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ABSTRACT

Surging urbanization and vehicle emissions exacerbate traffic congestion in major cities,
leading to increased air pollution and high gasoline emissions as traditional traffic signal
systems fail to adapt to real-time traffic conditions. To address this critical issue, this research
proposes an innovative traffic control strategy using multi-fuzzy inference systems (mFIS)
distributed at adjacent intersections in areas experiencing high traffic volumes. These
distributed traffic light control systems collaborate to reduce congestion gradually in areas of
high congestion. The mFIS system optimizes the traffic light settings based on the length of
the vehicle queue, the duration of the vehicle stopping time, the number of vehicles in front of
the lane, and the number of vehicles entering the lane. Our simulations demonstrated that the
proposed mFIS controller effectively reduced average vehicle delay by up to 23.6% compared
to the Proportional-Integral-Derivative (PCT) controller, 19.9% compared to the Variable
Speed (VA) controller, and 14.1% compared to the traditional Fuzzy Logic System (FIS)
controller. This significant performance improvement was consistently observed across
various traffic conditions, including heavy traffic scenarios. The advantages of the proposed
algorithm lie in restricting vehicles entering high-congestion lanes, speeding up the outflow of
vehicles from congested areas, and using distributed control principles within areas
experiencing high traffic volumes. Therefore, the algorithm in this study has the potential to be
further developed to help reduce traffic congestion in big cities; thus, it can be a sustainable
solution to create cleaner, healthier, and more sustainable cities in the future.

Keywords: Multi-Fuzzy Inference System, air pollution, sustainable solution, traffic signal
optimization, distributed control.

ABSTRAK

Peningkatan urbanisasi dan pelepasan kenderaan memburukkan lagi kesesakan lalu lintas di
bandar besar, membawa kepada peningkatan pencemaran udara dan pelepasan petrol yang
tinggi kerana sistem isyarat trafik tradisional gagal menyesuaikan diri dengan keadaan trafik
masa nyata. Untuk menangani isu kritikal ini, kajian ini mencadangkan strategi kawalan trafik
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yang inovatif menggunakan sistem inferensi multi-fuzzy (mFIS) yang diedarkan
dipersimpangan bersebelahan di kawasan yang mengalami jumlah trafik yang tinggi. Sistem
kawalan lampu isyarat yang diedarkan ini bekerjasama untuk mengurangkan kesesakan secara
beransur-ansur di kawasan kesesakan tinggi. Sistem mFIS mengoptimumkan tetapan lampu
isyarat berdasarkan panjang giliran kenderaan, tempoh masa berhenti kenderaan, bilangan
kenderaan di hadapan lorong dan bilangan kenderaan yang memasuki lorong. Simulasi kami
menunjukkan bahawa pengawal mFIS yang dicadangkan berkesan mengurangkan kelewatan
kenderaan purata sebanyak 23.6% berbanding dengan pengawal Proportional-Integral-
Derivative (PCT), 19.9% berbanding dengan pengawal Variable Speed (VA) dan 14 .1 %
berbanding dengan pengawal Sistem Logik Kabur (FIS) tradisional. Peningkatan prestasi yang
ketara ini diperhatikan secara konsisten merentas pelbagai keadaan trafik, termasuk senario
trafik yang padat. Kelebihan algoritma yang dicadangkan terletak pada mengehadkan
kenderaan yang memasuki lorong dengan ketumpatan tinggi, mempercepatkan aliran keluar
kenderaan dari kawasan sesak, dan menggunakan prinsip kawalan teragih di kawasan yang
mengalami jumlah trafik yang tinggi. Oleh itu, algoritma dalam kajian ini berpotensi untuk
dikembangkan lagi bagi membantu mengurangkan kesesakan lalu lintas di bandar-bandar
besar; oleh itu, algoritma ini boleh menjadi penyelesaian yang mampan untuk mewujudkan
bandar yang lebih bersih, sihat dan lebih mampan pada masa hadapan.

Kata kunci: Sistem Inferensi Multi-Fuzzy, pencemaran udara, penyelesaian mampan,
pengoptimuman isyarat lalu lintas, kawalan teragih.

INTRODUCTION

Surging urbanization and increasing vehicle emissions have become critical global challenges
in major cities, including Jakarta, Indonesia (Prastiyo et al., 2020 ; Damayanti and Suryanto,
2022). In Jakarta alone, there is an average of 60 minutes of traffic congestion every day,
causing economic losses estimated at two billion USD per year (Sahara and Nugroho, 2023;
Saraswati and Adi, 2022; Syafey and Putra, 2023). These losses include wasted fuel costs, lost
productive time, and health impacts due to air pollution. Air pollution alone causes at least 3.7
million premature deaths annually worldwide (Sudaryanto et al., 2022; Maizara et al., 2024),
emphasizing the importance of effective traffic management.

Traditional fixed-time traffic control systems, which are commonly used in many cities, need
to be upgraded to adapt to dynamic traffic conditions (Atta et al., 2018; Essa and Sayed, 2020;
Permana et al., 2020; Ujianto, 2022). Often, fixed-time traffic control systems have difficulty
coping with the high variability of traffic demand, resulting in suboptimal use of green signal
duration in each cycle (Muong et al., 2021). To overcome this drawback, intelligent traffic
signal control systems such as Fuzzy Inference Systems (FIS) (Aria, 2019) and Artificial
Neural Networks (ANN) (Hong et al., 2022) are emerging as promising alternatives.

Traffic signal control has shown significant progress with the application of Artificial
Intelligence (Al) techniques. Traditional approaches based on fixed timing control, such as
those outlined in Webster's formula (Ali et al., 2021), are still in use but have difficulty
adjusting to real-time traffic variations. In contrast, modern approaches utilize Al to
dynamically adjust signal timing, which has been shown to improve traffic control efficiency.

Fuzzy logic offers a powerful approach to managing uncertainty in traffic flow. Its ability to
translate expert knowledge into control decisions has proven to be effective in reducing vehicle
waiting times compared to fixed-time control. For example, research conducted by Van et al.
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(2020) showed that fuzzy logic systems are capable of reducing vehicle waiting times. In
addition, multi-stage fuzzy logic systems with optimization algorithms show promising results,
especially in heavy traffic situations, as conducted by Mahmood et al. (2019) and Jiang et al.
(2021)

Neuro-fuzzy systems, which combine fuzzy logic with neural networks, offer a data-driven
approach to traffic control. Research conducted by Vuong et al. (2021) has illustrated the
potential of these systems in optimizing traffic light sequencing and control. In addition,
various other Al algorithms, such as Petri-nets, Bee Colony Optimization, and deep
reinforcement learning, have shown potential in optimizing traffic flow (Luo et al., 2020; Hao
et al., 2018; Kodama et al., 2022; Bokade et al., 2023; Zhu et al., 2022). These algorithms
performed better than traditional fixed-time control and other optimization algorithms in
simulation studies.

Although Al-based approaches offer significant advantages, there are still limitations. Most
studies focus on isolated intersections, so implementation in complex urban traffic networks
still requires further research. Therefore, to fill the gap in adaptive traffic signal control systems
for complex mixed traffic flows, this study proposes an adaptive signal control method using
multi-FIS (mFIS) for complex intersections with dynamic phasing to optimize vehicle
movements, both straight and right turns.

In the proposed mFIS, a fuzzy system is installed at each intersection and can communicate
with other fuzzy systems at adjacent intersections. The mFIS system optimizes the traffic light
settings based on the length of the vehicle queue, the duration of the vehicle stopping time, the
number of vehicles on the opposite side of the lane, and the number of vehicles entering the
lane.

The performance of the proposed method is compared with Preset-Cycle-Times (PCT) control,
Vehicle-Actuated (VA) control, and traditional FIS (FIS without cooperation between
controllers at adjacent intersections). The tests were conducted through a microscopic traffic
simulator.

The rest of the paper is organized as follows: Section Il presents the details of the proposed
method. The simulation experiments are given in Section Ill, and Section IV concludes the
paper with conclusions.

RELATED WORK

Significant research has been conducted in the field of adaptive traffic signal control. Since
Webster introduced the optimal cycle formula for delay minimization in 1958, it has become a
standard for controlling fixed-time traffic signals at isolated intersections. However, its
application is limited to using historical data to calculate the optimal cycle in fixed-time signal
systems. Several modifications to Webster's formula have been proposed, including those by
Wolput et al. (2016) and Zakariya and Rabia (2016).

Fuzzy logic has been widely applied in traffic signal control systems. Van et al. (2020)
proposed a two-phase fuzzy traffic signal control system for mixed traffic conditions, where
green time is determined by queue length and arrival rate. Garg and Kaushal (2017) integrated
wireless sensor networks into fuzzy traffic control, reducing waiting times during heavy traffic.
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Shiri and Maleki (2017) applied fuzzy logic to determine the maximum green time based on
real-time traffic flow.

Alam (2015) proposed a two-stage fuzzy logic-based traffic light system for isolated
intersections, using two modules: the Traffic Urgency Decision Module (TUDM) and the Time
Extension Decision Module (ETDM). Similarly, Mahmood et al. (2019) proposed a system to
reduce the average waiting time for vehicles. Jiang et al. (2021) developed an optimized version
using a differential evolution algorithm to improve fuzzy rules. In addition to pure fuzzy logic,
neuro-fuzzy systems have also been applied in traffic control. Udofia et al. (2014) proposed an
adaptive neuro-fuzzy inference system (ANFIS) model to determine the phase sequence of
traffic signals at isolated intersections.

While Al-based approaches offer significant advantages, there are still limitations. Most
studies focus on isolated intersections, and implementation in complex urban traffic networks
requires further research. To address this gap in adaptive traffic signal control systems for
complex mixed traffic flows, this study proposes an adaptive signal control method using
multi-FIS (mFIS) for complex intersections with dynamic phasing to optimize vehicle
movements, including straight and right turns.

METHODOLOGY
VEHICLES SENSORS

Two detectors, rear and front, are used to count the number of vehicles in a lane. The rear
detector, placed behind the lane, increases the vehicle count when it detects a vehicle (grey
boxes in Figure 1), while the front detector, located near the intersection, decreases it when it
detects a vehicle (black boxes in Figure 1). The outermost lane is for left-turning vehicles, the
center lane is for straight vehicles, and the inner lane is for right-turning vehicles.
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FIGURE 1. Example position of the vehicles sensors.
CONTROLLER SYSTEM OVERVIEW: MULTI-FUZZY INFERENCES SYSTEMS

The proposed controller is a multi-fuzzy inference system (mFIS) to control multiple adjacent
intersections with dynamic phasing to optimize vehicle movements, both straight and right
turns, in areas of high congestion. The controllers not only manage local traffic but also
collaborate with their neighbours. The mFIS system optimizes the traffic light settings based
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on the length of the vehicle queue, the duration of vehicle stopping time, the number of vehicles
in the opposite lane, and the number of vehicles entering the lane. The FIS will determine the
direction of vehicle flow at the intersection and the time length of that flow adaptively based
on traffic conditions. In this study, we propose four FIS inputs and the use of 20 alternative
vehicle flow forms at the intersection, an increase from the previous study (Pohan, M.A.R.
2019), which only used three FIS inputs and 16 alternative vehicle flow forms at the
intersection. Three FIS modules were used, namely the green phase module, the red phase
module, and the decision module.

THE GREEN PHASE MODULE

The green phase module calculates the degree of urgency to extend the green phase time based
on the length of the vehicle queue (QueueNum), the number of vehicles in front of the lane
(FrontNum), and the number of vehicles entering the lane (ArrivalNum). This module
generates the ExtendDegree, which is the degree of urgency to extend the green phase. When
there is more than one traffic flow with a green phase, this module evaluates the extension
degree of each flow. The minimum value of all these extension levels becomes the
ExtendDegree value for that phase.

For example, for intersection conditions with east to west and west to east vehicle flows, the
ExtendDegree for east-to-west (EW) traffic is calculated based on QueueNum(EW),
FrontNum(EW), and ArrivalNum(E). A similar process is applied for west-to-east (WE) traffic,
resulting in ExtendDegree(WE). The minimum value of ExtendDegree(EW) and
ExtendDegree(WE) becomes the ExtendDegree for that phase. The membership function
parameters for the Green Phase Module inputs are shown at Table 1. The Capacity variable in
Table 1 indicates the maximum capacity of vehicles that can occupy the lane.

TABLE 1. Membership function parameters for the Green Phase Module inputs

Triangular Membership Function Parameters

Linguistic Variable  Linguistic Value

a B c
Zero 0 0 0
Small —1/3 Capacity 0 1/3 Capacity
QueueNum Medium 0 1/3 Capacity 2/3 Capacity
Large 1/3 Capacity 2/3 Capacity Full Capacity
Very Large 2/3 Capacity Full Capacity 10000
Zero 0 0 0
Small —1/3 Capacity 0 1/3 Capacity
FrontNum Medium 0 1/3 Capacity 2/3 Capacity
Large 1/3 Capacity 2/3 Capacity Full Capacity
Very Large 2/3 Capacity Full Capacity 10000
Zero 0 0 0
Small —1/3 Capacity 0 1/3 Capacity
ArrivalNum Medium 0 1/3 Capacity 2/3 Capacity
Large 1/3 Capacity 2/3 Capacity Full Capacity
Very Large 2/3 Capacity Full Capacity 10000
Small -1 0 1
Medium 0 1 2
ExtendDegree Large 1 5 3
Very Large 2 3 4

In the theory of Fuzzy Logic and Fuzzy Inference Systems, a Linguistic Variable is a variable
whose values are words or sentences in a natural or artificial language rather than numerical
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values. Linguistic Values are the possible values that a linguistic variable can take, usually
expressed as fuzzy sets that represent the degree of membership of an element within a set.
Triangular Membership Function Parameters define the shape of the triangular membership
functions used to represent these fuzzy sets. These functions are characterized by three
parameters: the lower limit (a), the peak (b), and the upper limit (c), forming a triangular shape.
This structure helps in defining how the degree of membership rises from zero to its maximum
value at the peak and then falls back to zero. For further explanation on “Linguistic Variable,”
“Linguistic Values,” and “Triangular Membership Function Parameters” in the theory of Fuzzy
Logic and Fuzzy Inference Systems, readers can refer to literature such as (Lee, 2021; Dubois
and Prade, 2012; Lowen, 2012).

This module consists of 125 rules. The example rules for the Green Phase Module are shown
at Table 2. The urgency of the phase will decrease if QueueNum is small. An increase in the
number of vehicles at the intersection ahead (FrontNum) will also reduce the QueueNum level.
As the number of arriving vehicles (ArrivalNum) increases, the QueueNum value will increase.

TABLE 2. Example Rules for the Green Phase Module

Input Variable Output
QueueNum FrontNum ArrivalNum ExtendDegree

Zero Small Zero Zero
Small Small Zero Small

Medium Small Zero Medium
Large Small Zero Large
Zero Large Zero Zero
Small Large Zero Small
Medium Large Zero Small
Large Large Zero Small
Zero Small Large Small
Small Small Large Small
Medium Small Large Small

Large Small Large Medium

THE RED PHASE MODULE

The decision module, which receives inputs from the red phase module (PhaseUrgency) and
green phase module (ExtendDegree), is in charge of determining the change or extension of the
green signal. When PhaseUrgency exceeds ExtendDegree, it indicates that the traffic on the
other lane is heavier than the lane that is currently green. The module then gives green signal
priority to the phase with the highest PhaseUrgency.This module has four inputs: the length of
the vehicle queue (QueueNum), the number of vehicles in front of the lane (FrontNum), the
number of vehicles entering the lane (ArrivalNum), and the duration of the vehicle stopping
time (RedTime), which is the duration of the vehicle waiting due to the red signal. Fuzzy rules
are created for the red phase module, where PhaseUrgency increases according to the increase
of QueueNum, RedTime, and ArrivalNum, but decreases if FrontNum increases. Examples of
fuzzy rules for this module and membership function parameters for FrontNum can be seen in
Tables 3 and 4. The value of the membership function parameters of Urgency is the same as
ExtendDegree.
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TABLE 3. Example Rules for the Red Phase Module

Input Variable Output
QueueNum FrontNum ArrivalNum RedTime Urgency
Zero Small Zero Medium Zero
Small Small Zero Medium Small
Medium Small Zero Medium Medium
Large Small Zero Medium Large
Zero Large Zero Medium Zero
Small Large Zero Medium Small
Medium Large Zero Medium Small
Large Large Zero Medium Small
Zero Small Zero Very Long Zero
Small Small Zero Very Long Large
Medium Small Zero Very Long Very Large
Large Small Zero Very Long Very Large
Zero Small Large Medium Zero

TABLE 4. Membership function parameters for RedTime

Linguistic Variable Linguistic Triangular Membership Function Parameters
Value A b c
Zero -60 0 60
Short 0 60 120
Long 120 180 240
Very Long 180 240 10000

THE DECISION MODULE

The input of the Decision Module is the output of the Red Phase Module (PhaseUrgency) and
the Green Phase Module (ExtendDegree). This module will decide whether to change or
extend the green signal. If PhaseUrgency is higher than ExtendDegree, then traffic conditions
on other lanes need to be prioritized for advancement over the current green phase. Therefore,
this module will give the green signal to the phase with the highest PhaseUrgency value.

PROPOSAL OF ALTERNATIVE SIGNAL PHASE

The FIS will determine the direction of vehicle flow at an intersection and the length of time.
It can select 20 alternative forms of vehicle flow at an intersection (see Figure. 2). The FIS
adaptively selects the phase to be activated by adjusting to the existing traffic density. Figure
3 showcases a sample controller schematic diagram. It represents a situation where phase 1 of
Figure 2 is presently in the green state.
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FIGURE 2. Alternative forms of vehicle flow at an intersection.
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FIGURE 3. Example of a controller schematic diagram when phase 1 in Figure 2 is in the
green phase.

RESULTS AND DISCUSSION

In this study, experiments were conducted using a microscopic traffic simulator to evaluate the
performance of the proposed multi-fuzzy inference systems (mFIS) based traffic signal control
system. The simulation environment was set up using the SUMO (Simulation of Urban
MObility) traffic simulation software, which allows for realistic traffic flow simulations. The
test area comprised an urban road network with multiple intersections experiencing high traffic
volumes. Each simulation scenario was run for 1 hours of simulation time to obtain consistent
and representative results. The mFIS system regulated the green light duration based on various
parameters, including queue length, vehicle stop duration, the number of vehicles ahead in the
lane, and the number of vehicles entering the lane. Additionally, each fuzzy system at an
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intersection could communicate with fuzzy systems at adjacent intersections to collaboratively
optimize traffic flow.

We compared the proposed controller with the PCT, VA, and traditional FIS (Pohan, 2019)
(FIS without cooperation between controllers at adjacent intersections) through simulations
conducted across nine different traffic conditions. Initially, we explored scenarios where the
traffic volume across the intersection remained constant at various levels: 600, 700, 800, 900,
1000, and 1100 vehicles per hour. After that, traffic conditions were changed every 20 minutes,
including light, normal, and heavy traffic conditions. Table 5-7 presents the breakdown of
vehicle counts for light, medium, and heavy traffic conditions across the four input links. Such
a comprehensive evaluation enables a thorough assessment of the performance of the proposed
fuzzy logic system under various traffic scenarios, which provides valuable insights for its
potential real-world implementation and efficacy in controlling multiple traffic intersections.

TABLE 5. Vehicle volume in light traffic conditions.

Time (minutes)

0-20 20-40 40-60 60-80
North 700 600 600 400
East 700 500 500 700
South 700 600 500 700
West 700 600 500 700

TABLE 6. Vehicle volume in medium traffic conditions.

Time (minutes)
0-20 20-40 40-60 60-80

North 900 950 750 950
East 850 800 900 750
South 900 800 900 750
West 900 800 950 900

TABLE 7. Vehicle volume in heavy traffic conditions.

Time (minutes)

0-20 20-40 40-60 60-80

North 1100 1050 1050 1100
East 1100 1000 1000 1000

South 1100 1000 1100 1100
West 1100 1000 1000 1100

The results of the tests for these scenarios are presented in Tables 8 and 9. Table 8 shows the
test results for scenarios where the traffic volume across the intersection remained constant,
while Table 9 shows the test results for scenarios where the traffic conditions were changed
every 20 minute, as depicted in Tables 5-7. The measured performance metric is the average
delay time for vehicles.

The proposed method performs well overall. In steady traffic, it reduces the average delay time
by 13.5% to 23.6% compared to the PCT controller, 10.2% to 19.9% compared to the VA
controller, and 6.5% to 10% compared to the traditional FIS controller. Under varying
conditions, the improvements ranged from 10.6% to 23.6% with the PCT controller, 10% to
19.9% with the VA controller, and 5.3% to 14.1% with the traditional FIS controller.
Interestingly, the proposed mFIS controller can maintain good improvements under heavy
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traffic conditions (5.3% to 14.1%). This is an improvement from previous FIS research in
(Pohan, 2019). The advantages of the proposed algorithm lie in restricting vehicles entering
lanes with high levels of congestion, accelerating the outflow of vehicles from congested areas,
and using distributed control principles within areas experiencing high traffic volumes.

To illustrate how the improvement percentages in Tables 8 and 9 are calculated, consider the
example of the 9.3% improvement shown for mFIS compared to FIS. The average waiting time
for mFIS is 41.3 seconds, while the average waiting time for FIS is 45.6 seconds. By calculating
the difference between the average waiting time of FIS and mFIS, and then dividing this
difference by the average waiting time of FIS, we obtain the improvement percentage of mFIS
over FIS. In this case, the difference is 45.6 - 41.3, which is 4.3 seconds. Dividing 4.3 seconds
by 45.6 seconds and then multiplying by 100 gives an improvement percentage of
approximately 9.43%.

TABLE 8. Case 1 average waiting time summary.

constant Improvement Improvement Improvement
Vtg"i‘fr'rfe mEIS - FIS VA PCT than FIS than VA than PCT
600 41.3 45.6 50.5 54.1 9.3% 18.1% 23.6%
700 46.5 51.7 58.1 59.3 10.0% 19.9% 21.5%
800 56.6 61.3 66.9 70.3 7.6% 15.3% 19.4%
900 62.1 66.4 72.4 73.7 6.5% 14.3% 15.8%
1000 81.2 89.9 94.4 94.3 9.7% 14.1% 13.9%
1100 91.4 99.3 101.8 105.6 8.0% 10.2% 13.5%
TABLE 9. Case 2 average waiting time summary
Vt?g;?cg mEIS FIS VA PCT Improvement Improvement Improvement
conditions than FIS than VA than PCT
Light 42.8 49.8 51.9 53.9 14.1% 17.5% 20.6%
Normal 59.0 63.8 69.7 73.1 7.5% 15.4% 19.3%
Heavy 88.7 93.6 98.5 99.2 5.3% 10.0% 10.6%

To verify the performance improvement of the proposed mFIS algorithm, we conducted a
statistical analysis of the results of the four algorithms. We explored the statistical significance
of these performance differences further using an independent samples t-test. Table 10 presents
the t-test results, specifically providing p-values comparing the mFIS algorithm with the three
other comparison algorithms. The p-values indicate the level of significance of the observed
differences between mFIS and the comparison algorithms. A p-value less than the
predetermined significance level of 0.05 indicates statistically significant performance
differences between these algorithms. As illustrated in Table 10, the mFIS algorithm shows low
p-values below the significance threshold when compared to VA and PCT, but the mFIS
algorithm does not surpass the significance threshold when compared to the FIS algorithm.

TABLE 10. Results of statistical analysis using independent samples t-test (p-values)
comparing the mFIS algorithm with three other comparison algorithms

Algoritma p-values
mFIS compared to FIS 0.631303916
mFIS compared to VA 0.048524291

mFIS compared to PCT 0.034291689
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This reduction in congestion will correlate with a decrease in CO2 emissions and vehicle fuel
consumption, improving environmental sustainability in urban centres, enhancing the quality
of urban life, and improving mobility. In addition, it is important to pay attention to other
measures that can help reduce congestion, such as developing path-planning algorithms that
can provide the best route for vehicles (Pohan et al., 2024; Mashayekhi et al., 2020; Pohan et
al., 2021; Aria, 2021; Pohan and Utama, 2023; Rahajoeningroem and Gunastuti, 2024; Pohan
and Utama, 2024), avoid congestion, and effectively manage overall traffic. By integrating
smart solutions such as traffic signal optimization and path-planning, we can create a more
efficient, environmentally friendly and sustainable transportation system for a better future. If
this research utilizes Type 1 fuzzy logic, future work could explore the use of Type 2 fuzzy
logic (Pohan et al., 2023; Taufiqurrahman, and Pohan, 2023) as a potential enhancement

Furthermore, the following discussion will address the potential limitations, scalability, real-
world implementation challenges, environmental impacts, and economic impacts of the
proposed multi-fuzzy inference system (mFIS). While the mFIS demonstrates promising results
in reducing traffic congestion and vehicle delays, several potential limitations must be
considered. The system operates under the assumption of ideal traffic flow conditions, perfect
sensor accuracy, and the absence of external disruptions such as accidents or roadworks. Its
effectiveness heavily relies on accurate and real-time traffic data; any inaccuracies or delays in
data can lead to suboptimal signal timings and decreased performance. Additionally, the
performance of the mFIS can be sensitive to the initial settings of fuzzy rules and membership
functions. Fine-tuning these parameters is crucial but can be both challenging and time-
consuming.

The scalability of the proposed system has been tested through various traffic conditions,
including light, medium, and heavy traffic scenarios. This comprehensive evaluation enables a
thorough assessment of the performance of the proposed fuzzy logic system under diverse
traffic scenarios, providing valuable insights into its potential real-world implementation and
efficacy in controlling multiple traffic intersections.

Implementing the mFIS in real-world scenarios presents several challenges. One major
challenge is the deployment of the necessary hardware, including sensors and controllers, as
well as the communication infrastructure required in urban environments. Additionally,
integrating the mFIS with existing traffic management systems and other urban infrastructure
can be complex and require substantial effort to ensure compatibility and seamless operation.
Ongoing maintenance and technical support are vital to ensure the continuous operation and
effectiveness of the mFIS. This includes regular updates, troubleshooting, and system
optimization to maintain optimal performance.

The environmental impacts of the proposed mFIS are also significant. Reduced air pollution
can be quantified by estimating the potential reduction in air pollutants such as NOx, CO2, and
PM2.5 due to decreased traffic congestion and idling. Improved air quality can lead to health
benefits, including reduced respiratory illnesses and increased life expectancy, supported by
relevant studies. Additionally, smoother traffic flow may contribute to noise pollution
reduction.

Economically, the mFIS offers several benefits. Potential fuel savings for drivers can result
from reduced congestion and idling. Time savings for commuters and commercial vehicles due
to improved traffic flow can be quantified in economic terms, reflecting increased productivity
and reduced transportation costs. Moreover, improved traffic flow can positively impact
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economic growth and development by attracting businesses and improving accessibility to
goods and services.

To further enhance the mFIS and address its current limitations, several specific future research
directions are proposed. Integrating Internet of Things (l1oT) technologies, including Vehicle-
to-Everything (V2X) communication, can improve sensor accuracy and mitigate external
disruptions such as accidents or roadworks, addressing the reliance on accurate and real-time
traffic data. Additionally, exploring the incorporation of machine learning algorithms can
optimize signal timings based on real-time data patterns, making the system more adaptive and
efficient. Other potential research directions include investigating the integration of the mFIS
with multi-modal transportation systems, such as public transit, biking, and walking, to
optimize overall urban mobility. Another important area is energy efficiency, where research
can explore optimizing traffic signals to minimize energy consumption for both vehicles and
traffic signal infrastructure. Furthermore, a more in-depth analysis of the environmental impacts
of the mFIS system should be conducted, focusing on the potential for reducing greenhouse gas
emissions and improving air quality.

CONCLUSION

This paper has proposed a traffic control system using multi-fuzzy inference systems (mFIS)
to control multiple adjacent intersections with dynamic phasing to optimize vehicle
movements, both straight and turn right. The controller not only manages local traffic but also
cooperates with their neighbours, from which the controller gets information in addition to the
detectors. The mFIS system optimizes the traffic light settings based on the length of the
vehicle queue, the duration of the vehicle stopping time, the number of vehicles in front of the
lane, and the number of vehicles entering the lane. The FIS will determine the direction of
vehicle flow at an intersection and the length of time. mFIS can select 20 alternative forms of
vehicle flow at an intersection. The results obtained from the application of mFIS in the
microscopic traffic simulator found that the proposed controller shows the proposed algorithm
can reduce congestion levels in areas with high congestion levels compared to the comparison
algorithm. The advantages of the proposed algorithm lie in restricting vehicles entering high-
congestion lanes, speeding up the outflow of vehicles from congested areas, and using
distributed control principles within areas experiencing high traffic volumes. This reduction in
congestion levels will correlate with a decrease in CO2 emissions and vehicle fuel
consumption, which will improve environmental sustainability in city centres, enhance the
quality of urban life, and improve mobility.
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