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ABSTRACT

Turtle scute identification is vital for ecological and conservation research but traditional
methods, relying on manual observation and image comparison, are time-consuming and error-
prone, especially with varying scales and orientations of scute patterns. This study explores
wavelet-based features for analyzing similarities in turtle scute patterns. Utilizing multiple
wavelet families, including Coifl, Sym2, Db1l, and Haar, a comprehensive analysis of scute
patterns was conducted by extracting from two images. Features such as energy, variance,
standard deviation, waveform length, and entropy are computed from wavelet decompositions
to evaluate their effectiveness in capturing subtle differences and complexities in the patterns.
The findings highlight Coifl as the most effective wavelet family, demonstrating higher
Euclidean distances and greater sensitivity to variations in scute patterns. Notably, the study
reveals consistent feature values across rotations (0°, 90°, 180°, and 270°), underscoring the
reliability of these wavelet families in maintaining pattern recognition accuracy under different
orientations. These results contribute valuable insights for advancing turtle identification
methods based on their distinctive scute patterns.

Keywords: Image Analysis, Wavelet Families, Feature Extraction, Wavelet-Based Features, Turtle
Scute Identification.
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ABSTRAK

Pengidentifikasian Scute Penyu adalah penting untuk penyelidikan ekologi dan pemuliharaan,
tetapi kaedah tradisional yang bergantung pada pemerhatian manual dan perbandingan imej
adalah mengambil masa dan cenderung kepada ralat, terutamanya dengan variasi skala dan
orientasi corak scute. Kajian ini meneroka ciri berasaskan wavelet untuk menganalisis
persamaan dalam corak scute penyu. Dengan menggunakan beberapa keluarga wavelet,
termasuk Coifl, Sym2, Dbl, dan Haar, analisis komprehensif corak scute telah dilakukan
dengan mengekstrak ciri daripada dua imej. Ciri-ciri seperti tenaga, varians, sisihan piawai,
panjang gelombang, dan entropi dikira daripada dekomposisi wavelet untuk menilai
keberkesanan mereka dalam menangkap perbezaan dan kerumitan yang halus dalam corak
tersebut. Penemuan kajian menunjukkan bahawa Coifl adalah keluarga wavelet yang paling
berkesan, menunjukkan jarak Euclidean yang lebih tinggi dan kepekaan yang lebih besar
terhadap variasi dalam corak scute. Kajian ini juga mendedahkan nilai ciri yang konsisten
merentasi putaran (0°, 90°, 180°, dan 270°), menekankan kebolehpercayaan keluarga wavelet
ini dalam mengekalkan ketepatan pengenalan corak di bawah orientasi yang berbeza. Hasil ini
memberikan pandangan berharga untuk memajukan kaedah pengenalan penyu berdasarkan
corak scute mereka yang unik.

Kata kunci: Analisis Imej, Keluarga Wavelet, Ekstraksi Ciri, Ciri Berasaskan Wavelet,
Pengidentifikasian Scute Penyu.

INTRODUCTION

Turtle scute identification plays a pivotal role in ecological and conservation research, aiding
in population monitoring, habitat assessment, and individual tracking (Tanabe et al., 2023).
Traditional methods for turtle identification often rely on manual observation and image
comparison, which can be time-consuming and prone to errors (Rupilu et al., 2019). These
methods frequently face challenges in accurately extracting and analyzing features from turtle
facial images, especially due to varying scales, orientations, illumination variations, rotations,
image distortion, blur, and variable backgrounds (Zimm et al., 2017; Ascarrunz & Sanchez-
Villagra, 2022; Dunbar et al., 2021). The process of turtle scute recognition generally involves
two steps: scute detection and localization, where scutes are identified and separated from the
background, followed by scute feature extraction and recognition. To enhance the robustness
of turtle scute recognition methodologies, researchers are increasingly exploring advanced
computational techniques, such as wavelet transforms, known for their effectiveness in
extracting features from complex patterns. These techniques offer promising solutions to the
challenges posed by variable image conditions, including different scales, orientations, and
background complexities. By leveraging insights from signal processing applications like
electromyography (EMG), where wavelet transforms have been pivotal in enhancing feature
extraction and pattern classification (Kakoty et al., 2015; Phinyomark et al., 2011; Too et al.,
2018; Nogales & Benalcdzar, 2023), researchers aim to adapt and optimize these
methodologies for analyzing and identifying subtle variations in turtle scute patterns. This
approach not only seeks to improve the accuracy and efficiency of turtle identification
processes but also contributes to the broader application of wavelet-based methods in
biodiversity monitoring and conservation efforts.

RELATED WORK

Recently, Kakoty et al. (2015) identify the most effective wavelet transform functions for
classifying electromyogram (EMG) signals based on grasp types. The researchers evaluate
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various wavelet families, including Haar, Daubechies, Coiflets, and Symlets and extract
various features from the wavelet coefficients, including energy, variance, and standard
deviation. Phinyomark et al. (2011) The reseacher presents a method that uses multi-level
wavelet decomposition to extract features from EMG signals, which are then used for pattern
classification. The method is evaluated using two criteria: the ratio of Euclidean distance to
standard deviation and scatter graphs. Too et al. (2018) proposes a novel method for
electromyography (EMG) pattern recognition by combining the discrete wavelet transform
(DWT) and spectrogram to extract time-frequency features from EMG signals, which are then
used for accurate pattern recognition and classification. Nogales and Benalcazar, (2023)
presents a method for classifying hand movements using EMG signals, which involves
extracting enhanced features based on wavelength and mean absolute value from the signals
using discrete wavelet transform. The wavelet transform can be applied to a periodic angle
function derived from the extracted object contour to generate wavelet descriptors that can be
compared against stored contour patterns (Abou Nabout, 2013). In the field of bioacoustics,
Yudhana et al. (2010) implement wavelet analysis to identify green turtle hearing ability by
analysing the auditory brainstem response (ABR) spectrum. Dellinger et al. (2022)
implemented wavelet-based techniques for in-water abundance monitoring of juvenile pelagic
sea turtles, leveraging the ability of wavelets to capture low-density, widely dispersed species.
The ability of wavelets to capture multi-scale features makes them a powerful tool for these
applications (Abou Nabout, 2013; Yudhana et al., 2010; Dellinger et al., 2022).

In this study, the effectiveness of various wavelet families was explored in accurately capturing
and analyzing turtle scute patterns. While recent research has successfully integrated wavelet
transforms with machine learning models for precise pattern recognition in other domains, their
application to turtle scute identification remains underdeveloped. This research fills this gap
by identifying optimal wavelet families to enhance the robustness of automated scute pattern
recognition systems. This research aims to overcome current methodological limitations,
offering a more dependable and efficient solution for identifying and comparing turtle scute
patterns. Key contributions of this study include evaluating how different wavelet families
capture essential features of turtle scutes, quantifying pattern similarities using Euclidean
distances based on wavelet-derived features and analyzing scute patterns across various angles
to discern unique individual characteristics.

The remainder of this paper is organized as follows. Section 2 outlines the proposed
methodology, including the definitions of Wavelet Transform DW and RBFNN. Section 3
conducts a sensitivity analysis concerning neural network control parameters. Section 4
presents a case study, while Section 5 discusses the results and engages in comparative analysis
with other prediction models. Finally, Section 6 provides the conclusions of this research.

METHODOLOGY

DATA PREPARATION

The dataset includes images of turtle scute patterns, depicting two sets of images where each
set features the same scute pattern at different orientations. Each set comprises four images
showing rotations of 0° (original), 90° clockwise, 180° clockwise, and 270° clockwise. Figure
1 illustrates these images demonstrating the variability in turtle scute orientations
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Original image

1% Image 2" Image

FIGURE 1. The images of a scute turtle in different orientations.

These variations aim to develop and assess algorithms capable of recognizing identical patterns
despite changes in orientation. The original image serves as the baseline reference for
comparison, facilitating the evaluation of pattern recognition performance across different
rotational angles. To increase the size of the training dataset by applying six data augmentation
functions namely, color jittering, Gaussian blurring, flipping, rotation, scaling, and adding salt
and pepper noise. These functions are designed to introduce random variations in the images,
making them more diverse and representative of real-world scenarios. Figure 2 illustrates a
data augmentation pipeline for turtle scute images.

Color Jittering Gaussian Blurring

Adding Salt and Pepper Noise

Rotation

FIGURE 2. A data augmentation pipeline for turtle scute images.
WAVELET FAMILIES

Wavelets are mathematical functions that are useful in analyzing and processing signals and
images at different scales. The experiment being conducted by input images are augmented,
then wavelet families are applied during the wavelet decomposition step, where the input
images are decomposed using each of the four wavelet families. The resulting wavelet
coefficients are then used for feature extraction and comparison. Figure 3 illustrates a diagram
of framework in this study.
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FIGURE 3. A framework of the wavelet families is applied.

The most crucial step in this method is selecting an appropriate wavelet family, including the
mother wavelet function, for signal characterization. Additionally, it is essential to determine
the optimal wavelets and the appropriate number of decomposition levels (Poulose Jacob et al.,
2013). Four prominent wavelet families, each with unique properties, are 'db1l" (Daubechies
wavelet of order 1), 'haar' (Haar wavelet), 'sym2' (Symlets wavelet of order 2), and 'coifl'
(Coiflets wavelet of order 1). The mother wavelet 1 (t) is the prototype wavelet from which
all other wavelets in the family are derived. The scaled and translated versions of the mother

wavelet are given by:
1 t—>b 1
Yan(®) = — (—) @

|al a
where a denotes the scale parameter (dilation), b represents the translation parameter and ¢t is
the time or spatial variable.

Haar Wavelets (haar)

The Haar sequence, proposed in 1909 by Alfréd Haar, introduced an orthonormal system for
the space of square-integrable functions on the unit interval [0, 1]. As the simplest wavelet, the
Haar wavelet has distinct characteristics. One notable technical disadvantage is its lack of
continuity, rendering it non-differentiable. However, this property can be advantageous for
analyzing signals with sudden transitions, such as discrete signals used in monitoring tool
failures in machinery. The Haar wavelet's mother wavelet function, y(t), can be described as
follows:
1
( 1 ifO <t < E (2)
Y(t) = !

1
-1 if E <t<l1
0 otherwise

Its scaling function @(t) can be described as:

_(10<t<1 3)
a(t) = {0 otherwise.
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Daubechies Wavelets (db1)

The 'db1" wavelet, or Daubechies wavelet of order 1, is characterized by its compact support
and orthogonality. It is also known as the simplest member of the Daubechies wavelet family.
Daubechies wavelets are defined by a filter with a finite number of coefficients, making them
suitable for applications requiring high computational efficiency and accuracy (Lee &
Yamamoto, 1994). The 'dbl' wavelet is particularly effective in capturing abrupt changes in
signals, making it ideal for edge detection and signal compressions (Salem et al., 2009). The
Daubechies wavelet, often denoted as Y™ (t) is the simplest member of the Daubechies
wavelet family. It is defined by a specific set of filter coefficients. The formula for the scaling
function ¢(t) associated with the Daubechies wavelet can be used to derive the wavelet
function Y(t). Symlets are a modification of Daubechies wavelets designed to be nearly
symmetric.

Symlet Wavelets (sym2)

The 'sym2' wavelet, or Symlets wavelet of order 2, is a modification of the Daubechies wavelet
designed to be nearly symmetric. Symlets maintain many of the desirable properties of
Daubechies wavelets, such as orthogonality and compact support, but with improved
symmetry. This makes Symlets particularly suitable for applications where phase information
is important, such as signal reconstruction and image processing. The 'sym2' wavelet has a
more balanced approach to capturing both smooth trends and oscillatory components in signals,
providing flexibility in handling various types of signal features.

Coiflets Wavelets (coifl)

The 'coifl' wavelet, or Coiflets wavelet of order 1, is designed to have a higher number of
vanishing moments compared to Daubechies wavelets. Vanishing moments allow the wavelet
to represent polynomial trends accurately, making Coiflets particularly effective for
applications requiring precise localization of both high-frequency and low-frequency
components. The ‘coifl’ wavelet is characterized by its ability to capture oscillatory behavior
while maintaining good time-frequency localization. This makes it suitable for tasks such as
signal denoising, feature extraction, and transient signal analysis. Coiflets are wavelets with
both the mother wavelet 1(t) and its scaling function ¢(t) having vanishing moments. The
'coif1' wavelet is a member of the Coiflets family, typically denoted as ™ (t) as with other
families, it's defined by filter coefficients.

FEATURE EXTRACTION

Feature extraction is a crucial step in the preprocessing of data, especially in the context of
dimensionality reduction. This process simplifies data processing by identifying and extracting
the most significant features, thereby reducing the datasets overall volume while preserving its
essential characteristics (Latif et al., 2019). The approximation coefficients represent a low-
resolution version of the original image, capturing its most significant features and retaining
the overall structure. The horizontal detail coefficients emphasize the horizontal edges and fine
details, making horizontal patterns more prominent. Similarly, the vertical detail coefficients
highlight vertical edges and details, while the diagonal detail coefficients capture the variations
along diagonal directions, emphasizing diagonal patterns and textures (Tian, 2013). Figure 4
shows the wavelet decomposition for a turtle's scute pattern using db1, haar, sym2, and coif1.
These features are combined into a feature vector for each image, which serves as the input
for further analysis. This approach effectively reduces the data volume while preserving
crucial information, facilitating efficient processing and analysis (Pina et al., 2016).
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Energy

The energy of a wavelet coefficient set is a measure of the magnitude of the coefficients. It is
calculated as the sum of the squared coefficients.

Energy = Ziciz 4)

where c; are the wavelet coefficients. The energy feature captures the overall energy content
of the signal, which can be useful for detecting transients, bursts, or other high-energy events.

Variance

Variance measures the dispersion of the wavelet coefficients around their mean.

1
Variance = NZ-(Ci —u)? (5)

where p is the mean of the wavelet coefficients, and N is the total number of coefficients. The
variance feature can provide information about the regularity or irregularity of the signal.
Signals with higher variance tend to be more irregular or contain more abrupt changes.

db1 Approximation db1 Horizontal Detail db1 Vertical Detail db1 Diagonal Detail

100

20 40 60 80 100 20 40 60 80 100 20 40 60 80 100 20 40 60 80 100

haar Approximation haar Horizontal Detail haar Vertical Detail haar Diagonal Detail

20 40 60 80 100 20 40 60 80 100 20 40 60 80 100 20 40 60 80 100

sym2 Approximation sym2 Horizontal Detail sym2 Vertical Detail sym2 Diagonal Detail

20 40 60 80 100 20 40 60 80 100 20 40 60 80 100 20 40 60 80 100

coift Approximation coif1 Horizontal Detail coif1 Vertical Detail coift Diagonal Detail

20 40 60 80 100 20 40 60 80 100 20 40 60 80 100 20 40 60 80 100

FIGURE 4. The wavelet decomposition for a turtle's scute pattern using db1, haar, sym2, and
coifl.

Standard Deviation

The standard deviation is the square root of the variance and represents the average deviation
of the wavelet coefficients from their mean value.

Std Dev = VVariance (6)
The standard deviation feature is closely related to the variance and can also be used to quantify
the regularity or irregularity of the signal.
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Waveform length

Waveform length is a measure of the cumulative sum of the absolute differences between
successive wavelet coefficients. It is related to the signal's smoothness.

Waveform Length = Z |civ1 — cil ()
i

The waveform length feature captures the degree of fluctuations or irregularities in the signal.
Signals with higher waveform length tend to be more complex or irregular. The entropy of the
wavelet coefficients is a measure of their information content or uncertainty.

Entropy
Entropy = Z,pi log(p:) ®)

where p; is the probability (normalized magnitude) of the wavelet coefficient c;. The entropy
feature provides information about the randomness or predictability of the signal. Signals with
higher entropy tend to be more random or unpredictable, while signals with lower entropy are
more regular or predictable.

SIMILARITY USING EUCLIDEAN DISTANCE

The formula for calculating the Euclidean distance between two feature vectors can be derived.
Each image is represented by a feature vector. For simplicity, let's denote the feature vectors
as f; and f, for the first and second images. Each feature vector consists of features Energy [E],
Variance [V], Standard Deviation (StdDev) [S], Waveform Length [W], and Entropy [H]. The
Euclidean distance d between two vectors f; and f, is calculated as the square root of the sum
of the squared differences between corresponding components of the vectors. Given two
feature vectors:

f1 = [f11'f12, Jc13' Jc14' fls] (9)
fz = [f21:f22' Jc23' f24' fzs] (10)

The Euclidean distance d between these vectors is calculated as:
d= (12)

\/(fn — f20)% + (fiz — f22)? + (fiz — f23)% + (fia — f20)* + (fis — f25)?

If each feature vector consists of n features, the Euclidean distance d is calculated as:

(12)
d= (Sl — o’
This study computes the Euclidean distance for each wavelet family, first calculate the features
vectors.

f1= [E1, Vi, S1, Wi, Hyq] (13)
.f2: [EZ’VZ’ SZ' WZ'HZ] (14)
Then, Euclidean distance formula is given by:

d=[(Ey — Ep)? + (Vy = V)% + (81 — )2 + (W) — Wp)2 + (H; — Hp)?  (19)
This formula is applied iteratively for each wavelet family (dbl, haar, sym2, coifl).
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RESULTS AND DISCUSSION

THE EFFECTIVENESS OF DIFFERENT WAVELET FAMILIES

The features for two images of turtle scute patterns have been extracted using four different
wavelet families: dbl, haar, sym2, and coifl. To evaluate the effectiveness of these wavelet
families in capturing key features of turtle scute patterns, various metrics such as energy,
entropy, and waveform length were analyzed. The results indicate that the coifl wavelet
captures the highest energy and exhibits the lowest entropy values, suggesting it retains the
most information and provides the most structured representation of the scute patterns. Both
sym2 and coifl show higher values in terms of variability and complexity, indicating their
superior capability in capturing detailed image features. Higher waveform length values for
coifl and sym2 wavelets further highlight their ability to provide a more detailed and intricate
representation of the scute patterns. The calculated extracted features for the images are
presented in Tables 1 and Table 2.

TABLE 1. Extracted features for image 1

Energy Variance StdDev WaveformLength Entropy
dbl 9.5421e+08 2950.8 54.321 1.5959e+05 -2.7503e+07
haar 9.5421e+08 2950.8 54.321 1.5959e+05 -2.7503e+07
sym2 9.6809e+08 2969.7 54.495 1.6557e+05 -2.7936e+07
coifl 9.8327e+08 2947.3 54.289 1.6609e+05 -2.8401e+07

TABLE 2. Extracted features for image 2

Energy Variance StdDev WaveformLength Entropy
dbl 5.0077e+08 3216.6 56.715 1.8217e+05 -1.8375e+07
haar 5.0077e+08 3216.6 56.715 1.8217e+05 -1.8375e+07
sym?2 5.1296e+08 3276.1 57.237 1.9e+05 -1.8764e+07
coifl 5.239e+08 3261.8 57.112 1.9125e+05 -1.9144e+07

Overall, coifl appears to be the most effective wavelet family for capturing the key features of
turtle scute patterns, followed closely by sym2. Both these wavelet families excel in retaining
energy, capturing variability, and providing detailed and structured representations of the
patterns. dbl and haar, while useful, tend to offer smoother and less detailed representations,
making them less effective for capturing the intricate details of the scute patterns compared to
coifl and sym2. Figure 5 shows the The comparison of features based the wavelet
decomposition between 2 images.
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FIGURE 5. The comparison of features based the wavelet decomposition between 2 images.

QUANTIFY THE SIMILARITY BETWEEN TURTLE SCUTE PATTERNS

Table 3 reveals that coifl is the most effective wavelet family for capturing and distinguishing
detailed differences in turtle scute patterns. It consistently shows higher Euclidean distances,
indicating a greater sensitivity to variations and complexities within the images. Sym2 also
performs well, capturing more nuanced differences compared to dbl and haar. Therefore, for
applications requiring detailed pattern recognition and differentiation, coifl and sym2 are
recommended due to their superior capability in highlighting subtle differences in turtle scute
patterns. The Euclidean distances between Image 1 and Image 2 are presented in Table 3

TABLE 3. The Euclidean distances between the features of Image 1 and Image 2 using
different wavelet families

Energy Variance StdDev WaveformLength Entropy
dbl 4.5343e+08 265.83 2.3941 22578 9.1284e+06
haar 4.5343e+08 265.83 2.3941 22578 9.1284e+06
sym?2 4.5513e+08 306.4 2.7423 24427 9.1718e+06
coifl 4.5937e+08 314.5 2.8231 25162 9.2572e+06

IDENTIFYING TURTLE SCUTE PATTERNS UNDER DIFFERENT ROTATIONS

Identifying unique scute patterns of individual turtles across different angles reveals that coifl
is the most effective wavelet family, demonstrating consistent feature extraction and sensitivity
to subtle differences in scute patterns. Figure 6 illustrates the comparison of features for the
same image under different orientations.
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FIGURE 6. The comparison of features for same image but different orientation

Sym2 also performs well, capturing detailed variations across rotations. Dbl and haar show
identical results in terms of energy, variance, standard deviation, and entropy across rotations,
indicating stability. However, the waveform length varies more significantly for these two
wavelet families, suggesting they might be less reliable for capturing rotational invariance in
scute patterns. Coifl exhibits the highest energy values and the most stable entropy, indicating
its capability to capture detailed structural information consistently across rotations. Its
waveform length and standard deviation also show stability, making it highly effective for
recognizing unique scute patterns despite rotational changes.

The energy values are consistent across all orientations, indicating that the total signal strength
remains unchanged regardless of the rotation angle. Variance values are also identical across
all orientations, further supporting the stability of these features. The standard deviation values
remain constant across rotations, confirming the reliability of this feature in identifying unique
scute patterns irrespective of orientation. Similarly, waveform length values do not vary with
rotation, indicating robustness in capturing the structural details of the scute patterns. Entropy
values are stable across all orientations, reflecting that the complexity or randomness of the
scute patterns is preserved regardless of rotation. This stability makes entropy a useful feature
for distinguishing unique scute patterns. Table 4 presents the Euclidean distances for the same
scute turtle under different orientations, highlighting the effectiveness of these features in
capturing and distinguishing scute patterns across rotations.

TABLE 4. The Euclidean distances same scute turtle but different orientation.

Image

. . Energy Variance StdDev WaveformLength Entropy
orientations
Original 2.7956e+05 0.23998  0.0022077 25056 4915.6
90 degrees 2.7956e+05 0.23998  0.0022077 25056 4915.6
180 degrees 2.7956e+05 0.23998  0.0022077 25056 4915.6
270 degrees 2.7956e+05 0.23998  0.0022077 25056 4915.6
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CONCLUSIONS

These findings suggest that wavelet-derived features are highly effective in identifying unique
scute patterns of individual turtles, regardless of the angle of rotation. The invariance of these
features to rotational changes ensures that the scute patterns can be reliably recognized from
different perspectives, making them suitable for applications in turtle identification. The
objective is to identify unique scute patterns of individual turtles at different angles using
Euclidean distance based on wavelet-derived features. Similarly, sym2 performs well,
capturing more nuanced differences compared to dbl and haar. Therefore, for applications
requiring detailed pattern recognition and differentiation, coifl and sym2 are recommended
due to their superior capability in highlighting subtle differences in turtle scute patterns.
Furthermore, for identifying unique scute patterns of individual turtles across different angles,
coifl is again the most effective wavelet family, demonstrating consistent feature extraction
and sensitivity to subtle differences in scute patterns. For future work, applying these features
in a larger dataset with more varied scute patterns and orientations would further validate their
effectiveness and robustness in real-world scenarios.

ACKNOWLEDGEMENT

The authors gratefully acknowledge the support of the Ministry of Higher Education Malaysia
for providing funding through the Fundamental Research Grant Scheme (FRGS) under grant
number FRGS/1/2020/ICT02/UMT/02/1 (Vote No. 59621) and the Fisheries Research Institute
Rantau Abang for their valuable contributions to this research work.

REFERENCES

Abou Nabout, A. 2013. Object shape recognition using wavelet descriptors. Journal of
Industrial Engineering, 2013, 1-15. https://doi.org/10.1155/2013/435628.

Ascarrunz, E., & Sanchez-Villagra, M. R. 2022. The macroevolutionary and developmental
evolution of the turtle carapacial scutes. Vertebrate Zoology, 72, 29-46.

Dunbar, S. G., Anger, E. C., Parham, J. R., Kingen, C., Wright, M. K., Hayes, C. T., &
Baumbach, D. S. 2021. HotSpotter: Using a computer-driven photo-id application to
identify sea turtles. Journal of Experimental Marine Biology and Ecology, 535,
151490.

Dellinger, T., Zekovic, V., & Radeta, M. 2022. Long-term monitoring of in-water abundance
of juvenile pelagic loggerhead sea turtles (Caretta caretta): Population trends in
relation to North Atlantic Oscillation and nesting. Frontiers in Marine Science, 9,
877636.

Kakoty, N. M., Saikia, A., & Hazarika, S. M. 2015. Exploring a family of wavelet transforms
for EMG-based grasp recognition. Signal, Image and Video Processing, 9(3), 553-
559.

Latif, A., et al. 2019. Content-based image retrieval and feature extraction: A comprehensive
review.  Mathematical ~ Problems in  Engineering, 2019,  965835.
https://doi.org/10.1155/2019/965835.

Lee, D. T., & Yamamoto, A. 1994. Wavelet analysis: Theory and applications. Hewlett Packard
Journal, 45, 44-44.

Nogales, R. E., & Benalcazar, M. E. 2023. Analysis and evaluation of feature selection and
feature extraction methods. International Journal of Computational Intelligence
Systems, 16(1), 153.



323

Pina, L., Rajamanickam, L., & Ng, S. C. 2016. Feature extraction of the carapace for marine
turtle species categorization. International Journal of Scientific Engineering and
Technology, 5(9), 425-429.

Phinyomark, A., Limsakul, C., & Phukpattaranont, P. 2011. Application of wavelet analysis in
EMG feature extraction for pattern classification. Measurement Science Review,
11(2), 45-52.

Poulose Jacob, K., Sonia, S., & David, P. S. (2013). A comparative study of wavelet-based
feature extraction techniques in recognizing isolated spoken words.

Rupilu, K., Fendjalang, S. N. M., & Payer, D. 2019. Species identification and spawning of sea
turtle at Meti Island North Halmahera Regency. IOP Conference Series: Earth and
Environmental ~ Science, 339(1), 012034.  https://doi.org/10.1088/1755-
1315/339/1/012034.

Salem, M. A., Ghamry, N., & Meffert, B. 2009. Daubechies versus biorthogonal wavelets for
moving object detection in traffic monitoring systems. Humboldt-Universitat zu
Berlin, Mathematisch-Naturwissenschaftliche Fakultat Il, Institut fir Informatik.

Tanabe, L. K., Cochran, J. E. M., & Berumen, M. L. 2023. Inter-nesting, migration, and
foraging behaviors of green turtles (Chelonia mydas) in the central-southern Red Sea.
Scientific Reports, 13(1). https://doi.org/10.1038/s41598-023-37942-z.

Tian, D. P. 2013. A review on image feature extraction and representation techniques.
International Journal of Multimedia and Ubiquitous Engineering, 8(4), 385-395.

Too, J., Abdullah, A. R., Saad, N. M., Ali, N. Z. A. W. A. W. |., & ZAWAWI, T. T. 2018.
Application of spectrogram and discrete wavelet transform for EMG pattern
recognition. Journal of Theoretical & Applied Information Technology, 96(10).

Yudhana, A., Din, J., Abdullah, S., & Hassan, R. B. R. 2010. Green turtle hearing identification
based on frequency spectral analysis. Applied Physics Research, 2(1), 125.

Zimm, R., Bentley, B. P., Wyneken, J., & Moustakas-Verho, J. E. 2017. Environmental
causation of turtle scute anomalies in ovo and in silico. Integrative and Comparative
Biology, 57(6), 1303-1311. https://doi.org/10.1093/ich/icx066.



