Asia-Pacific Journal of Information Technology and Multimedia 14(1) 2025: 339 — 350
https://doi.org/10.17576/apjitm-2025-1401-19

Exploring DevOps Metrics: A Study on Code Maintainability and DevOps
Deployment Practices

Penerokaan Metrik DevOps: Kajian tentang Kebolehselenggaraan Kod dan
Amalan Penyebaran DevOps

Sharifah Mashita Syed-Mohamad*, Norsyazwani M. Subri,
Masita @ Masila Abdul Jalil, Amir Ngah, Najihah Ibrahim

Faculty of Computer Science and Mathematics, Universiti Malaysia Terengganu, 21030
Kuala Nerus, Terengganu, Malaysia

*Corresponding author: s.mashita@umt.edu.my

Received 12 September 2024
Accepted 27 May 2025, Available online 30 June 2025

ABSTRACT

This study explores the crucial role of software maintainability metrics in DevOps
environments, where rapid and continuous delivery is paramount. By investigating the
correlation between deployment frequency, code churn rates, and code maintainability using
commonly used DORA metrics, we aim to shed light on the intersection of DevOps practices
and code maintainability. Analysing these metrics provides valuable insights into the evolution
and maintenance of the JUnit 5 codebase within DevOps practices. Our findings reveal a
consistent deployment frequency, showcasing the team's ability to maintain a steady release
pattern. The codebase demonstrates steady growth with notable additions and deletions
between releases, with indications of stabilization and bug fixing before major releases. The
high frequency of commits reflects an active development process. Despite the codebase’s
growth, stable complexity levels were maintained, emphasizing the importance of managing
code quality metrics. Pearson correlation analysis reveals a strong positive correlation (R =
0.9887) between code complexity and codebase changes, underscoring the need to balance
both for quality maintenance. The study emphasizes the project's commitment to quality and
stability within DevOps, emphasizing the need for ongoing vigilance.

Keywords: DevOps, DevOps metrics, Deployment frequency, Code maintainability, Code
complexity

ABSTRAK

Kajian ini meneroka peranan penting metrik penyelenggaraan perisian dalam persekitaran
DevOps, di mana penghantaran yang pantas dan berterusan adalah keutamaan. Dengan
menyiasat hubungan antara kekerapan penyebaran, kadar perubahan kod, dan penyelenggaraan
kod menggunakan metrik DORA yang biasa digunakan, tujuan kami untuk memberi
penerangan mengenai persilangan antara amalan DevOps dan kebolehselenggaraan kod.

340

Analisa metrik ini memberikan pandangan yang berharga tentang evolusi dan
kebolehselenggaraan pangkalan kod JUnit 5 dengan amalan DevOps. Penemuan kami
mendedahkan kekerapan penyebaran yang konsisten menunjukkan keupayaan pasukan untuk
mengekalkan corak pengeluaran yang baik. Pangkalan kod menunjukkan pertumbuhan yang
stabil dengan penambahan dan penghapusan yang ketara antara keluaran, dengan petunjuk
penstabilan dan pembaikan pepijat sebelum keluaran utama. Kekerapan komit yang tinggi
mencerminkan proses pembangunan yang aktif. Walaupun pangkalan kod berkembang, tahap
kerumitan yang stabil dikekalkan, menekankan kepentingan pengurusan metrik kualiti kod.
Analisis korelasi Pearson mendedahkan korelasi positif yang kuat (R = 0.9887) antara
kerumitan kod dan perubahan pangkalan kod, menekankan keperluan untuk mengimbangi
kedua-duanya bagi penyelenggaraan kualiti. Kajian ini menekankan komitmen projek terhadap
kualiti dan kestabilan dalam DevOps, serta keperluan untuk kewaspadaan berterusan.

Kata kunci: DevOps, Metrik DevOps, Kekerapan penyebaran, Kebolehselenggaraan kod,
Kerumitan kod

INTRODUCTION

DevOps is a software development and operations strategy that combines the efforts of
development (Dev) and operations (Ops) teams to accelerate product creation and simplify
maintenance. It emphasizes collaboration, automation, and adherence to best practices to
facilitate faster and more controlled development cycles (Azad & Hyrynsalmi, 2023). Firstly,
DevOps enables faster development and deployment of software through practices like
continuous integration (CI) and continuous delivery (CD). Organizations can release new
features and updates more frequently, reducing time-to-market and gaining a competitive edge.
Secondly, DevOps promotes improved collaboration and communication among teams by
breaking down silos and fostering a culture of collaboration, shared responsibilities, and
alignment towards common goals (Bezemer et al., 2019), (Gasparaite et al., 2020), (Arvind,
2022).

The continuous nature of DevOps highlights the importance of maintainability, as highly
maintainable code supports rapid development and deployment cycles. However, ensuring
continuous maintainability poses challenges that need to be addressed to sustain the efficiency
and effectiveness of DevOps practices (Azad & Hyrynsalmi, 2023), (Bezemer et al., 2019),
(Riungu-Kalliosaari et al., 2016), (Lwakatare et al., 2019). Despite the emphasis on continuous
improvement in DevOps, there seems to be limited information available specifically
addressing code maintainability within DevOps initiatives. Understanding and addressing this
gap is crucial for optimizing software development processes and ensuring long-term success
in DevOps environments (A. Meier, 2021), (Mohammad Zarour et al., 2020).

This study investigates the relationship between DevOps metrics, specifically deployment
frequency and key indicators of code maintainability, including code churn rates and code
complexity. The primary objective is to evaluate how these metrics collectively influence
software maintainability within DevOps-based projects. To this end, a widely used and actively
maintained open-source project has been selected as a representative case study. By analyzing
these metrics, the study aims to enhance understanding of how DevOps practices impact code
maintainability and to offer empirical insights that can inform efforts to optimize software
development processes in DevOps environments.

This article begins with an overview of the background and related work, setting the stage for
the study's context. Following this, the methodology is detailed in Section 3, outlining the

341

approach taken to conduct the research. Section 4 delves into the analysis of collected data and
presents key findings derived from the study. Finally, the article culminates in Section 5, where
conclusions drawn from the analysis are summarized and discussed, providing insights and
implications for further research and practice.

RELATED WORKS

A DevOps metric is a "quantifiable, business-relevant, trustworthy, actionable, and traceable
indicator that aids organizations in making data-driven decisions to continuously improve their
DevOps and software delivery processes” (Amaro et al., 2024). Amaro, Ricardo, and Pereira
(2024) identify 22 key DevOps metrics through a comprehensive multivocal literature review,
categorizing them as Key Performance Indicators (KPIs). These metrics primarily focus on
assessing the performance and effectiveness of DevOps practices, with a particular emphasis
on deployment. The metrics are largely deployment-centric, with the top four consistently
highlighted in various publications being Time to Restore Service, Lead Time for Changes,
Deployment Frequency, and Change Failure Rate. These core metrics are essential for
evaluating and enhancing the continuous delivery and operational stability of software
systems.

Furthermore, the four key metrics established by the DevOps Research and Assessment
(DORA) framework, developed by Google's DORA team, serve as essential indicators of the
efficiency of DevOps teams in terms of velocity and reliability (Wickramasinghe, 2023). These
metrics, derived from extensive research over seven years on the principles and practical
implementations of DevOps, provide a robust foundation for assessing performance
(Wickramasinghe, 2023). Figure 1 illustrates the software deployment performance indicator
based on the DORA metrics. Studies have shown that companies excelling in these metrics
often demonstrate superior software delivery and operational performance (A. Meier, 2021).
For instance, Deployment Frequency (DF) measures how frequently code is deployed to
production. A higher frequency signifies more rapid delivery of value, with Elite teams
deploying multiple times per day. These metrics, also known as Accelerate metrics, are highly
effective for evaluating the performance of development processes in microservice-based
systems (A. Meier, 2021), (Bezemer et al., 2019).

It appears that most DevOps metrics focus on end-to-end performance and deployment,
emphasizing deployment speed, stability, and recovery, whereas traditional metrics like code
churn and object-oriented metrics are more focused on code quality and development practices
(Syed-Mohamad, S. M., Ngah, A & Ali, A.-F. M. 2025). Various studies emphasize the
significance of metrics in DevOps projects, highlighting the need for automated and continuous
measurement to adapt to the iterative nature of DevOps methodologies (A. Meier, 2021),
(Almashhadani et al., 2023). Ultimately, the goal of DevOps metrics is to provide valuable
insights into software development processes, enabling organizations to enhance quality,
security, and time-to-market while delivering value to the business (Bermon-Angarita et al.,
2023).

342

Software delivery performance metric Elite High Medium Low
Deployment frequency On-demand Between aonce Betwoen once Fower than
(multiple deploys por week and h onNnce per
For the primary application or service you work on, how per day) once per month once every six months
often does your organization deplay code to production & months
or release it 10 end users?
Lead time for changes Less than Between Between one Maoce than
one hour 0 / month and six months
For the primary application or service you wark on, what sx months
s your lead time for changes (iLe., how long does it take
to go from code committed to code successfully running
& production)?
Time to restore service Less than Less than Between More than
For the primary application or service yo . Oong hour one cay one day and Sx montha
orthe p Yy appication or service you wor one week
g enerally take to restore service w
Vi ant or a defect that impacts users occurs
“.“.' g., unplsnned outage or service impairment)?
Change failure rate O%-15% 16%-30% 16%-3 6%-30

For the primary applicatios
percentage of chang
result in degrz
Or service outag

{e.g.. require a hot

you work on, what
» or released 10 users

sarvice impairment

d subsequently require remediation
x, rollback, fix forward, patch)?

FIGURE 1. Dora performance metrics (Wickramasinghe, 2023)

Of particular importance within DevOps is maintainability. By measuring and monitoring these
metrics, organizations can gauge the ease with which software can be enhanced, extended, or
rectified, thereby impacting the overall quality and agility of the software. However, the
specific criteria employed to evaluate software maintainability in DevOps initiatives may vary
depending on the organization and project requirements (Lwakatare et al., 2019), (Mohammad
Zarour et al., 2020), (Bermdn-Angarita et al., 2023).

The DevOps maintainability metric refers to the measure of how easily a software system can
be maintained and updated within a DevOps environment (Wickramasinghe, 2023), (Giamattei
et al., 2024), (Bermon-Angarita et al., 2023), (Amaro et al., 2024). Software maintainability is
crucial as it can reduce a significant portion of a system's life cycle costs (Lomio et al., 2022).
Metrics play a vital role in assessing and improving maintainability by helping developers
diagnose issues, fix bugs, and meet new requirements. Additionally, requirement traceability
aids in tracking requirements throughout the software development process, facilitating change
management and preventing confusion (Amaro et al., 2024). Understanding software metrics
tools as programs implementing a set of software metrics definitions further enhances the
measurement and analysis of maintainability (Giamattei et al., 2024). Therefore, selecting
appropriate metrics and ensuring accurate data collection are essential for effectively
evaluating and enhancing DevOps maintainability.

Software maintainability is paramount in DevOps environments due to its pivotal role in
supporting the rapid development and deployment cycles inherent in DevOps practices. By
ensuring that code is highly maintainable, teams can make changes and updates more quickly,
facilitating faster delivery and keeping organizations responsive to the ever-changing digital
landscape. This adaptability is essential for thriving in dynamic market conditions and meeting
evolving customer demands.

343

Moreover, prioritizing software maintainability leads to a reduction in technical debt, which
can otherwise impede future development efforts. Code that is easy to understand, modify, and
extend helps teams avoid accumulating technical debt, ensuring that the codebase remains
manageable and adaptable over time. By proactively managing technical debt through
maintainability, organizations can sustain productivity and prevent slowdowns in development.
Additionally, maintainable code fosters improved collaboration between development and
operations teams, a core principle of the DevOps philosophy. When code is easily understood
and modified across the organization, teams can work together seamlessly to achieve common
goals. This collaboration enhances efficiency and effectiveness in delivering high-quality
software products, driving innovation and competitive advantage in DevOps environments.

Several studies have conducted systematic reviews on software maintainability prediction and
metrics (Jha et al., 2019). These reviews have found that there are numerous models and
metrics proposed in the literature to measure and predict software maintainability, but their
consistency and ability to accurately predict maintenance effort is still an open research
question (Giamattei et al., 2024), (Mohammad Zarour et al., 2020). One approach in DevOps
involves harnessing metadata generated during DevOps processes, such as commit history, test
coverage, code complexity metrics, and developer involvement in changes (Gunnar Kudrjavets
et al., 2022). Additionally, a new model called the Delta Maintainability Model (DMM) has
been proposed to assess fine-grained code changes, categorizing them into low and high-risk
categories to calculate a delta score, enabling developers to compare and rank the
maintainability of commits at a granular level (di Biase et al., 2019) . Furthermore, the
automation and visualization of Non-Functional Requirements (NFRs) within a DevOps
environment play a crucial role in enhancing code maintainability, emphasizing collaboration,
communication, and automation to improve software delivery speed and quality. These
combined efforts help ensure that code maintainability is continuously monitored and
improved throughout the software development lifecycle (Mishra & Otaiwi, 2020).

In summary, the literature review highlights the significance of DevOps metrics in assessing
and improving software maintainability, emphasizing the importance of automated and
continuous measurement to adapt to DevOps methodologies. There is a significant need for
more consistent normalization and validation of these metrics in practical software
maintenance settings (Bermén-Angarita et al., 2023), (Suescin-Monsalve et al., 2021), (M.
Gasparaite, K. Naudziunaite, et al., 2020), (Zarour et al., 2019). This analysis of software
maintenance metrics holds great promise for advancing the field and improving the
effectiveness of DevOps practices.

METHODOLOGY

In this article, we aim to investigate the relationship between frequently used DevOps metrics,
specifically deployment frequency, and key code maintainability metrics such as code churn
rates and code complexity. Our objective is to assess how these metrics collectively influence
software maintainability within DevOps projects. To determine this relationship, we have
collected data on deployment frequency metrics, such as the number of deployments per unit
of time, and code maintainability metrics, such as code churn rate and code complexity. We
have defined the studied metrics as follows:

1. Deployment frequency as the rate at which new code changes are released into
production (Wickramasinghe, 2023). It measures how often an organization
successfully releases code to production. The terms "frequency of code releases™ and
"deployment frequency" are often used interchangeably in DevOps.

344

2. Code maintainability as the ease of managing and updating code over time (di Biase et
al., 2019).

3. Code churn rate - refers to the frequency and magnitude of changes made to source
code over time(Nagappan & Ball, 2005). Specifically, relative code churn measures
quantify the changes made to code files relative to their previous versions, providing
insights into the volatility and stability of software components. Nagappan and Ball's
research highlights the significance of code churn measures in predicting system defect
density, suggesting that higher code churn rates may indicate areas of the codebase
prone to defects or instability (Gunnar Kudrjavets et al., 2022).

4. Code complexity is a fundamental aspect of assessing how modifications affect the
code's structure and readability. This complexity is typically measured using metrics
like cyclomatic complexity, which counts the number of independent paths in the
source code, and Halstead complexity, which evaluates program complexity based on
the number of operators and operands (di Biase et al., 2019), (Trautsch et al., 2023).

Data Collection: We gathered collected relevant data from an open-source project spanning
from February 1, 2016, to May 17, 2024, focusing on the intervals between deployments.
Following the methodology outlined by S. Jha et al. (2019), JUnit 5 emerged as an ideal
representative DevOps project, primarily for its robust CI/CD pipeline extensively documented
in its GitHub repository (Jha et al., 2019). Employing Python, we developed a custom tool to
dissect and analyze the main.yml workflow file, shedding light on the project's approach to
continuous integration and deployment practices. Our tool meticulously extracted critical
information from triggers, jobs, and artifact publications, leveraging GitHub repository to
securely access credentials for repository authentication.

We utilized Lizard, an open-source tool, to gather insights into code complexity. Specifically,
we employed Lizard to assess the cyclomatic complexity of our sample project, providing
valuable metrics for evaluating the intricacy of the code sample, as follows:

1. Total Non-Commented Lines of Code (NLOC): Total lines of code excluding
comments; higher values indicate larger codebases.

2. Average Non-Commented Lines of Code per Function (Avg. (NLOC)): Average size
of functions in lines of code; smaller values suggest more modular functions.

3. Average Cyclomatic Complexity Number (Avg. (CCN)): Average complexity of
functions; lower values indicate simpler functions with fewer branches.

4. Average number of tokens (Avg. Token) (keywords, operators) per function; indicates
code complexity.

5. Function Count (Fun Cnt): Total number of functions; more functions suggest
modularity but may indicate complexity if not well-defined.

6. Warning Count (Warning Cnt): Number of functions that triggered warnings, usually
related to complexity or length.

7. Function Rate (Fun Rt): Rate of functions per module/file; higher rates indicate more
functions per module.

8. NLOC Rate (NLOC Rt): Rate of NLOC per module/file; lower rates indicate smaller
modules.

345

ANALYSIS AND RESULTS

This section elaborates on the metrics we have gathered. To determine deployment frequency
metrics, we analysed the frequency of events triggering CI/CD jobs. This involved, firstly,
examining the repository's commit history and the logs of CI/CD jobs to understand the
frequency of deployments. Secondly, calculating the number of successful deployments
recorded in the CI/CD system over a defined period to derive metrics such as deployments per
time unit, frequency of code releases, and intervals between deployments.

CODE DEPLOYMENT FREQUENCY

The terms "frequency of code releases” and "deployment frequency” are often used
interchangeably in the context of DevOps, and they generally refer to the same concept. Both
terms describe how often new code changes are deployed to a production environment. Figure
2 illustrates the deployment frequency from 2016 to 2024. It shows that there have been
between 1 to 4 releases per month consistently over this period, highlighting the team's ability
to maintain a steady release pattern.

Release Count

1

}Iull |)|1||'|'||||||

FIGURE 2. Code Deployment Frequency Per Month (2016-2024)
CODE CHURN RATE

Table 1 details the frequency of codebase changes, encompassing additions, modifications, and
deletions. Analyzing the codebase changes across different releases of JUnit 5 reveals several
patterns and trends in the project's development lifecycle. The following points summarize key
observations and trends:

1. Growth in Codebase: Each subsequent release tends to involve significant code
additions and deletions, reflecting continuous development and refactoring efforts. For
example, between JUnit 5.4.0 and JUnit 5.5.0, there is a noticeable increase in code
changes, suggesting major feature additions or improvements.

TABLE 1. Key metrics related to code churn rate

Release Name File Changes Code Added Code Deleted Commits

JUnit5.5.2 476865 320376 156489 5756

JUnit5.5.1 476583 320132 156451 5748

346

JUnit 5.5.0 476098 319719 156379 5744
JUnit 5.5.0-RC2 475226 319046 156180 5721
JUnit 5.5.0-RC1 473994 318230 155764 5697
JUnit5.4.2 451828 303117 148711 5508
JUnit 5.5.0-M1 459624 307159 152465 5566
Junit5.4.1 451591 302905 148686 5501
JUnit 5.4.0 450838 302329 148509 5473
JUnit5.4.0-RC2 448962 301030 147932 5427
JUnit5.4.0-RC1 445219 299274 145945 5386
JUnit5.4.0-M1 433122 288910 144212 5231
JUnit5.3.2 387558 261462 126096 4834

2. Stability Before Major Releases: The release candidates (RC) and milestone (M)
releases typically show a gradual increase in code stability. For instance, JUnit 5.5.0-
RC1 and RC2 show slightly fewer changes compared to the final JUnit 5.5.0 release,
indicating a phase of stabilization and bug fixing before the official release.

3. High Frequency of Commits: The number of commits remains relatively high across
all releases, indicating an active and ongoing development process. For instance, JUnit
5.5.2 has 5756 commits, reflecting an active contribution cycle with frequent updates
and iterations.

4. Consistent Codebase Growth: The consistent addition of code (e.g., JUnit 5.5.2 with
320376 lines added) suggests a robust development effort to enhance functionalities
and introduce new features. Correspondingly, the code deletions (156489 lines for
JUnit 5.5.2) indicate regular code clean-up and refactoring to maintain code quality.

5. Release Cadence: The release cadence shows a pattern of multiple intermediate
versions (RC and M releases) leading to major versions. This structured release
approach helps in gradual testing and integration of new features before the final stable
release.

6. Significant Changes in Major Versions: Major version updates, such as the transition
from JUnit 5.4.x to JUnit 5.5.x, involve more substantial code changes and higher
commit counts. This indicates significant feature upgrades and possibly breaking
changes that necessitate careful management and extensive testing.

7. Comparison Over Time: Comparing earlier versions like JUnit 5.3.2 with later ones
shows an overall increase in codebase size and complexity, highlighting the project’s
evolution and expansion in terms of features and capabilities.

The analysis indicates a well-managed and active development process for JUnit, with
continuous improvements, refactoring, and stabilization efforts.

347

CODE COMPLEXITY

Table 2 provides an overview of code complexity metrics, specifically highlighting software
releases exclusively from the years 2023 to 2024. It seems that the average number of lines of
code (Avg. NLOC) remains relatively consistent across different releases, indicating a stable
codebase size over time. Similarly, the average cyclomatic complexity number (Avg. CCN)
remains constant at 1.3, suggesting consistent code complexity levels across releases. The
following points summarize key observations and trends:

TABLE 2. Code complexity metrics

Release Total Avg. Avg. Avg. Fun Warning Fun NLOC Rt
Name NLOC NLOC CCN Token Cnt Cnt Rt
JUnit5.5.2 73568 5.8 13 44.5 8202 2 0.00 0.00
JUnit5.5.1 73464 5.8 13 44.5 8197 2 0.00 0.00
JUnit5.5.0 73229 5.8 13 44.5 8172 2 0.00 0.00
JUnit 5.5.0- 73177 5.8 13 44.5 8169 2 0.00 0.00
RC2
JUnit 5.5.0- 73003 5.8 13 44.5 8153 2 0.00 0.00
RC1
JUnit5.4.2 68219 5.8 13 44.3 7704 2 0.00 0.00

1. Stability in Code Complexity: The stability in cyclomatic complexity values (Avg.
CCN) suggests that the overall structural complexity of the codebase has been
maintained consistently across releases. This stability is further supported by the similar
values of average token count (Avg. Token) across different releases.

2. Function Count and Warning Count: The function count (Fun Cnt) and warning count
(Warning Cnt) also remain constant across releases, indicating a consistent number of
functions and warnings in the codebase.

3. Release Comparisons: Comparing the latest release (r5.5.2) with older versions (e.g.,
r5.4.2), there's a noticeable increase in the total number of lines of code (Total NLOC),
which is expected with software evolution and feature additions. However, the average
code complexity (Avg. CCN) remains unchanged, indicating that despite code growth,
efforts have been made to maintain manageable code complexity levels.

4. Rate Metrics: The function rate (Fun Rt) and NLOC rate (NLOC Rt) are consistently
low (0.00), suggesting that the ratio of functions to lines of code remains stable across
different releases.

RELATIONSHIP OF CODE COMPLEXITY (FUNCTION COUNT) TO CODEBASE CHANGE
(CODE COMMITS)

We utilize Pearson correlation analysis to assess the relationship between code complexity
(measured by Function Count) and codebase changes (measured by code commits). The
calculated correlation coefficient (R) stands at 0.9887, signifying a robust positive correlation.
This indicates that as code complexity increases, so does the frequency of code commit, and
vice versa. Higher complexity tends to coincide with more frequent changes in the codebase,
demonstrating a consistent and predictable pattern. This perfect positive correlation implies a

348

very strong relationship between the two variables, indicating that managing and understanding
both metrics is crucial for maintaining code quality.

DISCUSSION

Upon analyzing these metrics, it's evident that the JUnit 5 codebase has experienced steady
growth in size across its releases. However, amidst this expansion, the average function size
and complexity have remained consistent, reflecting commendable code quality maintenance.
The persistent average cyclomatic complexity number (Avg. CCN) of 1.3 indicates that
functions generally maintain simplicity, enhancing both maintainability and readability.
Similarly, the steady warning count of 2 suggests that while certain functions may warrant
refactoring, overall complexity and quality have been upheld throughout releases.

Employing Pearson correlation analysis unveils a significant relationship between code
complexity (measured by Function Count) and codebase changes (measured by code commits).
The resulting correlation coefficient (R) of 0.9887 underscores a robust positive correlation,
illustrating that heightened complexity aligns with increased code commits, and vice versa.
Overall, the project sample has demonstrated adept codebase growth while preserving a
consistent level of complexity and function size. This achievement reflects disciplined coding
practices and proficient code management strategies (Trautsch et al., 2023), (Chowdhury et al.,
2022). Continuous vigilance and maintenance of these metrics within acceptable thresholds
will bolster the codebase's longevity and manageability.

CONCLUSION

This article delves into the intersection of DevOps practices and code maintainability, by
examining the relationship between frequently used DevOps metrics and key code
maintainability metrics, we aimed to provide insights into how these factors collectively
influence software maintainability within DevOps projects. The analysis of deployment
frequency, code churn rate, and code complexity metrics provides valuable insights into the
evolution and maintenance of the JUnit 5 codebase within DevOps practices. Deployment
frequency remained consistent, with 1 to 4 releases per month over the analyzed period,
showcasing the team's ability to maintain a steady release pattern. The codebase exhibited
steady growth with significant additions and deletions between releases, with release candidates
and milestone releases indicating a phase of stabilization and bug fixing before major releases.
The high frequency of commits across all releases reflects an active and ongoing development
process. Additionally, the codebase maintained stable complexity levels across releases, with
consistent values in cyclomatic complexity and function count, despite the growth in codebase
size. Pearson correlation analysis revealed a strong positive correlation between code
complexity and codebase changes, emphasizing the importance of managing both metrics for
maintaining code quality. Overall, the analysis demonstrates the project's commitment to
maintaining code quality and stability while adapting to the demands of continuous
development and deployment within a DevOps environment, underscoring the need for
continuous vigilance and maintenance of these metrics within acceptable thresholds for the
codebase's longevity and manageability. In order to achieve this, regular monitoring and
enhancement of automated testing frameworks are recommended to ensure high test pass
percentages. Additionally, conducting regular training sessions on best practices will help
maintain consistent code quality. Future research should focus on understanding the impact of
code changes on continuous test failures and investigating strategies to improve deployment
velocity while maintaining high code quality and stability.

349

ACKNOWLEDGEMENT

This research was supported by the Talent and Publications Enhancement Research Grant
(TAPERG/2023/UMT/2223), titled “Empirical Analysis of Software Maintainability Metrics
in DevOps Environments” awarded by Universiti Malaysia Terengganu.

REFERENCES

Almashhadani, M., Mishra, A., Yazici, A., & Younas, M. 2023. Challenges in agile software
maintenance for local and global development: An empirical assessment. Information,
14(5), 261. https://doi.org/10.3390/info14050261.

Amaro, R., Pereira, R., & Mira, M. 2024. DevOps metrics and KPIs: A multivocal literature
review. ACM Computing Surveys. https://doi.org/10.1145/3652508.

Arvind. 2022. DevOps lifecycle: Everything you need to know about DevOps lifecycle phases,

42.
Azad, N., & Hyrynsalmi, S. 2023. DevOps critical success factors — A systematic literature
review. Information and Software Technology, 157, 107150.

https://doi.org/10.1016/j.infsof.2023.107150.

Bermdn-Angarita, L., Fernandez, A., & Osorio, A. 2023, January 2. A bibliometric analysis of
DevOps metrics. ResearchGate.
https://www.researchgate.net/publication/367622536_A _Bibliometric_Analysis_of D
evOps_Metrics.

Bezemer, C.-P., Eismann, S., Ferme, V., Grohmann, J., Heinrich, R., Jamshidi, P., Shang, W.,
van Hoorn, A., Villavicencio, M., Walter, J., & Willnecker, F. 2019. How is
performance addressed in DevOps? Proceedings of the 2019 ACM/SPEC International
Conference on Performance Engineering, 45-50.
https://doi.org/10.1145/3297663.3309672.

Chowdhury, S., Holmes, R., Zaidman, A., & Kazman, R. 2022. Revisiting the debate: Are code
metrics useful for measuring maintenance effort? Empirical Software Engineering,
27(6), 158. https://doi.org/10.1007/s10664-022-10193-8.

Di Biase, M., Rastogi, A., Bruntink, M., & van Deursen, A. 2019. The Delta Maintainability
Model: Measuring maintainability of fine-grained code changes. 2019 IEEE/ACM
International Conference on Technical Debt (TechDebt), 113-122.
https://doi.org/10.1109/TechDebt.2019.00030.

Gasparaite, M., Naudziunaite, K., & Ragaisis, S. 2020. Systematic literature review of DevOps
models. Communications in Computer and Information Science, 184-198.
https://doi.org/10.1007/978-3-030-58793-2_15.

Gasparaite, M., Naudziunaite, K., & Ragaisis, S. 2020. Systematic literature review of DevOps
models. Quality of Information and Communications Technology: 13th International
Conference, QUATIC 2020, 184-198.

Giamattei, L., Guerriero, A., Pietrantuono, R., Russo, S., Malavolta, 1., Islam, T., Dinga, M.,
Koziolek, A., Singh, S., Armbruster, M., Gutierrez-Martinez, J. M., Caro-Alvaro, S.,
Rodriguez, D., Weber, S., Henss, J., Vogelin, E. F., & Panojo, F. S. 2024. Monitoring
tools for DevOps and microservices: A systematic grey literature review. Journal of
Systems and Software, 208, 111906. https://doi.org/10.1016/j.jss.2023.111906.

Jha, S., Kumar, R., Son, H., Abdel-Basset, M., Priyadarshini, I., Sharma, R., & Long, V. 2019.
Deep learning approach for software maintainability metrics prediction. IEEE Access,
7, 61840-61855. https://doi.org/10.1109/ACCESS.2019.2913349.

https://doi.org/10.3390/info14050261
https://doi.org/10.1145/3652508
https://doi.org/10.1016/j.infsof.2023.107150
https://www.researchgate.net/publication/367622536_A_Bibliometric_Analysis_of_DevOps_Metrics
https://www.researchgate.net/publication/367622536_A_Bibliometric_Analysis_of_DevOps_Metrics
https://doi.org/10.1145/3297663.3309672
https://doi.org/10.1007/s10664-022-10193-8
https://doi.org/10.1109/TechDebt.2019.00030
https://doi.org/10.1007/978-3-030-58793-2_15
https://doi.org/10.1016/j.jss.2023.111906
https://doi.org/10.1109/ACCESS.2019.2913349

350

Kudrjavets, G., Nagappan, N., & Rastogi, A. 2022. Do small code changes merge faster? A
multi-language empirical investigation. Proceedings of the 19th International
Conference on Mining Software Repositories, 537-548.

Lomio, F., Codabux, Z., Birtch, D., Hopkins, D., & Taibi, D. 2022. On the benefits of the
Accelerate metrics: An industrial survey at Vendasta. IEEE International Conference
on Software Analysis, Evolution, and Reengineering. https://
www.semanticscholar.org/paper/On-the-Benefits-of-the-Accelerate-Metrics%3A-An-
at-Lomio-Codabux/1c23ac611dad7509690251d70b24321c1ad9h68d.

Lwakatare, L. E., Kilamo, T., Karvonen, T., Sauvola, T., Heikkila, V., Itkonen, J., Kuvaja, P.,
Mikkonen, T., Oivo, M., & Lassenius, C. 2019. DevOps in practice: A multiple case
study of five companies. Information and Software Technology, 114, 217-230.
https://doi.org/10.1016/j.infsof.2019.06.010.

Meier, A. 2021. Measuring software delivery performance using the four key metrics of
DevOps. Agile Processes in Software Engineering and Extreme Programming: 22nd
International Conference, 103.

Mishra, A., & Otaiwi, Z. 2020. DevOps and software quality: A systematic mapping. Computer
Science Review, 38, 100308. https://doi.org/10.1016/j.cosrev.2020.100308.

Nagappan, N., & Ball, T. 2005. Use of relative code churn measures to predict system defect
density.

Riungu-Kalliosaari, L., Makinen, S., Lwakatare, L. E., Tiihonen, J., & Mannisto, T. 2016.
DevOps adoption benefits and challenges in practice: A case study. Product-Focused
Software Process Improvement, 590-597. https://doi.org/10.1007/978-3-319-49094-
6_44.

Suescun-Monsalve, E., Pardo-Calvache, C.-J., Rojas-Mufioz, S.-A., & Velasquez-Uribe, A.
2021. DevOps in Industry 4.0: A systematic mapping. Revista Facultad de Ingenieria,
30(57), €13314. https://doi.org/10.19053/01211129.v30.n57.2021.13314,

Syed-Mohamad, S. M., A. N., & A.-F. M. A. 2025. Measuring software maintainability: An
exploration of metrics and continuous development practices. Journal of Advanced
Research in Applied Sciences and Engineering Technology, 1-16.

Trautsch, A., Erbel, J., Herbold, S., & Grabowski, J. 2023. What really changes when
developers intend to improve their source code: a commit-level study of static metric
value and static analysis warning changes. Empirical Software Engineering, 28(2).
https://doi.org/10.1007/s10664-022-10257-9.

Wickramasinghe, S. 2023, October 27. DevOps & DORA metrics: The complete guide. Splunk.
https://www.splunk.com/en_us/blog/learn/devops-metrics.html.

Zarour, M. 1., Alnammad, N., Alenezi, M., & Alsarayrah, K. 2019. A research on DevOps
maturity models. ResearchGate. https://doi.org/10.35940/ijrte.C6888.098319.

Zarour, M., Alhammad, N., Alenezi, M., & Alsarayrah, K. 2020. DevOps process model
adoption in Saudi Arabia: An empirical study. Jordanian Journal of Computers and
Information Technology (JJICIT), 06(03).
https://www.ejmanager.com/mnstemps/71/71-1580581874.pdf?t=1726594146.

https://doi.org/10.1016/j.infsof.2019.06.010
https://doi.org/10.1016/j.cosrev.2020.100308
https://doi.org/10.1007/978-3-319-49094-6_44
https://doi.org/10.1007/978-3-319-49094-6_44
https://doi.org/10.19053/01211129.v30.n57.2021.13314
https://doi.org/10.1007/s10664-022-10257-9
https://www.splunk.com/en_us/blog/learn/devops-metrics.html
https://doi.org/10.35940/ijrte.C6888.098319
https://www.ejmanager.com/mnstemps/71/71-1580581874.pdf?t=1726594146

