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ABSTRACT 

 

Surging urbanization and vehicle emissions exacerbate traffic congestion in major cities, 

leading to increased air pollution and high gasoline emissions as traditional traffic signal 

systems fail to adapt to real-time traffic conditions. To address this critical issue, this research 

proposes an innovative traffic control strategy using multi-fuzzy inference systems (mFIS) 

distributed at adjacent intersections in areas experiencing high traffic volumes. These 

distributed traffic light control systems collaborate to reduce congestion gradually in areas of 

high congestion. The mFIS system optimizes the traffic light settings based on the length of 

the vehicle queue, the duration of the vehicle stopping time, the number of vehicles in front of 

the lane, and the number of vehicles entering the lane. Our simulations demonstrated that the 

proposed mFIS controller effectively reduced average vehicle delay by up to 23.6% compared 

to the Proportional-Integral-Derivative (PCT) controller, 19.9% compared to the Variable 

Speed (VA) controller, and 14.1% compared to the traditional Fuzzy Logic System (FIS) 

controller. This significant performance improvement was consistently observed across 

various traffic conditions, including heavy traffic scenarios. The advantages of the proposed 

algorithm lie in restricting vehicles entering high-congestion lanes, speeding up the outflow of 

vehicles from congested areas, and using distributed control principles within areas 

experiencing high traffic volumes. Therefore, the algorithm in this study has the potential to be 

further developed to help reduce traffic congestion in big cities; thus, it can be a sustainable 

solution to create cleaner, healthier, and more sustainable cities in the future. 

 

Keywords: Multi-Fuzzy Inference System, air pollution, sustainable solution, traffic signal 

optimization, distributed control. 

 

ABSTRAK 

 

Peningkatan urbanisasi dan pelepasan kenderaan memburukkan lagi kesesakan lalu lintas di 

bandar besar, membawa kepada peningkatan pencemaran udara dan pelepasan petrol yang 

tinggi kerana sistem isyarat trafik tradisional gagal menyesuaikan diri dengan keadaan trafik 

masa nyata. Untuk menangani isu kritikal ini, kajian ini mencadangkan strategi kawalan trafik 
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yang inovatif menggunakan sistem inferensi multi-fuzzy (mFIS) yang diedarkan 

dipersimpangan bersebelahan di kawasan yang mengalami jumlah trafik yang tinggi. Sistem 

kawalan lampu isyarat yang diedarkan ini bekerjasama untuk mengurangkan kesesakan secara 

beransur-ansur di kawasan kesesakan tinggi. Sistem mFIS mengoptimumkan tetapan lampu 

isyarat berdasarkan panjang giliran kenderaan, tempoh masa berhenti kenderaan, bilangan 

kenderaan di hadapan lorong dan bilangan kenderaan yang memasuki lorong. Simulasi kami 

menunjukkan bahawa pengawal mFIS yang dicadangkan berkesan mengurangkan kelewatan 

kenderaan purata sebanyak 23.6% berbanding dengan pengawal Proportional-Integral-

Derivative (PCT), 19.9% berbanding dengan pengawal Variable Speed (VA) dan 14 .1 % 

berbanding dengan pengawal Sistem Logik Kabur (FIS) tradisional. Peningkatan prestasi yang 

ketara ini diperhatikan secara konsisten merentas pelbagai keadaan trafik, termasuk senario 

trafik yang padat. Kelebihan algoritma yang dicadangkan terletak pada mengehadkan 

kenderaan yang memasuki lorong dengan ketumpatan tinggi, mempercepatkan aliran keluar 

kenderaan dari kawasan sesak, dan menggunakan prinsip kawalan teragih di kawasan yang 

mengalami jumlah trafik yang tinggi. Oleh itu, algoritma dalam kajian ini berpotensi untuk 

dikembangkan lagi bagi membantu mengurangkan kesesakan lalu lintas di bandar-bandar 

besar; oleh itu, algoritma ini boleh menjadi penyelesaian yang mampan untuk mewujudkan 

bandar yang lebih bersih, sihat dan lebih mampan pada masa hadapan. 

 

Kata kunci: Sistem Inferensi Multi-Fuzzy, pencemaran udara, penyelesaian mampan, 

pengoptimuman isyarat lalu lintas, kawalan teragih. 

 

INTRODUCTION 

 

Surging urbanization and increasing vehicle emissions have become critical global challenges 

in major cities, including Jakarta, Indonesia (Prastiyo et al., 2020 ; Damayanti and Suryanto, 

2022). In Jakarta alone, there is an average of 60 minutes of traffic congestion every day, 

causing economic losses estimated at two billion USD per year (Sahara and Nugroho, 2023; 

Saraswati and Adi, 2022; Syafey and Putra, 2023). These losses include wasted fuel costs, lost 

productive time, and health impacts due to air pollution. Air pollution alone causes at least 3.7 

million premature deaths annually worldwide (Sudaryanto et al., 2022; Maizara et al., 2024), 

emphasizing the importance of effective traffic management.  

 

Traditional fixed-time traffic control systems, which are commonly used in many cities, need 

to be upgraded to adapt to dynamic traffic conditions (Atta et al., 2018; Essa and Sayed, 2020; 

Permana et al., 2020; Ujianto, 2022). Often, fixed-time traffic control systems have difficulty 

coping with the high variability of traffic demand, resulting in suboptimal use of green signal 

duration in each cycle (Vuong et al., 2021). To overcome this drawback, intelligent traffic 

signal control systems such as Fuzzy Inference Systems (FIS) (Aria, 2019) and Artificial 

Neural Networks (ANN) (Hong et al., 2022) are emerging as promising alternatives. 

 

Traffic signal control has shown significant progress with the application of Artificial 

Intelligence (AI) techniques. Traditional approaches based on fixed timing control, such as 

those outlined in Webster's formula (Ali et al., 2021), are still in use but have difficulty 

adjusting to real-time traffic variations. In contrast, modern approaches utilize AI to 

dynamically adjust signal timing, which has been shown to improve traffic control efficiency.  

 

Fuzzy logic offers a powerful approach to managing uncertainty in traffic flow. Its ability to 

translate expert knowledge into control decisions has proven to be effective in reducing vehicle 

waiting times compared to fixed-time control. For example, research conducted by Van et al.  
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(2020) showed that fuzzy logic systems are capable of reducing vehicle waiting times. In 

addition, multi-stage fuzzy logic systems with optimization algorithms show promising results, 

especially in heavy traffic situations, as conducted by Mahmood et al. (2019) and Jiang et al. 

(2021)  

 

Neuro-fuzzy systems, which combine fuzzy logic with neural networks, offer a data-driven 

approach to traffic control. Research conducted by Vuong et al. (2021) has illustrated the 

potential of these systems in optimizing traffic light sequencing and control. In addition, 

various other AI algorithms, such as Petri-nets, Bee Colony Optimization, and deep 

reinforcement learning, have shown potential in optimizing traffic flow (Luo et al., 2020; Hao 

et al., 2018; Kodama et al., 2022; Bokade et al., 2023; Zhu et al., 2022). These algorithms 

performed better than traditional fixed-time control and other optimization algorithms in 

simulation studies.  

 

Although AI-based approaches offer significant advantages, there are still limitations. Most 

studies focus on isolated intersections, so implementation in complex urban traffic networks 

still requires further research. Therefore, to fill the gap in adaptive traffic signal control systems 

for complex mixed traffic flows, this study proposes an adaptive signal control method using 

multi-FIS (mFIS) for complex intersections with dynamic phasing to optimize vehicle 

movements, both straight and right turns.  

 

In the proposed mFIS, a fuzzy system is installed at each intersection and can communicate 

with other fuzzy systems at adjacent intersections. The mFIS system optimizes the traffic light 

settings based on the length of the vehicle queue, the duration of the vehicle stopping time, the 

number of vehicles on the opposite side of the lane, and the number of vehicles entering the 

lane.  

 

The performance of the proposed method is compared with Preset-Cycle-Times (PCT) control, 

Vehicle-Actuated (VA) control, and traditional FIS (FIS without cooperation between 

controllers at adjacent intersections). The tests were conducted through a microscopic traffic 

simulator.  

 

The rest of the paper is organized as follows: Section II presents the details of the proposed 

method. The simulation experiments are given in Section III, and Section IV concludes the 

paper with conclusions.  

 

RELATED WORK 

 

Significant research has been conducted in the field of adaptive traffic signal control. Since 

Webster introduced the optimal cycle formula for delay minimization in 1958, it has become a 

standard for controlling fixed-time traffic signals at isolated intersections. However, its 

application is limited to using historical data to calculate the optimal cycle in fixed-time signal 

systems. Several modifications to Webster's formula have been proposed, including those by 

Wolput et al. (2016) and Zakariya and Rabia (2016). 

 

Fuzzy logic has been widely applied in traffic signal control systems. Van et al. (2020) 

proposed a two-phase fuzzy traffic signal control system for mixed traffic conditions, where 

green time is determined by queue length and arrival rate. Garg and Kaushal (2017) integrated 

wireless sensor networks into fuzzy traffic control, reducing waiting times during heavy traffic. 
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Shiri and Maleki (2017) applied fuzzy logic to determine the maximum green time based on 

real-time traffic flow. 

 

Alam (2015) proposed a two-stage fuzzy logic-based traffic light system for isolated 

intersections, using two modules: the Traffic Urgency Decision Module (TUDM) and the Time 

Extension Decision Module (ETDM). Similarly, Mahmood et al. (2019) proposed a system to 

reduce the average waiting time for vehicles. Jiang et al. (2021) developed an optimized version 

using a differential evolution algorithm to improve fuzzy rules. In addition to pure fuzzy logic, 

neuro-fuzzy systems have also been applied in traffic control. Udofia et al. (2014) proposed an 

adaptive neuro-fuzzy inference system (ANFIS) model to determine the phase sequence of 

traffic signals at isolated intersections. 

 

While AI-based approaches offer significant advantages, there are still limitations. Most 

studies focus on isolated intersections, and implementation in complex urban traffic networks 

requires further research. To address this gap in adaptive traffic signal control systems for 

complex mixed traffic flows, this study proposes an adaptive signal control method using 

multi-FIS (mFIS) for complex intersections with dynamic phasing to optimize vehicle 

movements, including straight and right turns. 

 

METHODOLOGY 

 
VEHICLES SENSORS 

 

Two detectors, rear and front, are used to count the number of vehicles in a lane. The rear 

detector, placed behind the lane, increases the vehicle count when it detects a vehicle (grey 

boxes in Figure 1), while the front detector, located near the intersection, decreases it when it 

detects a vehicle (black boxes in Figure 1). The outermost lane is for left-turning vehicles, the 

center lane is for straight vehicles, and the inner lane is for right-turning vehicles.  

 

 

FIGURE 1. Example position of the vehicles sensors. 

 
CONTROLLER SYSTEM OVERVIEW: MULTI-FUZZY INFERENCES SYSTEMS 

 

The proposed controller is a multi-fuzzy inference system (mFIS) to control multiple adjacent 

intersections with dynamic phasing to optimize vehicle movements, both straight and right 

turns, in areas of high congestion. The controllers not only manage local traffic but also 

collaborate with their neighbours. The mFIS system optimizes the traffic light settings based 



328 
 

on the length of the vehicle queue, the duration of vehicle stopping time, the number of vehicles 

in the opposite lane, and the number of vehicles entering the lane. The FIS will determine the 

direction of vehicle flow at the intersection and the time length of that flow adaptively based 

on traffic conditions. In this study, we propose four FIS inputs and the use of 20 alternative 

vehicle flow forms at the intersection, an increase from the previous study (Pohan, M.A.R. 

2019), which only used three FIS inputs and 16 alternative vehicle flow forms at the 

intersection. Three FIS modules were used, namely the green phase module, the red phase 

module, and the decision module.  

 
THE GREEN PHASE MODULE 

 

The green phase module calculates the degree of urgency to extend the green phase time based 

on the length of the vehicle queue (QueueNum), the number of vehicles in front of the lane 

(FrontNum), and the number of vehicles entering the lane (ArrivalNum). This module 

generates the ExtendDegree, which is the degree of urgency to extend the green phase. When 

there is more than one traffic flow with a green phase, this module evaluates the extension 

degree of each flow. The minimum value of all these extension levels becomes the 

ExtendDegree value for that phase.  

 

For example, for intersection conditions with east to west and west to east vehicle flows, the 

ExtendDegree for east-to-west (EW) traffic is calculated based on QueueNum(EW), 

FrontNum(EW), and ArrivalNum(E). A similar process is applied for west-to-east (WE) traffic, 

resulting in ExtendDegree(WE). The minimum value of ExtendDegree(EW) and 

ExtendDegree(WE) becomes the ExtendDegree for that phase. The membership function 

parameters for the Green Phase Module inputs are shown at Table 1. The Capacity variable in 

Table 1 indicates the maximum capacity of vehicles that can occupy the lane.  

 

TABLE 1. Membership function parameters for the Green Phase Module inputs 

Linguistic Variable Linguistic Value 
Triangular Membership Function Parameters 

a B c 

QueueNum 

Zero 0 0 0 

Small −1 3⁄  𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 0 1 3⁄  𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 

Medium 0 1 3⁄  𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 2 3⁄  𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 

Large 1 3⁄  𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 2 3⁄  𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝐹𝑢𝑙𝑙 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 

Very Large 2 3⁄  𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝐹𝑢𝑙𝑙 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 10000 

FrontNum 

Zero 0 0 0 

Small −1 3⁄  𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 0 1 3⁄  𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 

Medium 0 1 3⁄  𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 2 3⁄  𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 

Large 1 3⁄  𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 2 3⁄  𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝐹𝑢𝑙𝑙 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 

Very Large 2 3⁄  𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝐹𝑢𝑙𝑙 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 10000 

ArrivalNum 

Zero 0 0 0 

Small −1 3⁄  𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 0 1 3⁄  𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 

Medium 0 1 3⁄  𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 2 3⁄  𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 

Large 1 3⁄  𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 2 3⁄  𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝐹𝑢𝑙𝑙 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 

Very Large 2 3⁄  𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝐹𝑢𝑙𝑙 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 10000 

ExtendDegree 

Small -1 0 1 

Medium 0 1 2 

Large 1 2 3 

Very Large 2 3 4 

 

In the theory of Fuzzy Logic and Fuzzy Inference Systems, a Linguistic Variable is a variable 

whose values are words or sentences in a natural or artificial language rather than numerical 
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values. Linguistic Values are the possible values that a linguistic variable can take, usually 

expressed as fuzzy sets that represent the degree of membership of an element within a set. 

Triangular Membership Function Parameters define the shape of the triangular membership 

functions used to represent these fuzzy sets. These functions are characterized by three 

parameters: the lower limit (a), the peak (b), and the upper limit (c), forming a triangular shape. 

This structure helps in defining how the degree of membership rises from zero to its maximum 

value at the peak and then falls back to zero. For further explanation on “Linguistic Variable,” 

“Linguistic Values,” and “Triangular Membership Function Parameters” in the theory of Fuzzy 

Logic and Fuzzy Inference Systems, readers can refer to literature such as (Lee, 2021; Dubois 

and Prade, 2012; Lowen, 2012). 

 

This module consists of 125 rules. The example rules for the Green Phase Module are shown 

at Table 2. The urgency of the phase will decrease if QueueNum is small. An increase in the 

number of vehicles at the intersection ahead (FrontNum) will also reduce the QueueNum level. 

As the number of arriving vehicles (ArrivalNum) increases, the QueueNum value will increase. 

 

TABLE 2. Example Rules for the Green Phase Module  

Input Variable Output 

QueueNum FrontNum ArrivalNum ExtendDegree 

Zero Small Zero Zero 

Small Small Zero Small 

Medium Small Zero Medium 

Large Small Zero Large 

Zero Large Zero Zero 

Small Large Zero Small 

Medium Large Zero Small 

Large Large Zero Small 

Zero Small Large Small 

Small Small Large Small 

Medium Small Large Small 

Large Small Large Medium 

 

THE RED PHASE MODULE 

The decision module, which receives inputs from the red phase module (PhaseUrgency) and 

green phase module (ExtendDegree), is in charge of determining the change or extension of the 

green signal. When PhaseUrgency exceeds ExtendDegree, it indicates that the traffic on the 

other lane is heavier than the lane that is currently green. The module then gives green signal 

priority to the phase with the highest PhaseUrgency.This module has four inputs: the length of 

the vehicle queue (QueueNum), the number of vehicles in front of the lane (FrontNum), the 

number of vehicles entering the lane (ArrivalNum), and the duration of the vehicle stopping 

time (RedTime), which is the duration of the vehicle waiting due to the red signal. Fuzzy rules 

are created for the red phase module, where PhaseUrgency increases according to the increase 

of QueueNum, RedTime, and ArrivalNum, but decreases if FrontNum increases. Examples of 

fuzzy rules for this module and membership function parameters for FrontNum can be seen in 

Tables 3 and 4. The value of the membership function parameters of Urgency is the same as 

ExtendDegree. 

 

 

 



330 
 

TABLE 3. Example Rules for the Red Phase Module 

Input Variable Output 

QueueNum FrontNum ArrivalNum RedTime Urgency 

Zero Small Zero Medium Zero 

Small Small Zero Medium Small 

Medium Small Zero Medium Medium 

Large Small Zero Medium Large 

Zero Large Zero Medium Zero 

Small Large Zero Medium Small 

Medium Large Zero Medium Small 

Large Large Zero Medium Small 

Zero Small Zero Very Long Zero 

Small Small Zero Very Long Large 

Medium Small Zero Very Long Very Large 

Large Small Zero Very Long Very Large 

Zero Small Large Medium Zero 

 

TABLE 4. Membership function parameters for RedTime 

Linguistic Variable 
Linguistic 

Value 

Triangular Membership Function Parameters 

A b c 

RedTime 

Zero -60 0 60 

Short 0 60 120 

Medium 60 120 180 

Long 120 180 240 

Very Long 180 240 10000 

 

THE DECISION MODULE 

The input of the Decision Module is the output of the Red Phase Module (PhaseUrgency) and 

the Green Phase Module (ExtendDegree). This module will decide whether to change or 

extend the green signal. If PhaseUrgency is higher than ExtendDegree, then traffic conditions 

on other lanes need to be prioritized for advancement over the current green phase. Therefore, 

this module will give the green signal to the phase with the highest PhaseUrgency value. 

 
PROPOSAL OF ALTERNATIVE SIGNAL PHASE  

The FIS will determine the direction of vehicle flow at an intersection and the length of time. 

It can select 20 alternative forms of vehicle flow at an intersection (see Figure. 2). The FIS 

adaptively selects the phase to be activated by adjusting to the existing traffic density. Figure 

3 showcases a sample controller schematic diagram. It represents a situation where phase 1 of 

Figure 2 is presently in the green state. 

 

 

FIGURE 2. Alternative forms of vehicle flow at an intersection. 
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FIGURE 3. Example of a controller schematic diagram when phase 1 in Figure 2 is in the 

green phase. 

 

RESULTS AND DISCUSSION 

 

In this study, experiments were conducted using a microscopic traffic simulator to evaluate the 

performance of the proposed multi-fuzzy inference systems (mFIS) based traffic signal control 

system. The simulation environment was set up using the SUMO (Simulation of Urban 

MObility) traffic simulation software, which allows for realistic traffic flow simulations. The 

test area comprised an urban road network with multiple intersections experiencing high traffic 

volumes. Each simulation scenario was run for 1 hours of simulation time to obtain consistent 

and representative results. The mFIS system regulated the green light duration based on various 

parameters, including queue length, vehicle stop duration, the number of vehicles ahead in the 

lane, and the number of vehicles entering the lane. Additionally, each fuzzy system at an 
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intersection could communicate with fuzzy systems at adjacent intersections to collaboratively 

optimize traffic flow. 

 

We compared the proposed controller with the PCT, VA, and traditional FIS (Pohan, 2019) 

(FIS without cooperation between controllers at adjacent intersections) through simulations 

conducted across nine different traffic conditions. Initially, we explored scenarios where the 

traffic volume across the intersection remained constant at various levels: 600, 700, 800, 900, 

1000, and 1100 vehicles per hour. After that, traffic conditions were changed every 20 minutes, 

including light, normal, and heavy traffic conditions. Table 5-7 presents the breakdown of 

vehicle counts for light, medium, and heavy traffic conditions across the four input links. Such 

a comprehensive evaluation enables a thorough assessment of the performance of the proposed 

fuzzy logic system under various traffic scenarios, which provides valuable insights for its 

potential real-world implementation and efficacy in controlling multiple traffic intersections. 

 

TABLE 5. Vehicle volume in light traffic conditions. 

 Time (minutes) 

 0-20 20-40 40-60 60-80 

North 700 600 600 400 

East 700 500 500 700 

South 700 600 500 700 

West 700 600 500 700 

 

TABLE 6. Vehicle volume in medium traffic conditions. 

 Time (minutes) 

 0-20 20-40 40-60 60-80 

North 900 950 750 950 

East 850 800 900 750 

South 900 800 900 750 

West 900 800 950 900 

 

TABLE 7. Vehicle volume in heavy traffic conditions. 

 Time (minutes) 

 0-20 20-40 40-60 60-80 

North 1100 1050 1050 1100 

East 1100 1000 1000 1000 

South 1100 1000 1100 1100 

West 1100 1000 1000 1100 

 

The results of the tests for these scenarios are presented in Tables 8 and 9. Table 8 shows the 

test results for scenarios where the traffic volume across the intersection remained constant, 

while Table 9 shows the test results for scenarios where the traffic conditions were changed 

every 20 minute, as depicted in Tables 5-7. The measured performance metric is the average 

delay time for vehicles. 

 

The proposed method performs well overall. In steady traffic, it reduces the average delay time 

by 13.5% to 23.6% compared to the PCT controller, 10.2% to 19.9% compared to the VA 

controller, and 6.5% to 10% compared to the traditional FIS controller. Under varying 

conditions, the improvements ranged from 10.6% to 23.6% with the PCT controller, 10% to 

19.9% with the VA controller, and 5.3% to 14.1% with the traditional FIS controller. 

Interestingly, the proposed mFIS controller can maintain good improvements under heavy 
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traffic conditions (5.3% to 14.1%). This is an improvement from previous FIS research in 

(Pohan, 2019). The advantages of the proposed algorithm lie in restricting vehicles entering 

lanes with high levels of congestion, accelerating the outflow of vehicles from congested areas, 

and using distributed control principles within areas experiencing high traffic volumes. 

 

To illustrate how the improvement percentages in Tables 8 and 9 are calculated, consider the 

example of the 9.3% improvement shown for mFIS compared to FIS. The average waiting time 

for mFIS is 41.3 seconds, while the average waiting time for FIS is 45.6 seconds. By calculating 

the difference between the average waiting time of FIS and mFIS, and then dividing this 

difference by the average waiting time of FIS, we obtain the improvement percentage of mFIS 

over FIS. In this case, the difference is 45.6 - 41.3, which is 4.3 seconds. Dividing 4.3 seconds 

by 45.6 seconds and then multiplying by 100 gives an improvement percentage of 

approximately 9.43%. 

 

TABLE 8. Case 1 average waiting time summary. 

constant 

traffic 

volume 

mFIS FIS VA PCT 
Improvement 

than FIS 

Improvement 

than VA 

Improvement 

than PCT 

600 41.3 45.6 50.5 54.1 9.3% 18.1% 23.6% 

700 46.5 51.7 58.1 59.3 10.0% 19.9% 21.5% 

800 56.6 61.3 66.9 70.3 7.6% 15.3% 19.4% 

900 62.1 66.4 72.4 73.7 6.5% 14.3% 15.8% 

1000 81.2 89.9 94.4 94.3 9.7% 14.1% 13.9% 

1100 91.4 99.3 101.8 105.6 8.0% 10.2% 13.5% 

 

TABLE 9. Case 2 average waiting time summary 

varying 

traffic 

conditions 

mFIS FIS VA PCT 
Improvement 

than FIS 

Improvement 

than VA 

Improvement 

than PCT 

Light 42.8 49.8 51.9 53.9 14.1% 17.5% 20.6% 

Normal  59.0 63.8 69.7 73.1 7.5% 15.4% 19.3% 

Heavy 88.7 93.6 98.5 99.2 5.3% 10.0% 10.6% 

 

To verify the performance improvement of the proposed mFIS algorithm, we conducted a 

statistical analysis of the results of the four algorithms. We explored the statistical significance 

of these performance differences further using an independent samples t-test. Table 10 presents 

the t-test results, specifically providing p-values comparing the mFIS algorithm with the three 

other comparison algorithms. The p-values indicate the level of significance of the observed 

differences between mFIS and the comparison algorithms. A p-value less than the 

predetermined significance level of 0.05 indicates statistically significant performance 

differences between these algorithms. As illustrated in Table 10, the mFIS algorithm shows low 

p-values below the significance threshold when compared to VA and PCT, but the mFIS 

algorithm does not surpass the significance threshold when compared to the FIS algorithm. 

 

TABLE 10. Results of statistical analysis using independent samples t-test (p-values) 

comparing the mFIS algorithm with three other comparison algorithms 

Algoritma p-values 

mFIS compared to FIS 0.631303916 

mFIS compared to VA 0.048524291 

mFIS compared to PCT 0.034291689 
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This reduction in congestion will correlate with a decrease in CO2 emissions and vehicle fuel 

consumption, improving environmental sustainability in urban centres, enhancing the quality 

of urban life, and improving mobility. In addition, it is important to pay attention to other 

measures that can help reduce congestion, such as developing path-planning algorithms that 

can provide the best route for vehicles (Pohan et al., 2024; Mashayekhi et al., 2020; Pohan et 

al., 2021; Aria, 2021; Pohan and Utama, 2023; Rahajoeningroem and Gunastuti, 2024; Pohan 

and Utama, 2024), avoid congestion, and effectively manage overall traffic. By integrating 

smart solutions such as traffic signal optimization and path-planning, we can create a more 

efficient, environmentally friendly and sustainable transportation system for a better future. If 

this research utilizes Type 1 fuzzy logic, future work could explore the use of Type 2 fuzzy 

logic (Pohan et al., 2023; Taufiqurrahman, and Pohan, 2023) as a potential enhancement 

 

Furthermore, the following discussion will address the potential limitations, scalability, real-

world implementation challenges, environmental impacts, and economic impacts of the 

proposed multi-fuzzy inference system (mFIS). While the mFIS demonstrates promising results 

in reducing traffic congestion and vehicle delays, several potential limitations must be 

considered. The system operates under the assumption of ideal traffic flow conditions, perfect 

sensor accuracy, and the absence of external disruptions such as accidents or roadworks. Its 

effectiveness heavily relies on accurate and real-time traffic data; any inaccuracies or delays in 

data can lead to suboptimal signal timings and decreased performance. Additionally, the 

performance of the mFIS can be sensitive to the initial settings of fuzzy rules and membership 

functions. Fine-tuning these parameters is crucial but can be both challenging and time-

consuming. 

 

The scalability of the proposed system has been tested through various traffic conditions, 

including light, medium, and heavy traffic scenarios. This comprehensive evaluation enables a 

thorough assessment of the performance of the proposed fuzzy logic system under diverse 

traffic scenarios, providing valuable insights into its potential real-world implementation and 

efficacy in controlling multiple traffic intersections. 

 

Implementing the mFIS in real-world scenarios presents several challenges. One major 

challenge is the deployment of the necessary hardware, including sensors and controllers, as 

well as the communication infrastructure required in urban environments. Additionally, 

integrating the mFIS with existing traffic management systems and other urban infrastructure 

can be complex and require substantial effort to ensure compatibility and seamless operation. 

Ongoing maintenance and technical support are vital to ensure the continuous operation and 

effectiveness of the mFIS. This includes regular updates, troubleshooting, and system 

optimization to maintain optimal performance. 

 

The environmental impacts of the proposed mFIS are also significant. Reduced air pollution 

can be quantified by estimating the potential reduction in air pollutants such as NOx, CO2, and 

PM2.5 due to decreased traffic congestion and idling. Improved air quality can lead to health 

benefits, including reduced respiratory illnesses and increased life expectancy, supported by 

relevant studies. Additionally, smoother traffic flow may contribute to noise pollution 

reduction. 

 

Economically, the mFIS offers several benefits. Potential fuel savings for drivers can result 

from reduced congestion and idling. Time savings for commuters and commercial vehicles due 

to improved traffic flow can be quantified in economic terms, reflecting increased productivity 

and reduced transportation costs. Moreover, improved traffic flow can positively impact 
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economic growth and development by attracting businesses and improving accessibility to 

goods and services. 

 

To further enhance the mFIS and address its current limitations, several specific future research 

directions are proposed. Integrating Internet of Things (IoT) technologies, including Vehicle-

to-Everything (V2X) communication, can improve sensor accuracy and mitigate external 

disruptions such as accidents or roadworks, addressing the reliance on accurate and real-time 

traffic data. Additionally, exploring the incorporation of machine learning algorithms can 

optimize signal timings based on real-time data patterns, making the system more adaptive and 

efficient. Other potential research directions include investigating the integration of the mFIS 

with multi-modal transportation systems, such as public transit, biking, and walking, to 

optimize overall urban mobility. Another important area is energy efficiency, where research 

can explore optimizing traffic signals to minimize energy consumption for both vehicles and 

traffic signal infrastructure. Furthermore, a more in-depth analysis of the environmental impacts 

of the mFIS system should be conducted, focusing on the potential for reducing greenhouse gas 

emissions and improving air quality. 

 

CONCLUSION 

 

This paper has proposed a traffic control system using multi-fuzzy inference systems (mFIS) 

to control multiple adjacent intersections with dynamic phasing to optimize vehicle 

movements, both straight and turn right. The controller not only manages local traffic but also 

cooperates with their neighbours, from which the controller gets information in addition to the 

detectors. The mFIS system optimizes the traffic light settings based on the length of the 

vehicle queue, the duration of the vehicle stopping time, the number of vehicles in front of the 

lane, and the number of vehicles entering the lane. The FIS will determine the direction of 

vehicle flow at an intersection and the length of time. mFIS can select 20 alternative forms of 

vehicle flow at an intersection. The results obtained from the application of mFIS in the 

microscopic traffic simulator found that the proposed controller shows the proposed algorithm 

can reduce congestion levels in areas with high congestion levels compared to the comparison 

algorithm. The advantages of the proposed algorithm lie in restricting vehicles entering high-

congestion lanes, speeding up the outflow of vehicles from congested areas, and using 

distributed control principles within areas experiencing high traffic volumes. This reduction in 

congestion levels will correlate with a decrease in CO2 emissions and vehicle fuel 

consumption, which will improve environmental sustainability in city centres, enhance the 

quality of urban life, and improve mobility. 
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