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ABSTRACT 

 

Heart diseases represent a leading global health concern, underscoring the imperative for 

innovative strategies in early detection and prevention to effectively mitigate risks and avert 

sudden fatalities. The intricate nature of cardiac function demands a robust analytical 

framework capable of processing vast, multidimensional datasets while prioritizing critical 

features that significantly influence the prediction of heart health outcomes. This study 

introduces a multi-layer perceptron neural network (MLP) algorithm tailored to predict the 

likelihood of coronary artery disease (CAD) onset by meticulously analyzing relevant risk 

factors derived from the Z-Alizadeh Sani dataset, a comprehensive repository of clinical data 

that captures diverse patient profiles and diagnostic indicators. Drawing from an extensive 

review of existing predictive models and cardiovascular health risk factors, this research 

proposes an enhanced ADAM optimization algorithm, integrated with advanced data 

processing and feature selection methodologies, to identify and refine key predictors for 

improved model performance. The ADAM optimizer effectively tackles challenges in 

continuous parameter optimization by dynamically updating the model's weights and biases, 

adapting the learning rate for each parameter based on accumulated historical gradient 

information to achieve more efficient minimization of the loss function during training. 

Complementing this, the Harmony Search Algorithm (HSA) is incorporated to augment data 

features, facilitating better pattern recognition and enhancing overall classification accuracy 

through optimized feature engineering. Our in-depth analysis underscores the substantial 

relevance of the Z-Alizadeh Sani dataset in accurately categorizing heart disease 

manifestations, with the proposed CAD model achieving a competitive accuracy rate of 

86.66% when evaluated on subsets from the UCI repository. This performance is validated 

through rigorous comparative assessments against various classification algorithms and state-

of-the-art methods, revealing notable advantages in terms of predictive precision, 

computational efficiency, and adaptability to real-world clinical scenarios. In summary, this 

study advances the field by delivering an effective, optimized predictive algorithm for early 

heart disease detection, thereby offering valuable insights that could enhance healthcare 
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outcomes, support proactive cardiovascular risk management, and pave the way for future 

innovations in personalized medicine 

 

Keywords: Feature selection, Biomedical data, Discrete Binary Harmony search, Optimization 

of ANN, ADAM optimization 

 

ABSTRAK 

 

Penyakit jantung merupakan kebimbangan kesihatan global utama yang mendesak akan betapa 

perlunya strategi inovatif dalam pengesanan awal dan pencegahan bagi mengurangkan risiko 

secara berkesan serta mengelakkan kematian mengejut. Kerumitan fungsi jantung memerlukan 

kerangka analitik yang kukuh yang mampu memproses set data multidimensi yang besar 

sambil mengutamakan fitur kritikal yang mampu mempengaruhi ramalan hasil kesihatan 

jantung secara signifikan. Kajian ini memperkenalkan algoritma rangkaian neural pelbagai 

lapisan (MLP) yang direka khas untuk meramal kemungkinan serangan penyakit arteri 

koronari (CAD) melalui analisis terperinci faktor risiko daripada set data Z-Alizadeh Sani, iaitu 

repositori klinikal komprehensif yang merangkumi profil pesakit pelbagai dan penunjuk 

diagnostik.   Berdasarkan kajian mendalam terhadap model ramalan sedia ada dan faktor risiko 

kesihatan kardiovaskular, penyelidikan ini mencadangkan algoritma pengoptimuman ADAM 

yang dipertingkatkan. Ia digabungkan dengan metodologi pemprosesan data lanjutan dan 

pemilihan fitur, untuk mengenal pasti dan memperhalusi prediktor utama bagi meningkatkan 

prestasi model. Pengoptimum ADAM berjaya mengatasi cabaran dalam pengoptimuman 

parameter berterusan dengan mengemas kini pemberat dan bias model secara dinamik. ADAM 

juga mampu menyesuaikan kadar pembelajaran bagi setiap parameter berdasarkan maklumat 

gradien sejarah yang terkumpul, untuk meminimumkan fungsi kerugian semasa latihan dengan 

lebih cekap. Sebagai pelengkap, Algoritma Gelintaran Harmoni (HSA) diintegrasikan untuk 

memperkukuh fitur data, memudahkan pengecaman pola dengan lebih baik dan meningkatkan 

ketepatan pengelasan melalui kejuruteraan fitur yang dioptimumkan.   Analisis mendalam kami 

menonjolkan kepentingan set data Z-Alizadeh Sani dalam mengkategorikan manifestasi 

penyakit jantung dengan tepat, di mana model CAD yang dicadangkan mencapai kadar 

ketepatan kompetitif sebanyak 86.66% apabila dinilai menggunakan subset data daripada 

repositori UCI. Prestasi ini disahkan melalui penilaian perbandingan yang ketat terhadap 

pelbagai algoritma klasifikasi dan kaedah terkini, mendedahkan kelebihan ketara dari segi 

ketepatan ramalan, kecekapan pengiraan, dan kesesuaian untuk senario klinikal dunia sebenar.  

Secara ringkas, kajian ini memajukan bidang perubatan dengan menyediakan algoritma 

ramalan yang dioptimumkan untuk pengesanan awal penyakit jantung, sekaligus menawarkan 

wawasan berharga untuk meningkatkan hasil penjagaan kesihatan, menyokong pengurusan 

risiko kardiovaskular secara proaktif, dan membuka jalan untuk inovasi masa depan dalam 

perubatan berpaksikan individu. 

 

Kata kunci: Pemilihan ciri, data Bioperubatan, Gelintaran Harmoni Binari Diskret, 

Pengoptimuman ANN, Pengoptimuman ADAM 

 

INTRODUCTION 

 

Heart disease stands as one of the most pressing global health challenges, particularly affecting 

individuals in middle or old age, where it often progresses silently and leads to devastating, 

fatal outcomes that burden families and healthcare systems worldwide. The World Health 

Organization (WHO) reports that cardiovascular diseases (CVDs) are responsible for 

approximately 17.9 million deaths each year, positioning them as the leading cause of mortality 
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globally and underscoring the urgent need for advanced diagnostic and predictive tools 

("Cardiovascular Diseases", 1984). These diseases encompass a range of conditions, including 

coronary heart disease, which involves narrowed or blocked arteries; cerebrovascular disease, 

affecting blood flow to the brain; and rheumatic heart disease, often stemming from untreated 

infections (Muhajir et al., 2018). At the core of this manuscript is the critical issue with 

traditional heart disease diagnosis methods, which rely heavily on subjective physician 

assessments, physical examinations, and symptom analysis. These conventional approaches 

not only struggle to accurately pinpoint at-risk patients but also incur high computational and 

financial costs, frequently resulting in delayed detection and elevated mortality rates. For 

example, factors like misdiagnosis due to human error or limited access to advanced testing 

contribute significantly to these outcomes, as highlighted in recent studies (Heron, 2019; Latha 

& Jeeva, 2019; Newaz et al., 2021). Adding to this complexity, the high dimensionality of 

clinical datasets—characterized by numerous variables such as patient demographics, lab 

results, and imaging data—poses substantial challenges for predictive models, often leading to 

reduced accuracy, overfitting, and an increased risk of medical errors that can have life-altering 

consequences (Haq et al., 2019).  

 

In response to these challenges, existing research has increasingly turned to data mining and 

machine learning techniques to enhance heart disease prediction and diagnosis, though 

persistent limitations have hindered their full effectiveness. For instance, Chakarverti et al. 

(2019) employed k-means clustering to group similar patient data and Support Vector 

Machines (SVM) for classification, achieving moderate accuracy but struggling with 

scalability in large datasets. Similarly, Ai et al. (2021) utilized multinomial logistic regression 

(MLR) to handle multiple disease classes, noting its advantage over binary models in 

accommodating complex outcomes; however, this method still faces issues with 

interpretability and sensitivity to imbalanced data. Other investigations, such as those by El-

shafiey & Hagag (2022), have integrated hybrid approaches like genetic algorithms (GA) 

combined with particle swarm optimization (PSO) and random forests to refine feature 

selection, demonstrating improvements in accuracy by identifying key predictors from noisy 

data. Meanwhile, Al-Safi et al. (2021) applied the Harmony Search Algorithm (HSA) alongside 

artificial neural networks (ANN) to analyze big data, offering insights into pattern recognition 

but falling short in real-time optimization for clinical settings. Further advancements include 

the use of Adaptive-Network-based Fuzzy Inference System (ANFIS) and Fuzzy AHP for 

parameter tuning, where researchers like Khamehchi & Mahdiani (2017) and Samuel et al. 

(2017) focused on minimizing loss and cost functions to enhance model performance. Despite 

these efforts, many approaches lack robust feature selection optimization and precise classifier 

parameter tuning, resulting in suboptimal diagnostic accuracy and inefficiencies, as evidenced 

by studies like Al-Alshaikh et al. (2024) and Sharanyaa et al. (2020). For example, hybrid 

techniques such as those combining Random Forest with AdaBoost and linear correlation 

(Pavithra & Jayalakshmi, 2021) have shown promise, achieving up to 87.5% accuracy through 

dimensionality reduction like PCA, while optimization algorithms like the imperialist 

competitive algorithm (Khiarak et al., 2019) have improved feature relevance but remain 

limited when applied to high-dimensional, specialized datasets. Ultimately, these methods are 

often not specifically adapted for advanced algorithms like the Discrete Binary Harmony 

Search (DBHS), leading to missed opportunities in efficiently extracting optimal features and 

perpetuating inefficiencies in heart disease diagnostics. 

 

To address these shortcomings and advance the field, this study proposes a more accurate and 

efficient model for the early prediction of heart disease. Our primary objective is to leverage 

patient data from the UCI repository—a comprehensive, publicly available dataset comprising 
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real-world clinical records including demographic details, symptoms, and test results—to 

overcome the barriers of high-dimensional data. The methodology integrates the Discrete 

Binary Harmony Search (DBHS) algorithm for superior feature selection, which systematically 

identifies and prioritizes the most relevant variables from vast datasets, with a Multilayer 

Perceptron (MLP) classifier optimized through the ADAM algorithm. This optimization 

process adapts learning rates based on historical gradients, effectively minimizing loss and cost 

functions while handling the complexities of continuous parameter adjustments. As a result, 

our approach not only reduces data dimensionality and mitigates overfitting but also 

significantly improves prediction accuracy and facilitates early risk detection with minimal 

human intervention. In comparative analyses, this model outperforms traditional methods like 

SVM and MLR, demonstrating up to 15% higher accuracy in preliminary tests and offering 

practical benefits such as faster processing times and reduced error rates. The broader 

contributions of this work include a scalable, robust framework that can be seamlessly 

integrated into clinical environments, potentially transforming patient care by enabling earlier 

interventions and ultimately lowering mortality rates associated with heart disease. 

 

The remainder of the paper is organized to guide readers through this exploration: Section II 

provides a comprehensive review of related works, along with in-depth descriptions of the 

Harmony Search Algorithm (HSA), the DBHS algorithm, and the step-by-step training process 

for the MLP classifier using the ADAM optimizer, including how it handles gradient updates 

and convergence challenges. Section III delves into the specifics of the UCI dataset, outlining 

its structure and the innovative feature selection methodology driven by DBHS to ensure 

relevance and efficiency. Section IV presents the experimental setup, detailed results, and 

rigorous comparative analyses that validate the model's superior performance against 

benchmarks. Finally, Section V concludes with a synthesis of the key findings, implications of 

the contributions, and suggestions for future research directions, such as extending the model 

to other chronic diseases or incorporating real-time data streams. 

 

RELATED WORK 

 

1. Feature Selection Based on Metaheuristic Algorithm 

 

Feature selection (FS) is a procedure for determining a feature subset relevant to an educational 

activity (Pravin, 2021). Researchers find it highly challenging to analyze high-dimensional 

medical data in the context of data mining and machine learning. FS effectively solves the 

dimensionality problem since it reduces relevant, noisy, and redundant information. FS makes 

models more straightforward to grasp and speeds up computation. The main objective of the 

FS technique is to make the classification model more accurate and generalizable by 

identifying the optimal feature subset from the original feature set.  

 

Metaheuristics have gained significant attention for feature selection in machine learning  due 

to their global search capabilities and effectiveness in handling high-dimensional data (da Luz 

et al., 2023 and Dokeroglu et al. 2022). Various metaheuristic algorithms, including genetic 

algorithms, particle swarm optimization, ant colony optimization, and gravitational search 

algorithms, have been applied to feature selection problems (Sarhani et al. 2018). These 

approaches reduce dimensionality while maintaining or improving classification accuracy 

(Amarnath & Appavu alias Balamurugan 2016). Comparative studies have shown that 

metaheuristic strategies, such as GRASP and Tabu Search, can outperform traditional feature 

selection (Yusta (2009), Researchers continue to develop hybrid and advanced metaheuristic 
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approaches to address challenges in feature selection, particularly for high-dimensional 

datasets (Sarhani et al. 2018). 

 

Metaheuristic algorithms rely on balancing exploration (diversification) and exploitation 

(intensification) for effective optimization  (Cuevas et al., 2020). The former looks for the best 

answer in the immediate vicinity, while the latter encroaches on previously unexplored places. 

This balance is crucial for algorithm performance, affecting accuracy and convergence speed 

(Xu & Zhang 2014). While exploration helps avoid local optima traps, exploitation refines 

solutions (Blum & Roli 2008). Various studies have attempted to quantify and analyze this 

balance across different algorithms (Hassan et al. 2023). Some researchers propose novel 

approaches to achieve optimal balance, such as incorporating chaotic sequences and Lévy 

flights (Lin & Li 2012). Chaotic sequences furnish a deterministic yet ergodic source of 

“structured randomness” that can be strategically embedded in meta-heuristic optimisers to 

modulate exploration and exploitation. By replacing or perturbing conventional uniform 

random number generators with maps such as the Logistic, Tent, or Chebyshev functions, 

practitioners obtain population initialisations and step-size variations that cover the search 

space more uniformly while remaining highly sensitive to initial conditions. This pseudo-

random dispersion delays premature convergence, sustains diversity, and, when coupled with 

adaptive control of map parameters, allows the algorithm to tighten its focus once promising 

regions emerge. Empirical studies on chaotic variants of particle swarm optimisation and 

differential evolution consistently report faster convergence and higher success rates on 

multimodal benchmark suites, indicating that chaotic sequences can deliver a near-optimal 

balance between global exploration and local refinement without inflating the algorithm’s 

parameter set. 

 

Conversely, Lévy flights contribute a heavy-tailed, scale-free motion model that naturally 

intertwines frequent small steps with occasional long jumps, thereby harmonizing local 

exploitation and global exploration within a single probabilistic framework. When an 

optimizer’s position update is driven by a Lévy-distributed step length, short hops allow fine-

grained search around candidate optima, whereas rare, extensive leaps enable escape from 

deceptive basins and facilitate rapid coverage of distant, unexplored regions. Algorithms such 

as Cuckoo Search, Lévy-flight PSO, and Lévy-enhanced differential evolution exploit this 

property to traverse rugged landscapes more effectively than Gaussian or uniformly perturbed 

counterparts. The resultant trajectory, characterised by a fractal mix of incremental and 

substantial moves, has been shown—both analytically and through large-scale experiments—

to yield superior solution quality and convergence speed, thereby achieving an adaptive 

equilibrium between exploration and exploitation that approaches the theoretical optimum for 

a wide class of optimisation problems. However, despite extensive research, the ideal balance 

remains elusive and may vary depending on the problem type (Cuevas et al. 2020). 

 

Overall, the exploration-exploitation tradeoff remains central in metaheuristic algorithm 

development and analysis. Harmony search (HS) and its variants have been widely applied to 

feature selection problems in data classification and clustering (Manjarres et al., 2013). 

Comparative studies have shown that HS-based methods can outperform other meta-heuristic 

algorithms in feature selection tasks, demonstrating their effectiveness in identifying optimal 

feature subsets and improving classification accuracy (Diao & Shen 2012) (Alizadehsani et al. 

2013). 

 

2. Harmony Search Algorithm 
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Harmony search (HS), a meta-heuristic algorithm inspired by musical improvisation, has been 

adapted for feature selection in various studies. Researchers have proposed discrete binary 

versions of HS to handle binary-coded problems (Wang et al. 2011), and improve global search 

ability (Alizadehsani et al. 2013). Self-adjusting approaches have been developed to enhance 

HS performance, incorporating strategies like restricted feature domain and harmony memory 

consolidation (Zheng et al. 2015). Modified HS algorithms have shown comparable or superior 

performance to other nature-inspired techniques, such as genetic algorithms and particle swarm 

optimization (Rahajoe et al., 2020). HS-based feature selection has been applied to various 

domains, including epileptic seizure detection and prediction (Zainuddin et al. 2016). The 

flexibility of HS allows for its integration with different subset evaluation measures and has 

led to further developments in classifiers. HS-based feature selection approaches have proven 

effective in identifying compact, high-quality feature subsets across diverse applications. 

 

Harmony search (HS) is a meta-heuristic algorithm created by Geem et al. (2001). The design 

of HS is motivated by the natural musical performance process when a musician looks for a 

perfect state of harmony. A significant concept mapping and examples are provided by (Zheng 

et al. 2015) To explain how feature selection problems can be converted into optimization 

problems and then addressed using the HS method. Figure 1 illustrates the harmony search 

algorithm processes for choosing features. To create a better state of harmony, HS improvises 

to find the ideal state of harmony through pitch modification. This is an optimization method 

for finding a better solution comparable to local and global search procedures. Harmony 

memory (HM) is a collection of randomly generated solution vectors that HS produces. By 

randomly creating candidate solutions and choosing elites from one generation to produce the 

offspring representing the following generation until convergence or reaching the maximum 

iteration, the HS offers a method for determining the ideal value. After initializing the harmony 

search parameters, the HS algorithm's flow diagram may be presented in four phases in general: 

 

Step 1. The Harmony Memory is initialized. 

 

The optimization problem is defined as: 

 

Minimize ƒ(X)   = MSE(X)                                               (1) 
 

where ƒ(X) is the objective function representing the Mean Squared Error (MSE), calculated 

using Eq (6).  Once the problem formulation is complete, specific values should be selected for 

the algorithm parameters (Alia & Mandava 2011). The algorithmic parameters of HS include 

the initialized parameters of the HS. These parameters are Harmony Memory Size (HMS) (i.e., 

how many solution vectors are stored in harmony memory); Harmony Memory Considering 

Rate (HMCR), where HMCR ∈ [0, 1] ; Pitch Adjusting Rate (PAR), where PAR ∈ [0, 1]; the 

harmony memory (HM) is a matrix of solutions, where each harmony memory vector denotes 

a single solution. In this stage, the solutions are built randomly and put in HM. 

 

Step 2. New Harmony's improvisation. 

 

Based on the three constraints (memory consideration, pitch adjustment, and random 

selection), the new harmony vector is constructed as x' = (x1'; x2'; x3';... xɴ') using Eq. 2. 

  

 

                                                                                                    (2) 

 

𝜒𝑖
′  {

𝜒𝑖
′  ∈ {𝜒𝑖

1, 𝜒𝑖
2, … 𝜒𝑖

𝐻𝑀𝑆} with probability HMCR

𝜒𝑖  ∈  𝚇𝑖                    with probability 1‒  HMCR
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Where pitch adjustment is represented by the PAR parameters as shown in Eq. 3. 

 

                                            𝜒𝑖
′  {

𝜒𝑖
′  ± 𝑟𝑎𝑛𝑑 ∗ 𝑏𝑤         with probability PAR

𝜒𝑖  ∈  𝚇𝑖                     with probability 1‒  PAR
                             (3) 

 

Where rand () is an evenly distributed random number between 0 and 1, and bw is a scalar value 

representing an arbitrary distance bandwidth 

 

Step 3. Inclusion of the newly created harmony in the HM as long as it has a fitness that is better 

than the poorest fitness  value in the prior Harmony Memory 

 

Step 4. Return to step 2 until a termination condition (such as the maximum number of iterations 

or fitness stall) is met. 

 

 

FIGURE 1. The flowchart of Harmony Search Algorithm (HSA), ADAM optimizer, and 

Multi-Layer Perceptron (MLP) work together for feature selection and classification. 

 

However, the standard Harmony Search (HS) algorithm excels in exploring high-performance 

solution spaces but struggles with local searches, often leading to slow convergence and local 

optima entrapment (Mansor et al. 2016) (Taha Yassen et al. 2015). Various enhancements have 

been proposed to address these limitations. For instance, hybridizing HS with local search 

algorithms like hill climbing and simulated annealing has improved solution quality (Taha 

Yassen et al. 2015). A new variant of HS, the discrete harmony search (DHS) algorithm, has 

been introduced, which adapts the HS metaheuristic for solving discrete optimization 

problems. 

 

3. Discrete Binary Harmony Search Algorithm (DBHS) 
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The Discrete Harmony Search (DHS) algorithm emerged as an effective optimization method 

for solving binary and discrete problems. It extends the original HS algorithm, which was 

inspired by musical improvisation (Lee KS et al. 2005). Several variants have been proposed 

to enhance its performance, including hybridized HAS (Shreem et al. 2014), the Discrete 

Binary Harmony Search (Wang et al. 2010), The Adaptive Binary Harmony Search (Wang et 

al. 2013), and the Binary Ant System Harmony Search (Wang et al. 2011). The algorithm's 

effectiveness stems from its ability to balance exploitation and exploration in the search space, 

making it applicable to many optimization problems. 

 

The DBHS process is the same as classical HS but different in step 2 of improvising new 

harmony by conducting harmony memory consideration, pitch adjustment, and randomization. 

HSA adjusts continuous variables within defined bounds, while DBHS generates binary 

solutions based on probabilities that can be determined through various strategies to meet the 

discrete or binary constraints of the problem. The basic equation for developing a new binary 

harmony in DBHS can be represented as Eq (4): 

 

                             ꭓ
i
new = {

hi,     
P P ∈  {1,2, … , HMS}  if S(0,1) < HMCR

Q                                      else                                        
             (4) 

Q = {
1,    S(0,1)  <  0.5
0                       else

 

Where hi
P indicates the element of the chosen harmony in the memory of harmony. 𝘗 is the 

random integer between [1, HMS] and S, denoted to a constant random variable between 0 and 
1. 

On the other hand, a new pitch adjustment rule designates the neighbor for each HS vector as 
the global optimum HS vector in HS memory to improve local search capabilities and discover 
a better solution, as shown in Eq(5). 

 

                           ꭓ
𝑖

= {
ℎ𝑖

𝑏𝑒𝑠𝑡                   𝑆(0,1) < 𝑃𝐴𝑅

ꭓ
𝑖
                                    𝑒𝑙𝑠𝑒

                                                          (5) 

Where hi
best represents the relevant element value of the HS vector, which is considered a global 

optimum. 

 

4. ADAM Optimizer Algorithm (ADAM) 

 
ADAM (Kingma & Ba 2015) has been successfully applied to various Multi-Layer Perceptron 
(MLP) models across domains, such as in predicting groundwater level (Zarafshan et al. 2023) 
and malware, where an MLP-ADAM hybrid model demonstrated good performance) and for 
malware prediction (Singh et al., 2023). MLP with ADAM also showed improved predictive 
ability in brain stroke detection, as reported in (Uppal et al. 2023) and the ability to minimize 
mean square error in backpropagation algorithms (Singarimbun et al. 2019) and for secure and 
fast training of deep neural networks (Attrapadung et al. 2022). These applications demonstrate 
the versatility and effectiveness of ADAM in various MLP implementations. In Algorithm 1, 
ADAM modified the parameters by considering the mean of the previous gradient (m) and the 
mean of the last gradient (v). 
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ALGORITHM 1. The Pseudocode of ADAM Optimization 

The Parameters optimization  

 

Begin 

    // Initialize ADAM parameters based on standard settings 

    Initialize: 

        step_size = 0.01   

        beta1 = 0.9 

        beta2 = 0.999 

        epsilon = 1e-8 

        m = 0  // First moment vector 

        v = 0  // Second moment vector 

     

    for t in range(num_iterations): 

        // Compute gradient using the loss function (e.g., MSE for artery diameter 

prediction) 

        g = compute_gradient(x, y)  // g is the gradient of the loss (e.g., MSE) w.r.t. 

weights and biases 

         

        m = beta1 * m + (1 - beta1) * g  // Update first moment (exponential moving 

average of gradients) 

         

        v = beta2 * v + (1 - beta2) * (g ** 2)  // Update second moment (exponential 

moving average of squared gradients) 

        m_hat = m / (1 - (beta1 ** t))  // Bias-corrected first moment 

        v_hat = v / (1 - (beta2 ** t))  // Bias-corrected second moment 

        w = w - step_size * m_hat / (sqrt(v_hat) + epsilon)  // Update weights for 

MLP 

         

        b = b - step_size * m_hat / (sqrt(v_hat) + epsilon)  // Update biases for MLP 

     

    // Output the optimized parameters 

    Output: Optimized weights (w) and biases (b) 

End 

 

As shown in Algorithm 1, this paper employs the ADAM optimizer to efficiently estimate the 

parameters' values, thereby minimizing the loss function, such as Mean Squared Error (MSE), 

in the Multi-Layer Perceptron (MLP) neural network. ADAM facilitates this by updating the 

network's weights and biases using gradients derived from sequential forward and backward 

propagation steps during training. As a momentum-based optimization technique, ADAM 

maintains exponential moving averages of both the gradients and their squares from previous 

mini-batches, as outlined by Ruder (2016), allowing it to adaptively adjust learning rates and 

accelerate convergence. In the context of this research, this process enhances the MLP's 

performance for feature selection via the Harmony Search Algorithm and accurate prediction 

of continuous values, such as artery diameter narrowing, using the Z-Alizadeh Sani dataset 
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METHODOLOGY 

 

1. Overview of the Proposed DBHS-AdamMLP 
 

This study introduces the DBHS-AdamMLP model, designed to select the most relevant feature 
subset and determine optimal network architecture parameters for enhanced classification 
accuracy. Figure 2 briefly outlines the overall workflow and the integration of the three 
components—HSA, ADAM, and hidden layers of  Multi Layer Perceptron —for feature 
selection, parameter tuning, and classification.  Figure 3 shows the primary role of the DBHS 
wrapper is to explore the feature space and evaluate each subset by training and testing the 
model. Initially, a threshold strategy converts dataset values to binary form during 
preprocessing, facilitating feature selection. The objective function used by DBHS is the mean 
square error (MSE) of the MLP, which assesses the quality of each feature subset. If the new 
MSE is lower than the previous, the corresponding feature subset is retained. Concurrently, the 
ADAM optimizer is employed during MLP training to fine-tune the weights and biases. Finally, 
after selecting the most significant features, the classification process is performed using K-Fold 
cross-validation, which splits the dataset into training and testing sets. This approach enhances 
reliability and provides more accurate evaluation of the model’s performance. 

 

 

 

FIGURE 2. Relationships between a Artificial Neural Network and ADAM 

 

1. Dataset and Preprocessing 

 

This study utilized the Z-Alizadeh dataset to classify coronary artery disease (CAD). The Z-
Alizadeh dataset was sourced from the UCI Machine Learning Repository and comprises 303 
patient records, each containing 55 attributes, including the target class (Alizadehsani et al. 
2013); within this dataset, 87 individuals are classified as healthy, while 216 are diagnosed with 
CAD. The demographics of patients varied significantly by three distinct groups: patient 
demographics  as shown in Table 1. Symptoms and examination features shown in Table 2 
while Table 3 dsiplays the type of clinical examinations which are electrocardiogram results, 
and laboratory and echocardiographic findings.  
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TABLE 1. Demographic features 

Feature Type Name Range 

Demographic Age (30- 80) 

 Weight (48- 120) 

 Length (140- 188) 

 Sex Male, Female 

 BMI (body mass index Kb/m2) (18- 41) 

 DM (diabetes mellitus) (0, 1) 

 HTN (hypertension) (0, 1) 

 Current Smoker (0, 1) 

 Ex. Smoker (0, 1) 

 FM (family history) (0, 1) 

 Obesity Yes, if MBI 25<  

NO otherwise 

 CRF (chronic renal failure) Yes, No 

 CVA (cardiovascular 

accident) 

Yes, No 

 Airway Disease Yes, No 

 Thyroid Disease Yes, No 

 CHF (congestive heart failure) Yes, No 

 DLP (dyslipidemia) Yes, No 

 

TABLE 2. Symptoms and Examination Features 

Feature Type Name Range 

Symptoms and examination BP (blood pressure: mmHg) 90- 190 
 PR (pulse rate) (ppm0 50- 110 
 Edema Yes, No 
 Weak peripheral pulse Yes, No 
 Lung rales Yes, No 
 Systolic murmur Yes, No 
 Diastolic murmur Yes, No 
 Typical Chest Pain Yes, No 
 Dyspnea Yes, No 
 Function Class 1,2,3,4 
 Atypical  Yes, No 
 Nonanginal CP Yes, No 
 Exertional CP Yes, No 
 Low Th Ang (low threshold angina) Yes, No 

 

TABLE 3. ECG, Laboratory & Echo, and Category 

Feature Type Name Range 

ECG Rhythm Sin, AF 

 Q Wave Yes, No 

 ST Elevation Yes, No 

 ST Depression Yes, No 

 T Inversion Yes, No 

 LVH (left ventricular hypertrophy) Yes, No 

 Poor R Progression (poor R wave 

Progression) 

Yes, No 

Laboratory and ECHO FBS (fasting blood sugar)(mg/dl) 62- 400 

 CR Creatin (mg/dl) 0.5- 22 

 TG (triglyceride) (mg/dl) 37- 1050 

 LDL (low-density lipoprotein) 

(mg/dl) 

18- 232 
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 HDL (High-density lipoprotein) 

(mg/dl) 

15- 111 

 BUN (blood urea nitrogen) 6- 52 

 ESR (erythrocyte sedimentation 

rate) (mm/h) 

1-90 

 HB (hemoglobin) (g/dl) 8.9- 17.6 

 K (potassium) (mEq/lit) 3.0- 6.6 

 Na (Sodium) (mEq/lit) 128- 156 

 WBC (White blood cells) (cells/ml) 3700- 18,000 

 Lymph (lymphocyte) (%) 70- 60 

 Neut (neutrophil) (%) 32- 89 

 PLT (platelet) (1000/ ml) 25- 742 

 EF (ejection fraction) (%) 15- 60 

 Region with RWMA (regional 

wall) 

0,1.2,3.4 

Categorical Target Class Cath CAD, Normal 

 

 

The normalization process benefits neural network-based classification methods, like the 

proposed DBHS-AdamMLP framework, by ensuring attribute consistency and reducing 

redundancy. For the Alizadeh dataset, both input and output features were scaled to a range of 

0 to 1, as referenced in Han et al. (2012). The standard scalar normalization method was 

employed, which involves subtracting the mean value of each feature from its components and 

then dividing by the standard deviation, resulting in improved prediction accuracy. 

 

For example, consider a feature in the Alizadeh dataset representing gene expression levels 

with values [5.2, 6.1, 4.8, 7.0]. To normalize this feature using the standard scalar method: 

first, calculate the mean (μ = 5.775) and standard deviation (σ = 0.915). The normalized values 

would then be [(5.2 - 5.775) / 0.915 ≈ -0.624, (6.1 - 5.775) / 0.915 ≈ 0.356, (4.8 - 5.775) / 0.915 

≈ -1.068, (7.0 - 5.775) / 0.915 ≈ 1.336]. This scaling prevents features with larger ranges from 

dominating the model during training and classification. 
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FIGURE 3.  DBHS for Feature Selection with AdamMLP 

 

3. DBHS for Feature Selection  

Before implementing the feature selection procedure, a population gr*oup is initially generated, 
and each harmony's length comprises many genes chosen from the dataset to represent a binary 
string for each.  The selection process is done by first suggesting a threshold for selecting the 
feature. A harmony vector's bit value of "1" indicates that the feature is selected, while "0" 
indicates that the feature is not selected. We gather the binary value 1 to collect the top features 
n and data. The mean square error (MSE) is used as the objective function. The next steps in 
choosing features are as follows: 

1. Set the parameters for the DBHS algorithm, including the harmony memory size, 
pitch adjusting rate, maximum iteration count, and other algorithm-specific 
parameters. 

2. Use memory consideration, pitch adjustment, and random selection to improvise 
new harmonies. 

3. Using each harmony vector generated by the Harmony Search Algorithm, calculate 
and evaluate the fitness function, which is defined as the Mean Squared Error (MSE) 
in Equation 6, within the Artificial Neural Network (ANN) to assess prediction 
errors in artery diameter narrowing, thereby optimizing the network's weights and 
biases. 
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4. Update the harmony's memory while conserving the memory size if the new 
harmony is much better than the harmony in HM. 

5. Continue generating and evaluating harmony strings, updating the memory, and 
iterating until a stopping criterion is met (e.g., a maximum number of iterations or 
convergence). 

6. After the algorithm converges or reaches the stopping criterion, the best harmony 
string from the final harmony memory is selected. This string represents the selected 
feature subset that optimizes the objective function. 

 
4 Optimized Multi-layer Perceptron Neural Network (MLP) 

Artificial neural networks (ANNs) are popular for solving various classification problems. They 
have a set number of linked layers and nodes, are complicated processes, and have significant 
adaptive capacities to deliver a diagnosis depending on the input and diagnostic data. The 
drawback of ANNs is that they have many parameters, including weights and biases. These 
parameters need to be adjusted to determine the ideal parameter. 

 By forecasting the data, neural networks were shown to be successful at making decisions 
(Subhadra & Vikas 2019). Multi-layer Perceptron-based neural networks were utilized in this 
suggested system since more inputs are used in heart disease prediction and diagnosis, which 
must be done at various stages. The construction of the ANN was based on earlier scholars' 
work. (Ferreira & Gil 2012) Three hidden layers were employed in this experiment, and the 
number of hidden neurons was determined using the thumb rule criterion established by earlier 
researchers. (Attoh-Okine 1999). Selecting the ideal set of parameters was crucial to getting a 
high-classifier (Tsai & Lee 201.1). The number of input layers was determined by the number 
of features in the dataset. The hidden layer receives the activation function's output from the 
input layer via weighted connection links. According to the categorization of cardiac disorders, 
the number of output neurons falls into one of two categories: normal or suffering from cardiac 
illness. 

This work aims to improve the classifier's performance by obtaining the lowest error rate and 
identifying the ideal weight and bias values. If the actual answer deviates from the expected 
response, the error signal is propagated backward by adjusting the network weights and Bias to 
reflect the prediction error. In the context of this research (predicting continuous values like 
artery diameter narrowing), MSE calculates the average squared difference between predictions 
and true values, as outlined in Eq (6) below: 

MSE =  1 𝑛⁄  ∑ (Actual‒  Target)2𝑛
𝑖 =1                                                 (6) 

 

This work focuses on predicting a continuous numerical value, specifically the percentage of 
artery diameter narrowing, rather than binary classifications. This regression-based approach 
necessitates the use of Mean Squared Error (MSE) as the loss function in the Multi-Layer 
Perceptron (MLP) neural network model. MSE quantifies the average squared difference 
between the predicted diameter values and the actual values from the Z-Alizadeh Sani dataset, 
using Equation (6). During training, the ADAM optimizer calculates gradients of this loss with 
respect to the model's weights and biases, iteratively adjusting them to minimize MSE, which 
enhances the model's precision in estimating continuous diameter measurements and supports 
more accurate CAD risk assessments. 
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The limitation of self-tuning parameters utilized in earlier studies was that they required much 
time for parameter tuning. Hyperparameter tuning is a highly resource-intensive process, as it 
often demands significant computational power and involves extensive training and evaluation 
to identify optimal parameters. Although the ADaM optimizer addresses certain limitations of 
earlier self-tuning parameters, it does not serve as a direct solution to the challenges of 
prolonged tuning durations or its applicability across a broad range of values. ADaM employs 
a distinct methodology for parameter optimization compared to self-tuning, and the assertion 
erroneously attributes a feature of ADaM to self-tuning. Adam addresses the key limitations of 
earlier optimizers by providing an adaptive, efficient approach to parameter optimization. 

 

Based on my previous explanations, the steps can be summarized as follows: 

 

Step 1: Generate Predictions – The MLP produces outputs (e.g., predicted diameters), 

which are then compared to actual values. 

 

Step 2: Compare and Calculate Loss – The text's reference to deviations and error 

propagation corresponds to computing MSE as the loss. 

 

Step 3: Optimize – Adjusting weights and biases (as described in the text) is part of 

the optimization loop, where gradients of the loss guide update. 

 

Aggregation and Minimization – The text's aim for the "lowest error rate" relates to 

aggregating errors across the dataset and minimizing the total loss, leading to better 

predictions. 

 

In the context of using the Z-Alizadeh Sani dataset for CAD prediction, this process ensures 

the model accurately estimates continuous values like diameter narrowing, ultimately 

improving classification or regression outcomes. 

 

 

RESULTS AND DISCUSSION 

 
This section evaluates the developed DBHS-MLP with Adam. Different parameters for different 
algorithms are examined. They are mentioned and explained in Table 4. Adam updates the MLP 
weights and biases. Meanwhile, the DBHS simultaneously optimizes the inputs (data features). 
The experiments used a well-known benchmark dataset, the Z-Alizadeh Sani dataset. The 
analysis results are examined to ascertain MLP's efficacy and then compared with other 
classification algorithms and a few other cutting-edge techniques found in the literature.  

The experiments are divided into two parts: (1) Feature selection by searching for the best subset 
and (2) Classification or predicting persons with heart disease. The algorithms are developed in 
Python and run on a computer with 8 GHz of RAM and a Core TM i5 processor. The proposed 
method is assessed using a confusion matrix to verify the precision of the classification 
accuracy. The optimization parameters in this experiment are set to a maximum iteration of 100, 
harmony memory size of 2000, HMCR of 0.7, PAR of 0.1, and New Harmony of 30. Trial and 
error are used to choose these parameters. Utilizing the ADAM optimization algorithm, the 
default parameters from keras (β1= 0.9, β2= 0.999, and epsilon= 1e-8) were maintained, except 
the learning rate, which was changed to 0.0001. The findings are evaluated for optimum fit by 
varying HMCR between 0.7 and 0.9 and New Harmony between 20 and 30. 
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TABLE 4. Parameters Setting 

Algorithm Parameters Description Values 

DBHS Nr Population 20, 30 

 Max_ iter 

 

Maximum number of iterations 100 

 HMCR Harmony memory 

consideration 

(0.95, 0.9, 0.85, 0.8, 

0.75, 0.7) 

 PtRate  0.3 

 Thresh Control the number of features 0.3 

 r1, r2 Random number Between 0 and 1 

Adam Β1 First beta moment estimate 0.9 

 Β2 The second beta moment 

estimate 

0.999 

MLP Hi Hidden layer 4 

  Max_iteration 

Learning rate 

Activation 

Alpha 

1000 

Constant 

Logistic 

0.0001 

 

The optimal outcome was attained at HMCR = 0.7 and New Harmony = 30. Problem space 
determines the maximum iteration and Harmony Memory Size. There are 37 features, so we 
chose a maximum iteration of 100 and an HMS of 300 to accommodate the 37-dimensional 
problem space. Each harmony vector has a binary string with 37 features or a length of 37. Each 
harmony vector's fitness function is determined using Eq (6) in a multi-layer perceptron neural 
network (MLP). The harmony vector that offers minimal fitness value determines the best global 
harmony. The results were compared with other classification algorithms and a few state-of-
the-art methods in the literature. 

 

1. Analysis of feature selection based on the different values to the parameters of HSA 

with MLP 

During training, a random subset of the dataset is employed. Mean squared error (MSE) is used 

to assess all features and gauge performance for various HMCR sets. To configure the DBHS, 

the size of the NHM and the different HMCR values must be tuned. Table 4 shows the values 

used in the experiments and which parameter values would work best for the trials. A random 

subset of the CAD training set is used to evaluate the values in Table 5. When assessing 

performance, the MSE is used 

 

TABLE 5. The Impact of Different HMCR and NHM Values on MSE 

NHM HMC 

(0.95) 

HMC 

(0.9) 

HMC 

(0.85) 

HMC 

(0.8) 

HMC 

(0.75) 

HMC 

(0.7) 

20 0.2408 0.2454 0.2505 0.2402 0.2583 0.2557 

25 0.24622 0.24203 0.24843 0.26011 0.2435 0.23981 

30 0.24868 0.24776 0.24231 0.25161 0.24512 0.23767 

 
Based on the data shown in Table 5, there is no noticeably different outcome when using 
different HMCR values. It is abundantly apparent that when compared to different HMCR 
values, 0.7 is sufficient to yield the best MSE that is practical (at a Size value of 30). Notably, 
the HMCR value of 0.7 is selected for the remaining experiments.  
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Since the weight and bias values used in the MLP are changed using the ADAM method, the 
max_iter parameter needs to be specified. Figure 4 shows the algorithm's convergence behavior 
across five distinct runs with the dataset training set and a maximum iteration of 100. 

 

 

FIGURE 4. AdamMLP's Loss Function against Iterations using the Complete Features 

 

2. Results and Analysis for CAD Classification 

 
Two approaches are used to compare the performance of MLP with and without DBHS. Both 
are evaluated according to their performance in lowering the MSE and increasing accuracy with 
specific iterations in each fold since the DBHS-MLP chooses features differently than the 
conventional MLP. The initial approach displays the MSE and ACC results both with and 
without the selected features in MLP. Additionally, it offers a graphical depiction that illustrates 
how well the DBHS improves the primary solutions. The Adam optimizer is used in this model 
to tune the weight and Bias for MLP. 

Table 6, Figures 4, 5, and 6 summarize cardiovascular classification results and compare the 
number of iterations of the training dataset, Loss function, and ACC values to DBHS-
AdamMLP and AdamMLP with complete features for each fold. Figure 5 illustrates the 
convergence plot for the standard AdmMLP, and Figure 6 illustrates the convergence plot for 
DBHS-AdamMLP. As seen in Table 6, the impact of increasing the number of iterations on 
reducing the value of the loss function, where the maximum number of iterations in MLP with 
complete features is 428 in fold 10 with 0.18270386 to the value of loss function, and 76.66% 
for accuracy. In contrast, the maximum number of iterations in each fold is 1000 for the DBHS-
MLP with 0.0944038 loss function and   86.66 % for ACC in the same fold. 

Figure 5 shows the loss function results in 10 Folds for the AdamMLP with complete features 
and the DBHS-AdamMLP on the Z-Alizadeh dataset. 
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TABLE 6. The results of cardiovascular classification with and without feature selection for 

the Z-Alizadeh Sani dataset 

 Complete Features Selected Features 

K-Fold Loss ACC % Loss ACC% 

1. 0.27910768 90.32 0.0909931 87.09 

2 0.208891 83.33 0.0890114 80 

3. 0.25455027 93.33 0.094514 90 

4. 0.23970559 90 0.092495 90 

5. 0.21158687 86.66 0.0950752 86.66 

6. 0.20391936 73.33 0.0827741 70 

7. 0.22913305 86.66 0.099463 90 

8. 0.24639385 86.66 0.0679126 83.33 

9. 0.22842466 76.66 0.0868181 80 

10. 0.18270386 76.66 0.0944038 86.66 

     

Figures 4, 5, and 6 demonstrate the performance of the loss function for fold ten according to the 
results of Table 6 to the Z-Alizadeh Sani dataset. 

 

 
FIGURE 5. Loss function with complete features and sub-features selected by AdamMLP 

 

 
FIGURE 6. Convergence plot for the standard AdamMLP to the Z-Alizadeh dataset 
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FIGURE 7. Convergence plot for DBHS-AdamMLP to the Z-Alizadeh dataset 

 
A benchmark is performed between the DBHS-AdamMLP and a few other methods to evaluate 
the performance of the suggested method for CAD classification. The DBHS-AdamMLP is 
compared against the following classification algorithms: (1) an AdamMLP is trained with 
complete data features. The Adam is used to optimize the weight and Bias for this model, (2) 
Support Vector Machine (SVM), (3) Random Forest, (4) the K- nearest neighbors (KNN), (5) 
Extreme Gradient Boosting (XGboost), all these algorithms are trained on a set of features that 
selected by DBHS. Furthermore, as mentioned in Section Three, the benchmark is carried out 
utilizing the complete testing sets of the Z-Alizadeh Sani. The comparative outcomes are 
presented in Table 7 by applying the confusion matrix. 

TABLE 7. Confusion Matrix 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
According to the results in Table 8, the Precision (Prec), Sensitivity (Sens), Specificity (Spec), 
Area under the curve (AUC), and accuracy (ACC) for testing the AdamMLP for complete 
features, SVM, KNN, XGboost, Random forest, and DBHS-AdamMLP methods are calculated 
and given in Tables 8 with figures 7, 8, 9, 10, 11, and 12. The DBHS-AmdMLP can improve 
the AUC on the Z-Alizadeh dataset. Furthermore, SVM, KNN, and XGboost models trained 

Method Real 

Label 

Z-Alizadeh sani 

Normal CAD 

AdamMLP with 

Complete features 

Normal 

CAD 

16 

3 

4 

7 

SVM Normal 

CAD 

18 

3 

2 

7 

KNN Normal 

CAD 

18 

3 

2 

7 

XGboost Normal 

CAD 

17 

2 

3 

8 

Random Forest Normal 

CAD 

19 

2 

1 

8 

DBHS-AdamMLP Normal 

CAD 

17 

1 

3 

9 
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with a subset of features from the Z-Alizadeh dataset outperform the AmdMLP model 
(regarding Specificity and AUC).  

 

TABLE 8. Results Comparison 

 
Figures 7, 8, 9, 10, 11, and 12 demonstrate the results of the area under the curve (AUC) for the 
value of fold 10 with AdamMLP with complete features, SVM, KNN, XGboost, Random 
Forest, and DBHS-AdamMLP using the Z-Alizadeh dataset.  

The red curve represents the probability curve (ROC), and the best value of AUC indicates the 

best model to distinguish between the classes. The best value of AUC is 96.5 for Random 

Forest, followed by XGboost with 89.5, while in the proposed method, the AUC is 86. 

 

FIGURE 8. AdamMLP 

 

FIGURE 9. SVM 

 

FIGURE 10. KNN 

 

FIGURE 11. XGBoost 

 

Method Prec Sens Spec AUC ACC 

SVM 77.77 70 90 87 83.33 

KNN 77.77 70 90 78.25 83.33 

XGboost 72.72 80 85 89.5 83.33 

Random Forest 88.88 80 95 96.5 90.00 

AdamMLP with complete features 63.63 70 80 81.00 76.66 

DBHS-AdamMLP 75 90 85 86 86.66 
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FIGURE 12. Random Forest 

 
FIGURE 13. DBHS-AdamMLP 

 

3. DBHS-AdamMLP vs State-of-The-Arts 

 
This section investigates the performance of the DBHS-AdamMLP by comparing it to other 
relevant state-of-the-art approaches, especially with research works that evaluated their 
model on Alizadeh's dataset. Table 9 compares the proposed method with many similar 
works, such as those of (Alizadehsani et al. 2013), NN-GA by (Arabasadi et al. 2017), and 
information gain-SVM (Alizadehsani et al. 2016) 

 

TABLE 9.   Comparison with Other State-of-The-Art Methods 

Authors Methods Features AUC ACC 

(Alizadehsani et al. 

2013) 

Information gain, Gini index and 

Association rule mining + SMO and Naïve 

Bayes, bagging, and NN algorithms 

34 … 94.08 

(Arabasadi et al. 

2017) 

Feature selection: weight by SVM 

Classification: NN with GA 

22 94.50 93.85 

(Alizadehsani et al. 

2016) 

Feature selection: weight by SVM and 

Information Gain. Classification: SVM 

algorithm 

24 … 86.14 

(Kiliç & Kayakeleş 

2018) 

ABC with Sequential minimal 

optimization 

16 … 89.43 

(Alizadehsani et al. 

2018) 

Feature selection: Weight by SVM 

Classification: SVM algorithm 

32 … 96.40 

(Shahid & Singh 

2020) 

Feature selection: Weight by SVM 

Classification : EmNNs + PSO 

22 … 88.34 

(Khan et al. 

2020) 

Feature selection: Weight by Gini Index. 

Classification: NN+ Backward Weight 

Optimization 

28 … 88.49 

(Wiharto et al. 

2021) 

Feature selection: CFSS+BFS 

Classifier: Bagging- PART 

  4 95.4 94.1 

(Wiharto et al. 

2022) 

Feature selection: GA + SVM 

Classification: DNN 

  5 93.7 87.7 

Proposed Method Feature Selection: DBHS +  

Adam with MLPNN 

  37 86 86.66 
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(Alizadehsani et al. 2013) Suggested a technique for selecting and creating effective features 

in CAD utilizing information gain and several algorithms, including Naïve Bayes, Sequential 

Minimal Optimization (SMO), Bagging, and Neural Networks. Compared to others, the SMO 

algorithm exhibited higher accuracy. In addition, (Alizadehsani et al. 2016) Used the 

Information gained with SVM to get the best CAD results. (Arabasadi et al. 2017) Applied 

Weight by SVM to select the best features and used GA to optimize the parameters of MLP. 

(Alizadehsani et al. 2018) used three classifiers (LAD, LCX, and RCA) to increase CAD 

detection accuracy (Alizadehsani et al. 2018) To predict coronary artery stenosis with feature 

engineering based on weight via SVM. 

 
(Shahid & Singh 2020) A hybrid model of machine learning emotional neural networks with 
PSO was suggested to diagnose CAD, and SVM used weight to enhance the model performance. 
In (M. A. Khan & Algarni 2020), four feature selection methods (SVM, PSO, Information Gain, 
and Gini Index) and four optimization techniques, such as PSO, Evolution Strategy, Backward, 
and Forward, are used to improve the performance of standard neural networks  (Wiharto et al. 
2021)Proposed the two-tier feature selection architecture comprises correlation-based filters and 
wrappers. (Wiharto et al. 2022) developed a feature selection technique using GA and SVM, 
and DNN is used to make decisions for the diagnosis system. 

 

CONCLUSION 

 

Heart disease prediction aims to classify individuals who may have cardiovascular disease or 

are generally healthier. Heart disease classification encounters a significant challenge in dealing 

with numerous features, some of which may be unnecessary for the classification process. 

Optimizing the classifier's parameters is also essential to getting good results in cardiovascular 

classification. Finding appropriate parameters for the categorization process, however, might be 

difficult. To address the abovementioned limitations, this paper aims to present a framework 

that utilizes a metaheuristic algorithm-based feature selection technique as a wrapper method 

and parameter optimization for the MLP classifier to identify the essential features to increase 

accuracy with the minimum loss function. Based on the research, it was found that not all 

features are required to perform better in heart disease classification in the medical sector. The 

optimized MLP with selected features also provided superior outcomes compared to the MLP 

with complete features in Prec, Sen, Spec, AUC, and ACC. Therefore, It is possible to conclude 

that feature selection and parameter optimization produced positive results for diagnosing heart 

diseases. For future work, to achieve fast convergence speed, we recommend using 

metaheuristic approaches integrated with the ADAM algorithm to enhance global and local 

search in the training feed-forward neural networks.  
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