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ABSTRACT 

 

Turtle scute identification is vital for ecological and conservation research but traditional 

methods, relying on manual observation and image comparison, are time-consuming and error-

prone, especially with varying scales and orientations of scute patterns.  This study explores 

wavelet-based features for analyzing similarities in turtle scute patterns. Utilizing multiple 

wavelet families, including Coif1, Sym2, Db1, and Haar, a comprehensive analysis of scute 

patterns was conducted by extracting from two images. Features such as energy, variance, 

standard deviation, waveform length, and entropy are computed from wavelet decompositions 

to evaluate their effectiveness in capturing subtle differences and complexities in the patterns. 

The findings highlight Coif1 as the most effective wavelet family, demonstrating higher 

Euclidean distances and greater sensitivity to variations in scute patterns. Notably, the study 

reveals consistent feature values across rotations (0°, 90°, 180°, and 270°), underscoring the 

reliability of these wavelet families in maintaining pattern recognition accuracy under different 

orientations. These results contribute valuable insights for advancing turtle identification 

methods based on their distinctive scute patterns. 

 
Keywords: Image Analysis, Wavelet Families, Feature Extraction, Wavelet-Based Features, Turtle 

Scute Identification. 
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ABSTRAK 

 

Pengidentifikasian Scute Penyu adalah penting untuk penyelidikan ekologi dan pemuliharaan, 

tetapi kaedah tradisional yang bergantung pada pemerhatian manual dan perbandingan imej 

adalah mengambil masa dan cenderung kepada ralat, terutamanya dengan variasi skala dan 

orientasi corak scute. Kajian ini meneroka ciri berasaskan wavelet untuk menganalisis 

persamaan dalam corak scute penyu. Dengan menggunakan beberapa keluarga wavelet, 

termasuk Coif1, Sym2, Db1, dan Haar, analisis komprehensif corak scute telah dilakukan 

dengan mengekstrak ciri daripada dua imej. Ciri-ciri seperti tenaga, varians, sisihan piawai, 

panjang gelombang, dan entropi dikira daripada dekomposisi wavelet untuk menilai 

keberkesanan mereka dalam menangkap perbezaan dan kerumitan yang halus dalam corak 

tersebut. Penemuan kajian menunjukkan bahawa Coif1 adalah keluarga wavelet yang paling 

berkesan, menunjukkan jarak Euclidean yang lebih tinggi dan kepekaan yang lebih besar 

terhadap variasi dalam corak scute. Kajian ini juga mendedahkan nilai ciri yang konsisten 

merentasi putaran (0°, 90°, 180°, dan 270°), menekankan kebolehpercayaan keluarga wavelet 

ini dalam mengekalkan ketepatan pengenalan corak di bawah orientasi yang berbeza. Hasil ini 

memberikan pandangan berharga untuk memajukan kaedah pengenalan penyu berdasarkan 

corak scute mereka yang unik. 

 

Kata kunci: Analisis Imej, Keluarga Wavelet, Ekstraksi Ciri, Ciri Berasaskan Wavelet, 

Pengidentifikasian Scute Penyu. 

 

INTRODUCTION 
 

Turtle scute identification plays a pivotal role in ecological and conservation research, aiding 

in population monitoring, habitat assessment, and individual tracking (Tanabe et al., 2023). 

Traditional methods for turtle identification often rely on manual observation and image 

comparison, which can be time-consuming and prone to errors (Rupilu et al., 2019). These 

methods frequently face challenges in accurately extracting and analyzing features from turtle 

facial images, especially due to varying scales, orientations, illumination variations, rotations, 

image distortion, blur, and variable backgrounds (Zimm et al., 2017; Ascarrunz & Sánchez-

Villagra, 2022; Dunbar et al., 2021). The process of turtle scute recognition generally involves 

two steps: scute detection and localization, where scutes are identified and separated from the 

background, followed by scute feature extraction and recognition. To enhance the robustness 

of turtle scute recognition methodologies, researchers are increasingly exploring advanced 

computational techniques, such as wavelet transforms, known for their effectiveness in 

extracting features from complex patterns. These techniques offer promising solutions to the 

challenges posed by variable image conditions, including different scales, orientations, and 

background complexities. By leveraging insights from signal processing applications like 

electromyography (EMG), where wavelet transforms have been pivotal in enhancing feature 

extraction and pattern classification (Kakoty et al., 2015; Phinyomark et al., 2011; Too et al., 

2018; Nogales & Benalcázar, 2023), researchers aim to adapt and optimize these 

methodologies for analyzing and identifying subtle variations in turtle scute patterns. This 

approach not only seeks to improve the accuracy and efficiency of turtle identification 

processes but also contributes to the broader application of wavelet-based methods in 

biodiversity monitoring and conservation efforts. 

RELATED WORK 

Recently, Kakoty et al. (2015) identify the most effective wavelet transform functions for 

classifying electromyogram (EMG) signals based on grasp types. The researchers evaluate 
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various wavelet families, including Haar, Daubechies, Coiflets, and Symlets and extract 

various features from the wavelet coefficients, including energy, variance, and standard 

deviation. Phinyomark  et al. (2011) The reseacher presents a method that uses multi-level 

wavelet decomposition to extract features from EMG signals, which are then used for pattern 

classification. The method is evaluated using two criteria: the ratio of Euclidean distance to 

standard deviation and scatter graphs. Too et al. (2018) proposes a novel method for 

electromyography (EMG) pattern recognition by combining the discrete wavelet transform 

(DWT) and spectrogram to extract time-frequency features from EMG signals, which are then 

used for accurate pattern recognition and classification. Nogales and Benalcázar, (2023) 

presents a method for classifying hand movements using EMG signals, which involves 

extracting enhanced features based on wavelength and mean absolute value from the signals 

using discrete wavelet transform. The wavelet transform can be applied to a periodic angle 

function derived from the extracted object contour to generate wavelet descriptors that can be 

compared against stored contour patterns (Abou Nabout, 2013). In the field of bioacoustics, 

Yudhana et al. (2010) implement wavelet analysis to identify green turtle hearing ability by 

analysing the auditory brainstem response (ABR) spectrum. Dellinger et al. (2022) 

implemented wavelet-based techniques for in-water abundance monitoring of juvenile pelagic 

sea turtles, leveraging the ability of wavelets to capture low-density, widely dispersed species. 

The ability of wavelets to capture multi-scale features makes them a powerful tool for these 

applications (Abou Nabout, 2013; Yudhana et al., 2010; Dellinger et al., 2022). 

 

In this study, the effectiveness of various wavelet families was explored in accurately capturing 

and analyzing turtle scute patterns. While recent research has successfully integrated wavelet 

transforms with machine learning models for precise pattern recognition in other domains, their 

application to turtle scute identification remains underdeveloped. This research fills this gap 

by identifying optimal wavelet families to enhance the robustness of automated scute pattern 

recognition systems. This research aims to overcome current methodological limitations, 

offering a more dependable and efficient solution for identifying and comparing turtle scute 

patterns. Key contributions of this study include evaluating how different wavelet families 

capture essential features of turtle scutes, quantifying pattern similarities using Euclidean 

distances based on wavelet-derived features and analyzing scute patterns across various angles 

to discern unique individual characteristics.  

The remainder of this paper is organized as follows. Section 2 outlines the proposed 

methodology, including the definitions of Wavelet Transform DW and RBFNN. Section 3 

conducts a sensitivity analysis concerning neural network control parameters. Section 4 

presents a case study, while Section 5 discusses the results and engages in comparative analysis 

with other prediction models. Finally, Section 6 provides the conclusions of this research. 

 

METHODOLOGY 

 
DATA PREPARATION 

The dataset includes images of turtle scute patterns, depicting two sets of images where each 

set features the same scute pattern at different orientations. Each set comprises four images 

showing rotations of 0° (original), 90° clockwise, 180° clockwise, and 270° clockwise. Figure 

1 illustrates these images demonstrating the variability in turtle scute orientations 
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FIGURE 1. The images of a scute turtle in different orientations. 

 

These variations aim to develop and assess algorithms capable of recognizing identical patterns 

despite changes in orientation. The original image serves as the baseline reference for 

comparison, facilitating the evaluation of pattern recognition performance across different 

rotational angles. To increase the size of the training dataset by applying six data augmentation 

functions namely, color jittering, Gaussian blurring, flipping, rotation, scaling, and adding salt 

and pepper noise. These functions are designed to introduce random variations in the images, 

making them more diverse and representative of real-world scenarios. Figure 2 illustrates a 

data augmentation pipeline for turtle scute images. 

 

FIGURE 2. A data augmentation pipeline for turtle scute images. 

WAVELET FAMILIES 

Wavelets are mathematical functions that are useful in analyzing and processing signals and 

images at different scales. The experiment being conducted by input images are augmented, 

then wavelet families are applied during the wavelet decomposition step, where the input 

images are decomposed using each of the four wavelet families. The resulting wavelet 

coefficients are then used for feature extraction and comparison. Figure 3 illustrates a diagram 

of framework in this study. 
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FIGURE 3. A framework of the wavelet families is applied. 

The most crucial step in this method is selecting an appropriate wavelet family, including the 

mother wavelet function, for signal characterization. Additionally, it is essential to determine 

the optimal wavelets and the appropriate number of decomposition levels (Poulose Jacob et al., 

2013). Four prominent wavelet families, each with unique properties, are 'db1' (Daubechies 

wavelet of order 1), 'haar' (Haar wavelet), 'sym2' (Symlets wavelet of order 2), and 'coif1' 

(Coiflets wavelet of order 1). The mother wavelet 𝜓(𝑡) is the prototype wavelet from which 

all other wavelets in the family are derived. The scaled and translated versions of the mother 

wavelet are given by: 

𝜓𝑎,𝑏(𝑡)  =  
1

√|𝑎|
𝜓 (

𝑡 − 𝑏

𝑎
) 

(1) 

where 𝑎 denotes the scale parameter (dilation), 𝑏 represents the translation parameter and 𝑡 is 

the time or spatial variable. 

 
Haar Wavelets (haar) 

The Haar sequence, proposed in 1909 by Alfréd Haar, introduced an orthonormal system for 

the space of square-integrable functions on the unit interval [0, 1]. As the simplest wavelet, the 

Haar wavelet has distinct characteristics. One notable technical disadvantage is its lack of 

continuity, rendering it non-differentiable. However, this property can be advantageous for 

analyzing signals with sudden transitions, such as discrete signals used in monitoring tool 

failures in machinery.  The Haar wavelet's mother wavelet function, 𝜓(𝑡), can be described as 

follows: 

𝜓(𝑡) =

{
 
 

 
 1    𝑖𝑓 0  ≤ 𝑡 <  

1

2
 

−1   𝑖𝑓 
1

2
 ≤  𝑡 <  1

0         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

(2) 

 

Its scaling function ∅(𝑡) can be described as: 

∅(𝑡) = {
1  0 ≤ 𝑡 ≤ 1
0  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 (3) 
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Daubechies Wavelets (db1) 

The 'db1' wavelet, or Daubechies wavelet of order 1, is characterized by its compact support 

and orthogonality. It is also known as the simplest member of the Daubechies wavelet family. 

Daubechies wavelets are defined by a filter with a finite number of coefficients, making them 

suitable for applications requiring high computational efficiency and accuracy (Lee & 

Yamamoto, 1994). The 'db1' wavelet is particularly effective in capturing abrupt changes in 

signals, making it ideal for edge detection and signal compressions (Salem et al., 2009). The 

Daubechies wavelet, often denoted as ψ(1)(𝑡) is the simplest member of the Daubechies 

wavelet family. It is defined by a specific set of filter coefficients. The formula for the scaling 

function 𝜙(𝑡) associated with the Daubechies wavelet can be used to derive the wavelet 

function 𝜓(𝑡).  Symlets are a modification of Daubechies wavelets designed to be nearly 

symmetric. 

  
Symlet Wavelets (sym2) 

The 'sym2' wavelet, or Symlets wavelet of order 2, is a modification of the Daubechies wavelet 

designed to be nearly symmetric. Symlets maintain many of the desirable properties of 

Daubechies wavelets, such as orthogonality and compact support, but with improved 

symmetry. This makes Symlets particularly suitable for applications where phase information 

is important, such as signal reconstruction and image processing. The 'sym2' wavelet has a 

more balanced approach to capturing both smooth trends and oscillatory components in signals, 

providing flexibility in handling various types of signal features.  

 

Coiflets Wavelets (coif1) 

The 'coif1' wavelet, or Coiflets wavelet of order 1, is designed to have a higher number of 

vanishing moments compared to Daubechies wavelets. Vanishing moments allow the wavelet 

to represent polynomial trends accurately, making Coiflets particularly effective for 

applications requiring precise localization of both high-frequency and low-frequency 

components. The 'coif1' wavelet is characterized by its ability to capture oscillatory behavior 

while maintaining good time-frequency localization. This makes it suitable for tasks such as 

signal denoising, feature extraction, and transient signal analysis. Coiflets are wavelets with 

both the mother wavelet 𝜓(𝑡) and its scaling function 𝜙(𝑡) having vanishing moments. The 

'coif1' wavelet is a member of the Coiflets family, typically denoted as  ψ(1) (𝑡) as with other 

families, it's defined by filter coefficients. 

FEATURE EXTRACTION 

Feature extraction is a crucial step in the preprocessing of data, especially in the context of 

dimensionality reduction. This process simplifies data processing by identifying and extracting 

the most significant features, thereby reducing the datasets overall volume while preserving its 

essential characteristics (Latif et al., 2019). The approximation coefficients represent a low-

resolution version of the original image, capturing its most significant features and retaining 

the overall structure. The horizontal detail coefficients emphasize the horizontal edges and fine 

details, making horizontal patterns more prominent. Similarly, the vertical detail coefficients 

highlight vertical edges and details, while the diagonal detail coefficients capture the variations 

along diagonal directions, emphasizing diagonal patterns and textures (Tian, 2013). Figure 4 

shows the wavelet decomposition for a turtle's scute pattern using db1, haar, sym2, and coif1. 

These features are combined into a feature vector for each image, which serves as the input 
for further analysis. This approach effectively reduces the data volume while preserving 
crucial information, facilitating efficient processing and analysis (Pina et al., 2016).  
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Energy 

The energy of a wavelet coefficient set is a measure of the magnitude of the coefficients. It is 

calculated as the sum of the squared coefficients. 

𝐸𝑛𝑒𝑟𝑔𝑦 =∑ 𝑐𝑖
2

𝑖
 (4) 

where 𝑐𝑖 are the wavelet coefficients. The energy feature captures the overall energy content 

of the signal, which can be useful for detecting transients, bursts, or other high-energy events. 

Variance 

Variance measures the dispersion of the wavelet coefficients around their mean. 

𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 =
1

𝑁
∑ (𝑐𝑖 − 𝜇)

2

𝑖
 (5) 

where μ is the mean of the wavelet coefficients, and N is the total number of coefficients. The 

variance feature can provide information about the regularity or irregularity of the signal. 

Signals with higher variance tend to be more irregular or contain more abrupt changes.  

 

 

FIGURE 4. The wavelet decomposition for a turtle's scute pattern using db1, haar, sym2, and 

coif1. 

Standard Deviation 

The standard deviation is the square root of the variance and represents the average deviation 

of the wavelet coefficients from their mean value. 

𝑆𝑡𝑑 𝐷𝑒𝑣 = √𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 (6) 

The standard deviation feature is closely related to the variance and can also be used to quantify 

the regularity or irregularity of the signal.  
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Waveform length 

Waveform length is a measure of the cumulative sum of the absolute differences between 

successive wavelet coefficients. It is related to the signal's smoothness. 

𝑊𝑎𝑣𝑒𝑓𝑜𝑟𝑚 𝐿𝑒𝑛𝑔𝑡ℎ =∑ |𝑐𝑖+1 − 𝑐𝑖|
𝑖

 
(7) 

The waveform length feature captures the degree of fluctuations or irregularities in the signal. 

Signals with higher waveform length tend to be more complex or irregular. The entropy of the 

wavelet coefficients is a measure of their information content or uncertainty. 

Entropy 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦 =∑ 𝑝𝑖 𝑙𝑜𝑔(𝑝𝑖)
𝑖

 
(8) 

where 𝑝𝑖  is the probability (normalized magnitude) of the wavelet coefficient 𝑐𝑖. The entropy 

feature provides information about the randomness or predictability of the signal. Signals with 

higher entropy tend to be more random or unpredictable, while signals with lower entropy are 

more regular or predictable. 

 
SIMILARITY USING EUCLIDEAN DISTANCE 

 

The formula for calculating the Euclidean distance between two feature vectors can be derived. 

Each image is represented by a feature vector. For simplicity, let's denote the feature vectors 

as ƒ1 and ƒ2 for the first and second images. Each feature vector consists of features Energy [E], 

Variance [V], Standard Deviation (StdDev) [S], Waveform Length [W], and Entropy [H]. The 

Euclidean distance 𝑑 between two vectors  ƒ1 and ƒ2 is calculated as the square root of the sum 

of the squared differences between corresponding components of the vectors. Given two 

feature vectors: 

 ƒ1 = [ƒ11, ƒ12,  ƒ13,  ƒ14,  ƒ15] (9) 

ƒ2 = [ƒ21, ƒ22,  ƒ23,  ƒ24,  ƒ25] (10) 

The Euclidean distance 𝑑 between these vectors is calculated as: 

𝑑= 

√(𝑓11 − 𝑓21)2 + (𝑓12 − 𝑓22)2  + (𝑓13 − 𝑓23)2 + (𝑓14 − 𝑓24)2 + (𝑓15 − 𝑓25)2 

(11) 

If each feature vector consists of 𝑛 features, the Euclidean distance 𝑑 is calculated as: 

𝑑= √∑ (𝑓1𝑖  −  𝑓2𝑖)
𝑛
𝑖=1

2
 

(12) 

This study computes the Euclidean distance for each wavelet family, first calculate the features 

vectors. 

ƒ1= [𝐸1, 𝑉1,  𝑆1,  𝑊1, 𝐻1] (13) 

ƒ2=  [𝐸2, 𝑉2,  𝑆2,  𝑊2, 𝐻2] (14) 

Then, Euclidean distance formula is given by: 

𝑑= √(𝐸1 − 𝐸2)2 + (𝑉1 − 𝑉2)2  + (𝑆1 − 𝑆2)2 + (𝑊1 −𝑊2)2 + (𝐻1 − 𝐻2)2 (15) 

This formula is applied iteratively for each wavelet family (db1, haar, sym2, coif1). 
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RESULTS AND DISCUSSION 

 
THE EFFECTIVENESS OF DIFFERENT WAVELET FAMILIES 

The features for two images of turtle scute patterns have been extracted using four different 

wavelet families: db1, haar, sym2, and coif1. To evaluate the effectiveness of these wavelet 

families in capturing key features of turtle scute patterns, various metrics such as energy, 

entropy, and waveform length were analyzed. The results indicate that the coif1 wavelet 

captures the highest energy and exhibits the lowest entropy values, suggesting it retains the 

most information and provides the most structured representation of the scute patterns. Both 

sym2 and coif1 show higher values in terms of variability and complexity, indicating their 

superior capability in capturing detailed image features. Higher waveform length values for 

coif1 and sym2 wavelets further highlight their ability to provide a more detailed and intricate 

representation of the scute patterns. The calculated extracted features for the images are 

presented in Tables 1 and Table 2. 

TABLE 1. Extracted features for image 1 

 Energy       Variance     StdDev     WaveformLength       Entropy   

db1 9.5421e+08   2950.8  54.321  1.5959e+05 -2.7503e+07 

haar      9.5421e+08      2950.8      54.321       1.5959e+05       -2.7503e+07 

sym2      9.6809e+08      2969.7      54.495       1.6557e+05       -2.7936e+07 

coif1 9.8327e+08 2947.3 54.289       1.6609e+05       -2.8401e+07 

 

TABLE 2. Extracted features for image 2 

 Energy       Variance     StdDev     WaveformLength       Entropy   

db1 5.0077e+08      3216.6      56.715       1.8217e+05       -1.8375e+07 

haar      5.0077e+08      3216.6      56.715       1.8217e+05       -1.8375e+07 

sym2      5.1296e+08      3276.1      57.237          1.9e+05       -1.8764e+07 

coif1      5.239e+08      3261.8      57.112       1.9125e+05       -1.9144e+07 

 

Overall, coif1 appears to be the most effective wavelet family for capturing the key features of 

turtle scute patterns, followed closely by sym2. Both these wavelet families excel in retaining 

energy, capturing variability, and providing detailed and structured representations of the 

patterns. db1 and haar, while useful, tend to offer smoother and less detailed representations, 

making them less effective for capturing the intricate details of the scute patterns compared to 

coif1 and sym2. Figure 5 shows the The comparison of features based the wavelet 

decomposition between 2 images.  
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FIGURE 5. The comparison of features based the wavelet decomposition between 2 images. 

 
QUANTIFY THE SIMILARITY BETWEEN TURTLE SCUTE PATTERNS 

Table 3 reveals that coif1 is the most effective wavelet family for capturing and distinguishing 

detailed differences in turtle scute patterns. It consistently shows higher Euclidean distances, 

indicating a greater sensitivity to variations and complexities within the images. Sym2 also 

performs well, capturing more nuanced differences compared to db1 and haar. Therefore, for 

applications requiring detailed pattern recognition and differentiation, coif1 and sym2 are 

recommended due to their superior capability in highlighting subtle differences in turtle scute 

patterns. The Euclidean distances between Image 1 and Image 2 are presented in Table 3 

TABLE 3. The Euclidean distances between the features of Image 1 and Image 2 using 

different wavelet families 

 Energy       Variance     StdDev     WaveformLength       Entropy   

db1 4.5343e+08      265.83      2.3941         22578    9.1284e+06 

haar      4.5343e+08      265.83      2.3941         22578      9.1284e+06 

sym2      4.5513e+08       306.4      2.7423         24427      9.1718e+06 

coif1      4.5937e+08       314.5      2.8231         25162 9.2572e+06 

 

IDENTIFYING TURTLE SCUTE PATTERNS UNDER DIFFERENT ROTATIONS 

Identifying unique scute patterns of individual turtles across different angles reveals that coif1 

is the most effective wavelet family, demonstrating consistent feature extraction and sensitivity 

to subtle differences in scute patterns. Figure 6 illustrates the comparison of features for the 

same image under different orientations. 
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FIGURE 6. The comparison of features for same image but different orientation 

Sym2 also performs well, capturing detailed variations across rotations. Db1 and haar show 

identical results in terms of energy, variance, standard deviation, and entropy across rotations, 

indicating stability. However, the waveform length varies more significantly for these two 

wavelet families, suggesting they might be less reliable for capturing rotational invariance in 

scute patterns. Coif1 exhibits the highest energy values and the most stable entropy, indicating 

its capability to capture detailed structural information consistently across rotations. Its 

waveform length and standard deviation also show stability, making it highly effective for 

recognizing unique scute patterns despite rotational changes.  

The energy values are consistent across all orientations, indicating that the total signal strength 

remains unchanged regardless of the rotation angle. Variance values are also identical across 

all orientations, further supporting the stability of these features. The standard deviation values 

remain constant across rotations, confirming the reliability of this feature in identifying unique 

scute patterns irrespective of orientation. Similarly, waveform length values do not vary with 

rotation, indicating robustness in capturing the structural details of the scute patterns. Entropy 

values are stable across all orientations, reflecting that the complexity or randomness of the 

scute patterns is preserved regardless of rotation. This stability makes entropy a useful feature 

for distinguishing unique scute patterns. Table 4 presents the Euclidean distances for the same 

scute turtle under different orientations, highlighting the effectiveness of these features in 

capturing and distinguishing scute patterns across rotations. 

TABLE 4. The Euclidean distances same scute turtle but different orientation. 

Image 

orientations 
Energy Variance StdDev WaveformLength Entropy 

Original 2.7956e+05     0.23998      0.0022077         25056   4915.6 

90 degrees 2.7956e+05     0.23998      0.0022077         25056   4915.6 

180 degrees 2.7956e+05     0.23998      0.0022077         25056   4915.6 

270 degrees 2.7956e+05     0.23998      0.0022077         25056   4915.6 
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CONCLUSIONS 

These findings suggest that wavelet-derived features are highly effective in identifying unique 

scute patterns of individual turtles, regardless of the angle of rotation. The invariance of these 

features to rotational changes ensures that the scute patterns can be reliably recognized from 

different perspectives, making them suitable for applications in turtle identification. The 

objective is to identify unique scute patterns of individual turtles at different angles using 

Euclidean distance based on wavelet-derived features. Similarly, sym2 performs well, 

capturing more nuanced differences compared to db1 and haar. Therefore, for applications 

requiring detailed pattern recognition and differentiation, coif1 and sym2 are recommended 

due to their superior capability in highlighting subtle differences in turtle scute patterns. 

Furthermore, for identifying unique scute patterns of individual turtles across different angles, 

coif1 is again the most effective wavelet family, demonstrating consistent feature extraction 

and sensitivity to subtle differences in scute patterns. For future work, applying these features 

in a larger dataset with more varied scute patterns and orientations would further validate their 

effectiveness and robustness in real-world scenarios.  

ACKNOWLEDGEMENT 

The authors gratefully acknowledge the support of the Ministry of Higher Education Malaysia 

for providing funding through the Fundamental Research Grant Scheme (FRGS) under grant 

number FRGS/1/2020/ICT02/UMT/02/1 (Vote No. 59621) and the Fisheries Research Institute 

Rantau Abang for their valuable contributions to this research work. 

REFERENCES 

Abou Nabout, A. 2013. Object shape recognition using wavelet descriptors. Journal of 

Industrial Engineering, 2013, 1–15. https://doi.org/10.1155/2013/435628. 

Ascarrunz, E., & Sánchez-Villagra, M. R. 2022. The macroevolutionary and developmental 

evolution of the turtle carapacial scutes. Vertebrate Zoology, 72, 29-46. 

Dunbar, S. G., Anger, E. C., Parham, J. R., Kingen, C., Wright, M. K., Hayes, C. T., & 

Baumbach, D. S. 2021. HotSpotter: Using a computer-driven photo-id application to 

identify sea turtles. Journal of Experimental Marine Biology and Ecology, 535, 

151490. 

Dellinger, T., Zekovic, V., & Radeta, M. 2022. Long-term monitoring of in-water abundance 

of juvenile pelagic loggerhead sea turtles (Caretta caretta): Population trends in 

relation to North Atlantic Oscillation and nesting. Frontiers in Marine Science, 9, 

877636. 

Kakoty, N. M., Saikia, A., & Hazarika, S. M. 2015. Exploring a family of wavelet transforms 

for EMG-based grasp recognition. Signal, Image and Video Processing, 9(3), 553-

559. 

Latif, A., et al. 2019. Content-based image retrieval and feature extraction: A comprehensive 

review. Mathematical Problems in Engineering, 2019, 965835. 

https://doi.org/10.1155/2019/965835. 

Lee, D. T., & Yamamoto, A. 1994. Wavelet analysis: Theory and applications. Hewlett Packard 

Journal, 45, 44-44. 

Nogales, R. E., & Benalcázar, M. E. 2023. Analysis and evaluation of feature selection and 

feature extraction methods. International Journal of Computational Intelligence 

Systems, 16(1), 153. 



323 
 

 
 

Pina, L., Rajamanickam, L., & Ng, S. C. 2016. Feature extraction of the carapace for marine 

turtle species categorization. International Journal of Scientific Engineering and 

Technology, 5(9), 425-429. 

Phinyomark, A., Limsakul, C., & Phukpattaranont, P. 2011. Application of wavelet analysis in 

EMG feature extraction for pattern classification. Measurement Science Review, 

11(2), 45-52. 

Poulose Jacob, K., Sonia, S., & David, P. S. (2013). A comparative study of wavelet-based 

feature extraction techniques in recognizing isolated spoken words. 

Rupilu, K., Fendjalang, S. N. M., & Payer, D. 2019. Species identification and spawning of sea 

turtle at Meti Island North Halmahera Regency. IOP Conference Series: Earth and 

Environmental Science, 339(1), 012034. https://doi.org/10.1088/1755-

1315/339/1/012034. 

Salem, M. A., Ghamry, N., & Meffert, B. 2009. Daubechies versus biorthogonal wavelets for 

moving object detection in traffic monitoring systems. Humboldt-Universität zu 

Berlin, Mathematisch-Naturwissenschaftliche Fakultät II, Institut für Informatik. 

Tanabe, L. K., Cochran, J. E. M., & Berumen, M. L. 2023. Inter-nesting, migration, and 

foraging behaviors of green turtles (Chelonia mydas) in the central-southern Red Sea. 

Scientific Reports, 13(1). https://doi.org/10.1038/s41598-023-37942-z. 

Tian, D. P. 2013. A review on image feature extraction and representation techniques. 

International Journal of Multimedia and Ubiquitous Engineering, 8(4), 385–395. 

Too, J., Abdullah, A. R., Saad, N. M., Ali, N. Z. A. W. A. W. I., & ZAWAWI, T. T. 2018. 

Application of spectrogram and discrete wavelet transform for EMG pattern 

recognition. Journal of Theoretical & Applied Information Technology, 96(10). 

Yudhana, A., Din, J., Abdullah, S., & Hassan, R. B. R. 2010. Green turtle hearing identification 

based on frequency spectral analysis. Applied Physics Research, 2(1), 125. 

Zimm, R., Bentley, B. P., Wyneken, J., & Moustakas-Verho, J. E. 2017. Environmental 

causation of turtle scute anomalies in ovo and in silico. Integrative and Comparative 

Biology, 57(6), 1303–1311. https://doi.org/10.1093/icb/icx066. 


