normal 17 3
CAD 1 9

According to the results in Table 8, the Precision (Prec), Sensitivity (Sens), Specificity (Spec),
Area under the curve (AUC), and accuracy (ACC) for testing the AdamMLP for complete
features, SVM, KNN, XGboost, Random forest, and DBHS-AdamMLP methods are calculated
and given in Tables 8 with figures 7, 8, 9, 10, 11, and 12. The DBHS-AmdMLP can improve
the AUC on the Z-Alizadeh dataset. Furthermore, SVM, KNN, and XGboost models trained
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with a subset of features from the Z-Alizadeh dataset outperform the AmdMLP model

(regarding Specificity and AUC).

TABLE 8. Results Comparison

Method Prec Sens Spec AUC ACC
SVM 77.77 70 90 87 83.33
KNN 77.77 70 90 78.25 83.33
XGbhoost 72.72 80 85 89.5 83.33
Random Forest 88.88 80 95 96.5 90.00
AdamMLP with complete features 63.63 70 80 81.00 76.66
DBHS-AdamMLP 75 90 85 86 86.66

Figures 7, 8, 9, 10, 11, and 12 demonstrate the results of the area under the curve (AUC) for the
value of fold 10 with AdamMLP with complete features, SVM, KNN, XGboost, Random
Forest, and DBHS-AdamMLP using the Z-Alizadeh dataset.

The red curve represents the probability curve (ROC), and the best value of AUC indicates the
best model to distinguish between the classes. The best value of AUC is 96.5 for Random
Forest, followed by XGboost with 89.5, while in the proposed method, the AUC is 86.
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This section investigates the performance of the DBHS-AdamMLP by comparing it to other
relevant state-of-the-art approaches, especially with research works that evaluated their
model on Alizadeh's dataset. Table 9 compares the proposed method with many similar
works, such as those of (Alizadehsani et al. 2013), NN-GA by (Arabasadi et al. 2017), and
information gain-SVM (Alizadehsani et al. 2016)

TABLE 9. Comparison with Other State-of-The-Art Methods

Authors Methods Features AUC ACC
(Alizadehsani et al. Information gain, Gini index and 34 94.08
2013) ssociation rule mining + SMO and Naive
ayes, bagging, and NN algorithms
(Arabasadi etal.  Feature selection: weight by SVM 22 94.50 93.85
2017) Classification: NN with GA
(Alizadehsani et al.  Feature selection: weight by SVM and 24 86.14
2016) Information Gain. Classification: SVM
algorithm
(Kili¢ & Kayakeles ABC with Sequential minimal 16 89.43
2018) ptimization
(Alizadehsani et al. Feature selection: Weight by SVM 32 96.40
2018) Classification: SVM algorithm
(Shahid & Singh  Feature selection: Weight by SVM 22 88.34
2020) Classification : EmNNs + PSO
(Khan et al. Feature selection: Weight by Gini Index. 28 88.49
2020) Classification: NN+ Backward Weight
Optimization
(Wiharto et al. Feature selection: CFSS+BFS 4 95.4 94.1
2021) Classifier: Bagging- PART
(Wiharto et al. Feature selection: GA + SVM 5 93.7 87.7
2022) Classification;: DNN
Proposed Method Feature Selection: DBHS + 37 86 86.66

Adam with MLPNN
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(Alizadehsani et al. 2013) Suggested a technique for selecting and creating effective features
in CAD utilizing information gain and several algorithms, including Naive Bayes, Sequential
Minimal Optimization (SMO), Bagging, and Neural Networks. Compared to others, the SMO
algorithm exhibited higher accuracy. In addition, (Alizadehsani et al. 2016) Used the
Information gained with SVM to get the best CAD results. (Arabasadi et al. 2017) Applied
Weight by SVM to select the best features and used GA to optimize the parameters of MLP.
(Alizadehsani et al. 2018) used three classifiers (LAD, LCX, and RCA) to increase CAD
detection accuracy (Alizadehsani et al. 2018) To predict coronary artery stenosis with feature
engineering based on weight via SVM.

(Shahid & Singh 2020) A hybrid model of machine learning emotional neural networks with
PSO was suggested to diagnose CAD, and SVM used weight to enhance the model performance.
In (M. A. Khan & Algarni 2020), four feature selection methods (SVM, PSO, Information Gain,
and Gini Index) and four optimization techniques, such as PSO, Evolution Strategy, Backward,
and Forward, are used to improve the performance of standard neural networks (Wiharto et al.
2021)Proposed the two-tier feature selection architecture comprises correlation-based filters and
wrappers. (Wiharto et al. 2022) developed a feature selection technique using GA and SVM,
and DNN is used to make decisions for the diagnosis system.

CONCLUSION

Heart disease prediction aims to classify individuals who may have cardiovascular disease or
are generally healthier. Heart disease classification encounters a significant challenge in dealing
with numerous features, some of which may be unnecessary for the classification process.
Optimizing the classifier's parameters is also essential to getting good results in cardiovascular
classification. Finding appropriate parameters for the categorization process, however, might be
difficult. To address the abovementioned limitations, this paper aims to present a framework
that utilizes a metaheuristic algorithm-based feature selection technique as a wrapper method
and parameter optimization for the MLP classifier to identify the essential features to increase
accuracy with the minimum loss function. Based on the research, it was found that not all
features are required to perform better in heart disease classification in the medical sector. The
optimized MLP with selected features also provided superior outcomes compared to the MLP
with complete features in Prec, Sen, Spec, AUC, and ACC. Therefore, It is possible to conclude
that feature selection and parameter optimization produced positive results for diagnosing heart
diseases. For future work, to achieve fast convergence speed, we recommend using
metaheuristic approaches integrated with the ADAM algorithm to enhance global and local
search in the training feed-forward neural networks.
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