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ABSTRACT 

 

This study explores the crucial role of software maintainability metrics in DevOps 

environments, where rapid and continuous delivery is paramount. By investigating the 

correlation between deployment frequency, code churn rates, and code maintainability using 

commonly used DORA metrics, we aim to shed light on the intersection of DevOps practices 

and code maintainability. Analysing these metrics provides valuable insights into the evolution 

and maintenance of the JUnit 5 codebase within DevOps practices. Our findings reveal a 

consistent deployment frequency, showcasing the team's ability to maintain a steady release 

pattern. The codebase demonstrates steady growth with notable additions and deletions 

between releases, with indications of stabilization and bug fixing before major releases. The 

high frequency of commits reflects an active development process. Despite the codebase's 

growth, stable complexity levels were maintained, emphasizing the importance of managing 

code quality metrics. Pearson correlation analysis reveals a strong positive correlation (R = 

0.9887) between code complexity and codebase changes, underscoring the need to balance 

both for quality maintenance. The study emphasizes the project's commitment to quality and 

stability within DevOps, emphasizing the need for ongoing vigilance. 

 

Keywords:  DevOps, DevOps metrics, Deployment frequency, Code maintainability, Code 

complexity 

 

ABSTRAK 

 

Kajian ini meneroka peranan penting metrik penyelenggaraan perisian dalam persekitaran 

DevOps, di mana penghantaran yang pantas dan berterusan adalah keutamaan. Dengan 

menyiasat hubungan antara kekerapan penyebaran, kadar perubahan kod, dan penyelenggaraan 

kod menggunakan metrik DORA yang biasa digunakan, tujuan kami untuk memberi 

penerangan mengenai persilangan antara amalan DevOps dan kebolehselenggaraan kod. 
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Analisa metrik ini memberikan pandangan yang berharga tentang evolusi dan 

kebolehselenggaraan pangkalan kod JUnit 5 dengan amalan DevOps. Penemuan kami 

mendedahkan kekerapan penyebaran yang konsisten menunjukkan keupayaan pasukan untuk 

mengekalkan corak pengeluaran yang baik. Pangkalan kod menunjukkan pertumbuhan yang 

stabil dengan penambahan dan penghapusan yang ketara antara keluaran, dengan petunjuk 

penstabilan dan pembaikan pepijat sebelum keluaran utama. Kekerapan komit yang tinggi 

mencerminkan proses pembangunan yang aktif. Walaupun pangkalan kod berkembang, tahap 

kerumitan yang stabil dikekalkan, menekankan kepentingan pengurusan metrik kualiti kod. 

Analisis korelasi Pearson mendedahkan korelasi positif yang kuat (R = 0.9887) antara 

kerumitan kod dan perubahan pangkalan kod, menekankan keperluan untuk mengimbangi 

kedua-duanya bagi penyelenggaraan kualiti. Kajian ini menekankan komitmen projek terhadap 

kualiti dan kestabilan dalam DevOps, serta keperluan untuk kewaspadaan berterusan. 

 

Kata kunci: DevOps, Metrik DevOps, Kekerapan penyebaran, Kebolehselenggaraan kod, 

Kerumitan kod 

 

INTRODUCTION 

 

DevOps is a software development and operations strategy that combines the efforts of 

development (Dev) and operations (Ops) teams to accelerate product creation and simplify 

maintenance. It emphasizes collaboration, automation, and adherence to best practices to 

facilitate faster and more controlled development cycles (Azad & Hyrynsalmi, 2023). Firstly, 

DevOps enables faster development and deployment of software through practices like 

continuous integration (CI) and continuous delivery (CD). Organizations can release new 

features and updates more frequently, reducing time-to-market and gaining a competitive edge. 

Secondly, DevOps promotes improved collaboration and communication among teams by 

breaking down silos and fostering a culture of collaboration, shared responsibilities, and 

alignment towards common goals (Bezemer et al., 2019), (Gasparaite et al., 2020), (Arvind, 

2022).  

 

The continuous nature of DevOps highlights the importance of maintainability, as highly 

maintainable code supports rapid development and deployment cycles. However, ensuring 

continuous maintainability poses challenges that need to be addressed to sustain the efficiency 

and effectiveness of DevOps practices (Azad & Hyrynsalmi, 2023), (Bezemer et al., 2019), 

(Riungu-Kalliosaari et al., 2016), (Lwakatare et al., 2019). Despite the emphasis on continuous 

improvement in DevOps, there seems to be limited information available specifically 

addressing code maintainability within DevOps initiatives. Understanding and addressing this 

gap is crucial for optimizing software development processes and ensuring long-term success 

in DevOps environments (A. Meier, 2021), (Mohammad Zarour et al., 2020). 

 

This study investigates the relationship between DevOps metrics, specifically deployment 

frequency and key indicators of code maintainability, including code churn rates and code 

complexity. The primary objective is to evaluate how these metrics collectively influence 

software maintainability within DevOps-based projects. To this end, a widely used and actively 

maintained open-source project has been selected as a representative case study. By analyzing 

these metrics, the study aims to enhance understanding of how DevOps practices impact code 

maintainability and to offer empirical insights that can inform efforts to optimize software 

development processes in DevOps environments. 

This article begins with an overview of the background and related work, setting the stage for 

the study's context. Following this, the methodology is detailed in Section 3, outlining the 
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approach taken to conduct the research. Section 4 delves into the analysis of collected data and 

presents key findings derived from the study. Finally, the article culminates in Section 5, where 

conclusions drawn from the analysis are summarized and discussed, providing insights and 

implications for further research and practice. 

 

RELATED WORKS 

A DevOps metric is a "quantifiable, business-relevant, trustworthy, actionable, and traceable 

indicator that aids organizations in making data-driven decisions to continuously improve their 

DevOps and software delivery processes" (Amaro et al., 2024). Amaro, Ricardo, and Pereira 

(2024) identify 22 key DevOps metrics through a comprehensive multivocal literature review, 

categorizing them as Key Performance Indicators (KPIs). These metrics primarily focus on 

assessing the performance and effectiveness of DevOps practices, with a particular emphasis 

on deployment. The metrics are largely deployment-centric, with the top four consistently 

highlighted in various publications being Time to Restore Service, Lead Time for Changes, 

Deployment Frequency, and Change Failure Rate. These core metrics are essential for 

evaluating and enhancing the continuous delivery and operational stability of software 

systems.  

 

Furthermore, the four key metrics established by the DevOps Research and Assessment 

(DORA) framework, developed by Google's DORA team, serve as essential indicators of the 

efficiency of DevOps teams in terms of velocity and reliability (Wickramasinghe, 2023). These 

metrics, derived from extensive research over seven years on the principles and practical 

implementations of DevOps, provide a robust foundation for assessing performance 

(Wickramasinghe, 2023). Figure 1 illustrates the software deployment performance indicator 

based on the DORA metrics. Studies have shown that companies excelling in these metrics 

often demonstrate superior software delivery and operational performance (A. Meier, 2021). 

For instance, Deployment Frequency (DF) measures how frequently code is deployed to 

production. A higher frequency signifies more rapid delivery of value, with Elite teams 

deploying multiple times per day. These metrics, also known as Accelerate metrics, are highly 

effective for evaluating the performance of development processes in microservice-based 

systems (A. Meier, 2021), (Bezemer et al., 2019). 

 

It appears that most DevOps metrics focus on end-to-end performance and deployment, 

emphasizing deployment speed, stability, and recovery, whereas traditional metrics like code 

churn and object-oriented metrics are more focused on code quality and development practices 

(Syed-Mohamad, S. M., Ngah, A & Ali, A.-F. M. 2025). Various studies emphasize the 

significance of metrics in DevOps projects, highlighting the need for automated and continuous 

measurement to adapt to the iterative nature of DevOps methodologies (A. Meier, 2021), 

(Almashhadani et al., 2023). Ultimately, the goal of DevOps metrics is to provide valuable 

insights into software development processes, enabling organizations to enhance quality, 

security, and time-to-market while delivering value to the business (Bermón-Angarita et al., 

2023).  
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FIGURE 1. Dora performance metrics (Wickramasinghe, 2023) 

 

Of particular importance within DevOps is maintainability. By measuring and monitoring these 

metrics, organizations can gauge the ease with which software can be enhanced, extended, or 

rectified, thereby impacting the overall quality and agility of the software. However, the 

specific criteria employed to evaluate software maintainability in DevOps initiatives may vary 

depending on the organization and project requirements (Lwakatare et al., 2019), (Mohammad 

Zarour et al., 2020), (Bermón-Angarita et al., 2023). 

 

The DevOps maintainability metric refers to the measure of how easily a software system can 

be maintained and updated within a DevOps environment (Wickramasinghe, 2023), (Giamattei 

et al., 2024), (Bermón-Angarita et al., 2023), (Amaro et al., 2024). Software maintainability is 

crucial as it can reduce a significant portion of a system's life cycle costs (Lomio et al., 2022). 

Metrics play a vital role in assessing and improving maintainability by helping developers 

diagnose issues, fix bugs, and meet new requirements. Additionally, requirement traceability 

aids in tracking requirements throughout the software development process, facilitating change 

management and preventing confusion (Amaro et al., 2024). Understanding software metrics 

tools as programs implementing a set of software metrics definitions further enhances the 

measurement and analysis of maintainability (Giamattei et al., 2024). Therefore, selecting 

appropriate metrics and ensuring accurate data collection are essential for effectively 

evaluating and enhancing DevOps maintainability.  

 

Software maintainability is paramount in DevOps environments due to its pivotal role in 

supporting the rapid development and deployment cycles inherent in DevOps practices. By 

ensuring that code is highly maintainable, teams can make changes and updates more quickly, 

facilitating faster delivery and keeping organizations responsive to the ever-changing digital 

landscape. This adaptability is essential for thriving in dynamic market conditions and meeting 

evolving customer demands. 
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Moreover, prioritizing software maintainability leads to a reduction in technical debt, which 

can otherwise impede future development efforts. Code that is easy to understand, modify, and 

extend helps teams avoid accumulating technical debt, ensuring that the codebase remains 

manageable and adaptable over time. By proactively managing technical debt through 

maintainability, organizations can sustain productivity and prevent slowdowns in development. 

Additionally, maintainable code fosters improved collaboration between development and 

operations teams, a core principle of the DevOps philosophy. When code is easily understood 

and modified across the organization, teams can work together seamlessly to achieve common 

goals. This collaboration enhances efficiency and effectiveness in delivering high-quality 

software products, driving innovation and competitive advantage in DevOps environments.  

 

Several studies have conducted systematic reviews on software maintainability prediction and 

metrics (Jha et al., 2019). These reviews have found that there are numerous models and 

metrics proposed in the literature to measure and predict software maintainability, but their 

consistency and ability to accurately predict maintenance effort is still an open research 

question (Giamattei et al., 2024), (Mohammad Zarour et al., 2020). One approach in DevOps 

involves harnessing metadata generated during DevOps processes, such as commit history, test 

coverage, code complexity metrics, and developer involvement in changes (Gunnar Kudrjavets 

et al., 2022). Additionally, a new model called the Delta Maintainability Model (DMM) has 

been proposed to assess fine-grained code changes, categorizing them into low and high-risk 

categories to calculate a delta score, enabling developers to compare and rank the 

maintainability of commits at a granular level (di Biase et al., 2019) . Furthermore, the 

automation and visualization of Non-Functional Requirements (NFRs) within a DevOps 

environment play a crucial role in enhancing code maintainability, emphasizing collaboration, 

communication, and automation to improve software delivery speed and quality. These 

combined efforts help ensure that code maintainability is continuously monitored and 

improved throughout the software development lifecycle (Mishra & Otaiwi, 2020). 

 

In summary, the literature review highlights the significance of DevOps metrics in assessing 

and improving software maintainability, emphasizing the importance of automated and 

continuous measurement to adapt to DevOps methodologies. There is a significant need for 

more consistent normalization and validation of these metrics in practical software 

maintenance settings (Bermón-Angarita et al., 2023), (Suescún-Monsalve et al., 2021), (M. 

Gasparaite, K. Naudziunaite, et al., 2020), (Zarour et al., 2019). This analysis of software 

maintenance metrics holds great promise for advancing the field and improving the 

effectiveness of DevOps practices. 

 

METHODOLOGY 

 

In this article, we aim to investigate the relationship between frequently used DevOps metrics, 

specifically deployment frequency, and key code maintainability metrics such as code churn 

rates and code complexity. Our objective is to assess how these metrics collectively influence 

software maintainability within DevOps projects. To determine this relationship, we have 

collected data on deployment frequency metrics, such as the number of deployments per unit 

of time, and code maintainability metrics, such as code churn rate and code complexity. We 

have defined the studied metrics as follows: 

1. Deployment frequency as the rate at which new code changes are released into 

production (Wickramasinghe, 2023). It measures how often an organization 

successfully releases code to production. The terms "frequency of code releases" and 

"deployment frequency" are often used interchangeably in DevOps.  
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2. Code maintainability as the ease of managing and updating code over time (di Biase et 

al., 2019). 

3. Code churn rate - refers to the frequency and magnitude of changes made to source 

code over time(Nagappan & Ball, 2005). Specifically, relative code churn measures 

quantify the changes made to code files relative to their previous versions, providing 

insights into the volatility and stability of software components. Nagappan and Ball's 

research highlights the significance of code churn measures in predicting system defect 

density, suggesting that higher code churn rates may indicate areas of the codebase 

prone to defects or instability (Gunnar Kudrjavets et al., 2022). 

4. Code complexity is a fundamental aspect of assessing how modifications affect the 

code's structure and readability. This complexity is typically measured using metrics 

like cyclomatic complexity, which counts the number of independent paths in the 

source code, and Halstead complexity, which evaluates program complexity based on 

the number of operators and operands (di Biase et al., 2019), (Trautsch et al., 2023). 

Data Collection: We gathered collected relevant data from an open-source project spanning 

from February 1, 2016, to May 17, 2024, focusing on the intervals between deployments. 

Following the methodology outlined by S. Jha et al. (2019), JUnit 5 emerged as an ideal 

representative DevOps project, primarily for its robust CI/CD pipeline extensively documented 

in its GitHub repository (Jha et al., 2019). Employing Python, we developed a custom tool to 

dissect and analyze the main.yml workflow file, shedding light on the project's approach to 

continuous integration and deployment practices. Our tool meticulously extracted critical 

information from triggers, jobs, and artifact publications, leveraging GitHub repository to 

securely access credentials for repository authentication. 

We utilized Lizard, an open-source tool, to gather insights into code complexity. Specifically, 

we employed Lizard to assess the cyclomatic complexity of our sample project, providing 

valuable metrics for evaluating the intricacy of the code sample, as follows:  

1. Total Non-Commented Lines of Code (NLOC): Total lines of code excluding 

comments; higher values indicate larger codebases. 

2. Average Non-Commented Lines of Code per Function (Avg. (NLOC)): Average size 

of functions in lines of code; smaller values suggest more modular functions. 

3. Average Cyclomatic Complexity Number (Avg. (CCN)): Average complexity of 

functions; lower values indicate simpler functions with fewer branches. 

4. Average number of tokens (Avg. Token) (keywords, operators) per function; indicates 

code complexity. 

5. Function Count (Fun Cnt): Total number of functions; more functions suggest 

modularity but may indicate complexity if not well-defined. 

6. Warning Count (Warning Cnt): Number of functions that triggered warnings, usually 

related to complexity or length. 

7. Function Rate (Fun Rt): Rate of functions per module/file; higher rates indicate more 

functions per module. 

8. NLOC Rate (NLOC Rt): Rate of NLOC per module/file; lower rates indicate smaller 

modules. 
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ANALYSIS AND RESULTS 

This section elaborates on the metrics we have gathered. To determine deployment frequency 

metrics, we analysed the frequency of events triggering CI/CD jobs. This involved, firstly, 

examining the repository's commit history and the logs of CI/CD jobs to understand the 

frequency of deployments. Secondly, calculating the number of successful deployments 

recorded in the CI/CD system over a defined period to derive metrics such as deployments per 

time unit, frequency of code releases, and intervals between deployments.  

CODE DEPLOYMENT FREQUENCY 

The terms "frequency of code releases" and "deployment frequency" are often used 

interchangeably in the context of DevOps, and they generally refer to the same concept. Both 

terms describe how often new code changes are deployed to a production environment. Figure 

2 illustrates the deployment frequency from 2016 to 2024. It shows that there have been 

between 1 to 4 releases per month consistently over this period, highlighting the team's ability 

to maintain a steady release pattern. 

 

FIGURE 2. Code Deployment Frequency Per Month (2016-2024) 

CODE CHURN RATE 

Table 1 details the frequency of codebase changes, encompassing additions, modifications, and 

deletions. Analyzing the codebase changes across different releases of JUnit 5 reveals several 

patterns and trends in the project's development lifecycle. The following points summarize key 

observations and trends: 

 

1. Growth in Codebase:  Each subsequent release tends to involve significant code 

additions and deletions, reflecting continuous development and refactoring efforts. For 

example, between JUnit 5.4.0 and JUnit 5.5.0, there is a noticeable increase in code 

changes, suggesting major feature additions or improvements. 

TABLE 1. Key metrics related to code churn rate 

Release Name File Changes Code Added Code Deleted Commits 

JUnit 5.5.2 476865 320376 156489 5756 

JUnit 5.5.1 476583 320132 156451 5748 
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JUnit 5.5.0 476098 319719 156379 5744 

JUnit 5.5.0-RC2 475226 319046 156180 5721 

JUnit 5.5.0-RC1 473994 318230 155764 5697 

JUnit 5.4.2 451828 303117 148711 5508 

JUnit 5.5.0-M1 459624 307159 152465 5566 

JUnit 5.4.1 451591 302905 148686 5501 

JUnit 5.4.0 450838 302329 148509 5473 

JUnit 5.4.0-RC2 448962 301030 147932 5427 

JUnit 5.4.0-RC1 445219 299274 145945 5386 

JUnit 5.4.0-M1 433122 288910 144212 5231 

JUnit 5.3.2 387558 261462 126096 4834 

 

2. Stability Before Major Releases: The release candidates (RC) and milestone (M) 

releases typically show a gradual increase in code stability. For instance, JUnit 5.5.0-

RC1 and RC2 show slightly fewer changes compared to the final JUnit 5.5.0 release, 

indicating a phase of stabilization and bug fixing before the official release. 

3. High Frequency of Commits: The number of commits remains relatively high across 

all releases, indicating an active and ongoing development process. For instance, JUnit 

5.5.2 has 5756 commits, reflecting an active contribution cycle with frequent updates 

and iterations. 

4. Consistent Codebase Growth: The consistent addition of code (e.g., JUnit 5.5.2 with 

320376 lines added) suggests a robust development effort to enhance functionalities 

and introduce new features. Correspondingly, the code deletions (156489 lines for 

JUnit 5.5.2) indicate regular code clean-up and refactoring to maintain code quality. 

5. Release Cadence: The release cadence shows a pattern of multiple intermediate 

versions (RC and M releases) leading to major versions. This structured release 

approach helps in gradual testing and integration of new features before the final stable 

release. 

6. Significant Changes in Major Versions: Major version updates, such as the transition 

from JUnit 5.4.x to JUnit 5.5.x, involve more substantial code changes and higher 

commit counts. This indicates significant feature upgrades and possibly breaking 

changes that necessitate careful management and extensive testing. 

7. Comparison Over Time: Comparing earlier versions like JUnit 5.3.2 with later ones 

shows an overall increase in codebase size and complexity, highlighting the project’s 

evolution and expansion in terms of features and capabilities. 

The analysis indicates a well-managed and active development process for JUnit, with 

continuous improvements, refactoring, and stabilization efforts.   
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CODE COMPLEXITY 

Table 2 provides an overview of code complexity metrics, specifically highlighting software 

releases exclusively from the years 2023 to 2024. It seems that the average number of lines of 

code (Avg. NLOC) remains relatively consistent across different releases, indicating a stable 

codebase size over time. Similarly, the average cyclomatic complexity number (Avg. CCN) 

remains constant at 1.3, suggesting consistent code complexity levels across releases. The 

following points summarize key observations and trends: 

TABLE 2. Code complexity metrics 

Release 

Name 

Total 

NLOC 

Avg. 

NLOC 

Avg. 

CCN 

Avg. 

Token 

Fun 

Cnt 

Warning 

Cnt 

Fun 

Rt 

NLOC Rt 

JUnit 5.5.2 73568 5.8 1.3 44.5 8202 2 0.00 0.00 

JUnit 5.5.1 73464 5.8 1.3 44.5 8197 2 0.00 0.00 

JUnit 5.5.0 73229 5.8 1.3 44.5 8172 2 0.00 0.00 

JUnit 5.5.0-

RC2 

73177 5.8 1.3 44.5 8169 2 0.00 0.00 

JUnit 5.5.0-

RC1 

73003 5.8 1.3 44.5 8153 2 0.00 0.00 

JUnit 5.4.2 68219 5.8 1.3 44.3 7704 2 0.00 0.00 

1. Stability in Code Complexity: The stability in cyclomatic complexity values (Avg. 

CCN) suggests that the overall structural complexity of the codebase has been 

maintained consistently across releases. This stability is further supported by the similar 

values of average token count (Avg. Token) across different releases. 

2. Function Count and Warning Count: The function count (Fun Cnt) and warning count 

(Warning Cnt) also remain constant across releases, indicating a consistent number of 

functions and warnings in the codebase. 

3. Release Comparisons: Comparing the latest release (r5.5.2) with older versions (e.g., 

r5.4.2), there's a noticeable increase in the total number of lines of code (Total NLOC), 

which is expected with software evolution and feature additions. However, the average 

code complexity (Avg. CCN) remains unchanged, indicating that despite code growth, 

efforts have been made to maintain manageable code complexity levels. 

4. Rate Metrics: The function rate (Fun Rt) and NLOC rate (NLOC Rt) are consistently 

low (0.00), suggesting that the ratio of functions to lines of code remains stable across 

different releases. 

RELATIONSHIP OF CODE COMPLEXITY (FUNCTION COUNT) TO CODEBASE CHANGE 

(CODE COMMITS) 

We utilize Pearson correlation analysis to assess the relationship between code complexity 

(measured by Function Count) and codebase changes (measured by code commits). The 

calculated correlation coefficient (R) stands at 0.9887, signifying a robust positive correlation. 

This indicates that as code complexity increases, so does the frequency of code commit, and 

vice versa. Higher complexity tends to coincide with more frequent changes in the codebase, 

demonstrating a consistent and predictable pattern. This perfect positive correlation implies a 
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very strong relationship between the two variables, indicating that managing and understanding 

both metrics is crucial for maintaining code quality. 

 

DISCUSSION 

Upon analyzing these metrics, it's evident that the JUnit 5 codebase has experienced steady 

growth in size across its releases. However, amidst this expansion, the average function size 

and complexity have remained consistent, reflecting commendable code quality maintenance. 

The persistent average cyclomatic complexity number (Avg. CCN) of 1.3 indicates that 

functions generally maintain simplicity, enhancing both maintainability and readability. 

Similarly, the steady warning count of 2 suggests that while certain functions may warrant 

refactoring, overall complexity and quality have been upheld throughout releases.  

Employing Pearson correlation analysis unveils a significant relationship between code 

complexity (measured by Function Count) and codebase changes (measured by code commits). 

The resulting correlation coefficient (R) of 0.9887 underscores a robust positive correlation, 

illustrating that heightened complexity aligns with increased code commits, and vice versa. 

Overall, the project sample has demonstrated adept codebase growth while preserving a 

consistent level of complexity and function size. This achievement reflects disciplined coding 

practices and proficient code management strategies (Trautsch et al., 2023), (Chowdhury et al., 

2022). Continuous vigilance and maintenance of these metrics within acceptable thresholds 

will bolster the codebase's longevity and manageability. 

 

CONCLUSION 

This article delves into the intersection of DevOps practices and code maintainability, by 

examining the relationship between frequently used DevOps metrics and key code 

maintainability metrics, we aimed to provide insights into how these factors collectively 

influence software maintainability within DevOps projects. The analysis of deployment 

frequency, code churn rate, and code complexity metrics provides valuable insights into the 

evolution and maintenance of the JUnit 5 codebase within DevOps practices. Deployment 

frequency remained consistent, with 1 to 4 releases per month over the analyzed period, 

showcasing the team's ability to maintain a steady release pattern. The codebase exhibited 

steady growth with significant additions and deletions between releases, with release candidates 

and milestone releases indicating a phase of stabilization and bug fixing before major releases. 

The high frequency of commits across all releases reflects an active and ongoing development 

process. Additionally, the codebase maintained stable complexity levels across releases, with 

consistent values in cyclomatic complexity and function count, despite the growth in codebase 

size. Pearson correlation analysis revealed a strong positive correlation between code 

complexity and codebase changes, emphasizing the importance of managing both metrics for 

maintaining code quality. Overall, the analysis demonstrates the project's commitment to 

maintaining code quality and stability while adapting to the demands of continuous 

development and deployment within a DevOps environment, underscoring the need for 

continuous vigilance and maintenance of these metrics within acceptable thresholds for the 

codebase's longevity and manageability. In order to achieve this, regular monitoring and 

enhancement of automated testing frameworks are recommended to ensure high test pass 

percentages. Additionally, conducting regular training sessions on best practices will help 

maintain consistent code quality. Future research should focus on understanding the impact of 

code changes on continuous test failures and investigating strategies to improve deployment 

velocity while maintaining high code quality and stability. 
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