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ABSTRACT 

 

Developing reliable distributed systems poses significant challenges due to the non-

deterministic nature of thread and process execution, as well as communication channels. 

Software model checking offers a means to verify system correctness by exhaustively 

analyzing all program execution paths. However, the existing bytecode model checker, capable 

of verifying multiple processes, suffers from computational overhead. This paper introduces 

Java PathFinder (JPF)-Nas-Hybrid (JNH), a novel model checker addressing these limitations. 

JNH employs a redesigned inter-process communication (IPC) model and integrates a scalable 

caching mechanism. The experimental results show that the hybridization of centralization with 

cache significantly reduces the computational overhead and improves verification performance 

as well. Additionally, the paper explores bug detection strategies, distinguishing between local 

and global bugs, and evaluates various search strategies to explore distributed program state 

spaces. In every case, the proposed method results in a smaller state space, fewer bytecode 

instructions, and a shallower search graph. 

 

Keywords: Distributed systems, Software model checking, Java PathFinder, Centralization 

approach, Cache-based approach  

 

ABSTRAK 

 

Membangunkan sistem teragih yang boleh dipercayai menimbulkan cabaran yang ketara 

disebabkan oleh sifat bukan penentu bagi pelaksanaan thread dan proses, serta saluran 

komunikasi. Pemeriksaan model perisian menawarkan cara untuk mengesahkan ketepatan 
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sistem dengan menganalisis secara menyeluruh semua laluan pelaksanaan program. Walau 

bagaimanapun, penyemak model kod bait sedia ada, yang mampu mengesahkan pelbagai 

proses, mengalami overhed pengiraan. Artikel ini memperkenalkan Java PathFinder (JPF)-

Nas-Hybrid (JNH), penyemak model baru yang menangani batasan ini. JNH menggunakan 

model komunikasi antara proses (IPC) yang direka bentuk semula dan menyepadukan 

mekanisme caching berskala. Keputusan eksperimen menunjukkan bahawa penghibridan 

pemusatan dengan cache dengan ketara mengurangkan overhed pengiraan dan juga 

meningkatkan prestasi pengesahan. Selain itu, artikel ini meneroka strategi pengesanan pepijat, 

membezakan antara pepijat tempatan dan global, dan menilai pelbagai strategi carian untuk 

meneroka ruang keadaan program yang diedarkan. Dalam setiap kes, kaedah yang dicadangkan 

menghasilkan ruang keadaan yang lebih kecil, arahan kod bait yang lebih sedikit dan graf 

carian yang lebih cetek. 

 

Kata kunci: Sistem teragih; Semakan model perisian; Java PathFinder; Pendekatan pemusatan; 

Pendekatan berasaskan cache 

 

INTRODUCTION 

 

Modern society depends heavily on complex software systems, which are integral to various 

sectors such as banking, automotive, retail, and entertainment. These systems are typically 

large, distributed, and designed to meet specific quality standards. As our reliance on these 

intricate distributed systems grows, ensuring their correctness and subjecting them to thorough 

analysis becomes crucial. The most common method for analyzing distributed systems is 

testing. After a system is designed, it is evaluated using a finite set of test cases to confirm it 

functions as intended. Although testing can be effective, especially when test cases are selected 

with relevant domain expertise, it is important to recognize that testing cannot guarantee 

success for all potential system behaviors.  

 

On the other end of the analytical spectrum, formal methods use mathematical techniques to 

verify if a system meets a specified property under all possible conditions. One important sub-

discipline of formal methods is model checking (Clarke et al. 2018). Conventional model 

checkers for distributed systems necessitate the utilization of abstract modeling languages like 

TLA+ (Lamport 1994), PlusCal (Lamport 2009), Coq (Barras et al. 1999), and SPIN 

(Holzmann 1997). This approach demands a substantial investment of developer effort and 

does not guarantee the identification of all bugs in the system implementation. These model 

checkers can only detect bugs within the specified system model and have no way of finding 

bugs in the actual implementation (Anand 2020).  

 

A novel approach within the research community involves applying model checking directly 

to the actual implementations of distributed systems. The direct verification of real-world 

implementations enhances confidence in meeting software safety requirements. It's essential to 

recognize that adherence to system design specifications does not ensure compliance in the 

implementation phase. Numerous bugs related to concurrency, including race conditions, 

deadlocks, and assert violations, often come from programming errors during implementation. 

Verification during the design phase cannot definitively ensure the final deliverables will be 

free of bugs. Concrete model checkers (Yabandeh et al. 2009; Musuvathi et al. 2008; Lukman 

et al. 2019; Leesatapornwongsa et al. 2014; Laroussinie and Larsen 1998; Killian et al. 2007; 

Guo et al. 2011; Guerraoui and Yabandeh 2011; Deligiannis et al. 2016; Artho et al. 2017; 

Yang et al. 2009; Anand 2020; 2018) focus on testing and debugging unmodified distributed 

systems to detect failures, crashes, and violations of user-defined properties. They are model 
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checker tools for distributed systems, which are designed to address specific programming 

languages, such as Go (Anand 2020), or to examine the systems operating at the operating 

system level to identify bugs. Furthermore, concrete model checkers suffer from massive state 

space explosion and programming language coverage. 

 

Unlike any other concrete model checkers, the Java Pathfinder (Artho et al. 2024) or JPF model 

checks bytecode rather than native code or operating system code. This approach reduces a 

large number of unrelated state spaces. Additionally, JPF offers fundamental support for 

verifying distributed systems (Artho and Visser 2019). It provides a structure for examining 

Java bytecode, primarily utilizing an explicit state model checker. Created by the Robust 

Software Engineering Group at NASA Ames Research Center, JPF has been available as open 

source since 2005. 

 

Two primary approaches have been utilized for model-checking distributed systems during 

bytecode-level executions: centralization (Shafiei and Mehlitz 2014) and caching (Artho et al. 

2009). Centralization involves capturing multiple processes and inspecting them for both local 

and global faults. This method requires Inter-Process Communication (IPC) for storing 

communication data. A tool for centralization has been developed as an extension to JPF, 

referred to as JPF-NAS (Network Asynchronous System). Conversely, the caching approach 

captures only one process at a time, allowing other processes to function within their native 

environments. This approach seeks to minimize the state space by analyzing one process at a 

time and is implemented as NET-IOCACHE (Network Input/Output Cache), an enhancement 

of JPF. Communication data in this technique is stored in a branching-time cache (Artho et al. 

2009), storing either the server or client side of communication data. 

The current JPF-NAS tool uses two ArrayByteQueue buffers—one for the server to send data 

to the client and another for the client to send data to the server. These buffers store 

communication data and process them byte by byte. During state exploration, the centralization 

process writes one character to the queue, moves to the next state, removes the same character 

from the queue, and updates the state accordingly. Unfortunately, the write and read operations 

(which write and remove data from the queue) of the data streams result in computational 

overhead. 

 

In contemporary distributed systems, bytecode-level executions pose significant computational 

challenges, especially within centralized approaches. Our research aims to explore these 

challenges, seeking solutions to enhance system efficiency and performance. Specifically, we 

focus on addressing the intricate computational hurdles encountered by distributed systems, 

with a particular emphasis on bytecode-level executions within centralized frameworks. Our 

central inquiry revolves around how a hybridized approach, integrating caching mechanisms 

at the model checker level within centralized systems, can effectively manage computation 

overhead, mitigate the state space explosion problem, and optimize communication data 

management between processes. 

 

This paper is structured as follows: Section 2 covers the background, detailing the formalism 

for defining distributed systems and the design of a scalable branching-time cache, along with 

its integration into centralization. Section 3 outlines our methodology. Section 4 presents the 

results and discussions. Finally, Section 5 concludes and suggests future research directions. 
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BACKGROUND 

 

Labeled Transition Systems with Inputs and Outputs. A labelled transition system featuring 

inputs and outputs serves as a mathematical construct employed to precisely articulate the 

functioning of communication systems (Leungwattanakit et al., 2014; Bos, P. V. D., & 

Vaandrager, F. 2021). . The behaviour of this system can be represented by a labelled transition 

system, which is a 5-tuple <S, LI, LO, T, s0>, where: 

  

• S is a finite set of process states;  

• LI and LO are a set of input labels and a set of output labels, respectively;   

• LI ∩ LO = ∅. 

• T ⊆ S × (LI ∪ LO ∪ {τ}) × S is a set of transitions; 

• τ ∉ LI ∪ LO is an unobservable action; 

• s0 ∈ 𝑆 is the initial state; 

 

A process transitions from one state to another state based on a label. This label signifies an 

action within the process, which can be an input from another process, an output to another 

process, or an action that is not externally observable. The unobservable action can be viewed 

as an internal computation that occurs without interaction with the external environment. While 

there may be multiple distinct unobservable actions, this formalization simplifies by using the 

label τ to represent all of them without differentiation. In contrast to unobservable actions, the 

action l ∈ LI ∪ LO is observable. The set of labels for the LTS of P, represented as L(P), includes 

every label, that is LI ∪ LO ∪ {τ}. 

Consider a distributed system made up of a single process that includes a finite number of 

threads represented by the set Φ. Each thread T in Φ performs a series of actions. The behaviour 

of this system can be represented by a transition system (TS), which is a tuple <S, Act, →, s0>, 

where: 

• S is a set of states,  

• Act is a set of actions, 

• →⊆ 𝑆 × 𝐴𝑐𝑡 ×  𝛷 × 𝑆 is the transition relation, and  

• s0 ∈ 𝑆 is the initial state.  

 

The set of actions Act is divided into the set of visible actions V, and the set of invisible actions 

I. Instead of (s, 𝛼, T, s’) ∈→, it is written as 𝑠
𝛼
→
𝑇
𝑠′. The action 𝛼 is said to be enabled in the 

state s, if  

                          ∃𝑇 ∈ Φ ∶  ∃𝑠′ ∈ 𝑆 ∶ 𝑠
𝛼
→
𝑇
𝑠′         

Statement 2.2 describes if there exists a thread T in a set of threads 𝛷, then there exists next 

state s’ in the set of states S. Therefore, the state s moves to the state s’ for each thread T taking 

an action 𝛼. 

 

It uses enable(s) to denote the set of all enabled actions of any state s, that is,  

        𝑒𝑛𝑎𝑏𝑙𝑒𝑑(𝑠) = {𝛼 ∈ 𝐴𝑐𝑡 | ∃𝑇 ∈ Φ: ∃𝑠′ ∈ 𝑆: 𝑠
𝛼
→
𝑇
𝑠′}        

Statement 2.3 describes the set of all enabled actions of any state s that is if there exists an 

action 𝛼 in a set of actions Act or an element of thread T in the set of threads 𝛷, then the next 

state s’ exists in the states S; therefore, the thread T moves from the state s to the next state s’ 

by taking action 𝛼.  
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Each thread is assumed to be deterministic. At any state s, for each thread T, there is at most 

one action 𝛼 and state s’, where 𝑠
𝛼
→
𝑇
𝑠′. This is expressed by 

𝑖𝑓 𝑠
𝛼′
→
𝑇
𝑠′ 𝑎𝑛𝑑 𝑠

𝛼′′
→ 
𝑇
𝑠′′ 𝑡ℎ𝑒𝑛 𝛼′ = 𝛼′′𝑎𝑛𝑑 𝑠′ = 𝑠′′       

 

Think about a distributed system made up of a collection of (multi-threaded) processes. Let the 

set of threads Φ in the system represent all threads regardless of the process they belong to. 

The behaviour of this system can be represented by modeling it as a single process system 

made up of these threads and using a transition system TS.  

 

A state s is called a global state if,  

                      𝑒𝑛𝑎𝑏𝑙𝑒𝑑(𝑠)  ⊆ 𝑉         

The set of global states is denoted by g(S). Assuming that all actions to be executed from the 

initial state are visible and expressed by  

                     enabled(s0) ⊆ 𝑉           

As a consequence, s0 ∈ g(S). 

 

It's believed that the actions of one thread that are not visible do not impact actions taken by 

other threads. In software model checking, the focus is on the system states and transitions, 

which are influenced by instruction execution, including interactions with other systems. A 

state in a software system can consist of stack and heap data, as well as information about 

threads. 

 

Stream Abstraction. A request is a message sent from a process that is being analyzed using 

a model checker to an external process. The response is the message received by the process 

from the external process. A data stream s is a finite sequence of messages 𝑚: 𝑠 = <
𝑚0, … ,𝑚|𝑠|−1 >. A stream pointer 𝑠𝑝𝑠 = 𝑖 refers to a specific index i in the message sequence 

of a given data stream. A communication trace 𝑡 =< 𝑟𝑒𝑞, 𝑟𝑒𝑠𝑝, 𝑙𝑖𝑚𝑖𝑡 > consists of two data 

streams, a request stream and a response stream, and a limit function 𝑙𝑖𝑚𝑖𝑡(𝑠𝑝𝑟𝑒𝑞) ∶ 𝑠𝑝𝑟𝑒𝑠𝑝 

that maps a request pointer to its corresponding response pointer.  

 

A program works with a set of communication traces t (which are equivalent to streams or 

sockets in a particular programming language). Each socket is linked to a single 

communication trace. The standard program state consists of a global heap and multiple 

threads, each with its program counter and stack, as well as a pair of stream pointers for every 

communication trace. This expanded program state is monitored by the model checker and is 

subject to backtracking. All communication traces must be consistent with the first trace 

observed. In any possible program execution, there must be a single trace t’ such that, for all 

thread schedules, t = t’ when the program ends normally. 

 

Properties of Verification Systems. Errors in an LTS represent unfavorable conditions within 

a system, encompassing issues like local and global deadlocks, assert violations, and unhandled 

exceptions. Model checking aims to identify and locate these error states. Model checkers 

provide a conclusive determination regarding the existence of system faults through an 

exhaustive exploration of the state space. 

 

The Existing Caching Techniques: The study by (Artho et al. 2009) proposes the concept of 

caching input/output (I/O) traces for verifying various network applications. They introduce a 

tree data structure called branching-time cache, which accommodates diverging 
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communication traces between different thread schedules. In this approach, communication 

traces are captured and stored in a tree, as depicted in Figure 1. Figure 1 illustrates the 

branching-time cache data structure for two cache entries. The request pointer moves from one 

node to another. Non-root nodes can be either requesting nodes or response nodes. Requesting 

nodes can have either one or more request child nodes or one response node, but not both. 

Response nodes can only have one or more request child nodes. Each response node can 

contain multiple characters. 

 

With the branching cache data structure, a cache entry can hold a group of request nodes and a 

response node. However, this technique requires restarting the peer to generate the 

corresponding response for the request. The revised version of the I/O cache approach 

introduces a data structure known as the request/response tree (abbreviated as the RR tree). 

The RR tree is a tree data structure that always includes the root node, making it non-empty. 

Every descendant of the root node has a positive integer identification (ID) and an event node 

other than the root node is categorized as either a requesting node or response node based on 

the type of event, which is also grouped. 

 

The ID of the root node is always zero. Events are classified as either request events or response 

events. A request event represents a communication event initiated by the target program, such 

as sending a character, while a response event represents an event initiated by the external 

environment that affects the target program, such as accepting a connection request or receiving 

a character. Request events and response events are contained in request nodes and response 

nodes, respectively, which are attached to the RR tree. Request nodes can be followed by either 

request nodes or response nodes. The tree also includes pairs of state pointers, request pointers, 

and response pointers. The request pointer points to the node representing the most recent 

message sent by the target program, while the response pointer points to the node representing 

the most recent message read by the target program. 

 

In the case of multiple logical connections, there can be more than one pair of request and 

response pointers in the tree. Each pair of pointers corresponds to one logical connection, and 

the number of pairs equals the number of logical connections referenced by the target program. 

All connections share the same tree, assuming that they connect the target program to the same 

peer. If the target program happens to connect to multiple peers, the cache layer would create 

a separate tree for each peer. Although this work does not cover scenarios with multiple peers, 

it is a potential area of future support. 

 

For each pair of pointers, the request pointer and the response pointer always exist on the same 

trace. Not all response messages in the tree are available. A response that has not been 

requested should not be visible to the target process. Only one pair of request and response 

pointers is active at any given time to simplify operations on the RR tree. It is referred to the 

node pointed to by the active request/response pointer as the active request/response node. 
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FIGURE 1. Branching-time request/response tree. 

 

METHODOLOGY 

 

The research methodology involves three main experimental steps: preliminary, experimental, 

and evaluation. In the preliminary phase, experiments on centralization and caching are 

conducted, and limitations are identified. Initially, experiments are conducted on centralization 

and caching using benchmark distributed applications, and information logs are gathered. 

Subsequently, the study identifies the limitations of centralization by meticulously examining 

specific areas for improvement.  

 

Based on experimental findings, the study leans towards investigating the branching-time 

cache due to its adaptable design and primary role in storing communication data for model 

checking in distributed systems. Considering that the branching-time cache only stores one 

side of communication data, either client or server data, the study proposes a scalable 

branching-time cache capable of storing communication data from multiple processes. 

Ultimately, the research advocates for a hybrid model checker designed to integrate with the 

previously designed branching-time cache.  

 

The second part of the research methodology entails the experimental process, which includes 

comparing existing centralization with the proposed centralization. Both model checkers are 

evaluated in terms of computational overhead. Finally, the concluding phase involves assessing 

the proposed work by evaluating both model checkers based on computational overhead using 

a JVM monitor. Figure 2 depicts the comprehensive research methodology employed in this 

study.  

 

The Proposed Reduction Techniques. This section discusses the formal models and 

definitions essential for supporting the proposed hybridization of centralization and cache 

approaches. The branching-time cache has been modified for scalability and enabling it to store 

multiple process communication data rather than just individual process communication data. 

Subsequently, the endeavor integrates the scalable cache into the centralization model checker 

to address computational overhead and reduce the state space. Two significant modifications 

to the current limitation of the existing Inter-Process Communication (IPC) are outlined as 

follows: 

 

1. With the communication data now accessible in the cache, the newly designed IPC 

employs multiple pointers to navigate through the data. This approach is significantly 
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more cost-effective than the previous method of writing and reading (read and remove) 

one byte at a time with ArrayByteQueue during backtracking, thereby minimizing 

computational overhead. 

 

2. Instead of processing communication data byte by byte during the backtracking 

process, the updated IPC now processes data in multi-byte chunks, thereby reducing 

the number of explored states. 

 

 

FIGURE 2. Research methodology framework 

 

Computational overhead in model checking refers to the additional computational resources 

required to perform the verification or analysis of a system when compared to its baseline, 

unmodified form. Consider a cache C is a set of cached data, where each cached state c ∈ C is 

associated with a unique identifier and stores the result of some previously performed 

computation. 

 

Definition 1: A state space exploration is a sequence of states s0,s1,…, sn such that for each i, 0 

≤ i < n, there exists an action ai ∈ Act such that as si → si+1 by taking action ai.  
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Definition 2: Given a state s in the exploration, if s is found in the cache C, it is a cache hit. 

Otherwise, it is a cache miss.  

 

Definition 3: The cache utilizes pointers to efficiently traverse through the data stored in 

memory. Each cached state c may have pointers that indicate connections to other cached states 

or relevant information.  

 

Let E be the total computational cost of using “ArrayByteQueue”, and E′ be the total 

computational cost with the applied cache pointers. Computational overhead reduction (R) is 

formally defined as (R) = E – E’. This reduction cost quantifies the difference in computational 

overhead between the two approaches, indicating how much more efficient the multiple 

pointers in the cache are compared to the queue-based approach. 

  

For example, suppose the model checker has a SUT where communication data needs to be 

frequently accessed and processed. Let's say the queue-based approach takes E = 1000 

computational units for a specific workload, while the multiple pointers in cache take E’ = 500 

computational units for the same workload. The computational reduction cost would then be 

(R) = 500 computational units. This means that using multiple pointers in a cache reduces the 

computational overhead by 500 units compared to the queue-based approach for the given 

workload. 

 

EVALUATION 

 

Our study evaluated a set of distributed Java applications, detailed in Table 1. These programs, 

referenced in previous research (Shafiei and Mehlitz 2014), range from simple, single-threaded 

applications (Echo) to more complex, multi-threaded ones (Alphabet). Echo involves single-

threaded server and client processes, whereas Alphabet includes multi-threaded server and 

client processes. 

 

TABLE 1. Distributed Java Applications 

Application Size (LOC) Min. Thread Architecture 

Echo server 25 1 main thread Client/server 

Echo client 38 1 main thread, 1 worker thread Client/server 

Daytime server 22 1 main thread Client/server 

Daytime client 34 1 main thread, 1 worker thread Client/server 

Alphabet server 40 1 main thread, 1 worker thread Client/server 

Alphabet producer 14 1 main thread Client/server 

Alphabet consumer 19 1 main thread Client/server 

Alphabet client 31 1 main thread Client/server 

 

The empirical analysis of these benchmark applications focused on various factors such as 

computational performance, time complexity, maximum memory consumption, state space 

exploration, bytecode execution, and search tree depth, as noted in prior studies 

(Leungwattanakit et al., 2014; Shafiei & Mehlitz, 2014). The following sections elaborate on 

the empirical analysis of the experiments.  

 

Computational Performance and Time Complexity: We measure the algorithm's efficiency 

by evaluating how long it takes to execute and the computational resources it consumes. This 

includes analyzing the time complexity to understand the scalability of the proposed method 

with increasing input sizes.  
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Maximum Memory Consumption: The memory usage of the algorithm is monitored to 

ensure it remains within acceptable limits. This is crucial for applications with limited memory 

resources.  

 

State Space Exploration: We leveraged Java PathFinder (JPF) to explore the state space using 

multiple listeners: 

 

1. DistributedSimpleDot Listener: Generates a dot file that visualizes the search graph 

explored by JPF. It differentiates between local and global scheduling points, depicted 

as circles and octagons, respectively. 

2. StateSpaceAnalyzer Listener: Collects data on the choices made during the model-

checking process, allowing identification of factors contributing to the size of the state 

space. 

3. JPF Logging System: Used for troubleshooting and understanding the execution of 

bytecodes on the JPF JVM level.   

 

Hardware and Software Setup: Experiments were run on a machine with the following 

configuration: 

Operating System: Windows 10 Pro 64-bit (10.0, Build 19044) 

Processor: Intel(R) Core(TM) i7-10870H CPU @ 2.20GHz (16 CPUs, ~2.2GHz) 

Memory: 16GB 

Java Development Kit: 1.8.0_391 

Java PathFinder Core System Version: 8.0 

Eclipse IDE: 4.14.0 

JVM Monitor Version: 3.8 

 

This setup provided a reliable environment for testing and validating the method under 

realistic conditions. 

 

RESULT AND DISCUSSION 

 

A comparison of CPU usage between JPF-NAS and JNH for the Echo, Daytime, and Alphabet 

applications is presented in figures 3, 4, and 5 respectively.  In these experiments, CPU usage 

was monitored over time, with the x-axis representing the computer time and the y-axis 

indicating CPU usage as a percentage. 

 

During model checking with JPF-NAS, CPU usage remained consistently high. Notably, in the 

Echo application, there was a drop to 65%, but in most cases, the CPU maintained a 100% 

usage, leading to computational overhead. This sustained usage caused the CPU to halt, 

preventing it from handling other tasks efficiently. 

 

On the other hand, JNH demonstrated a more balanced CPU usage. The system was able to 

release CPU resources as needed, allowing it to remain responsive to users and manage 

additional tasks concurrently. This performance difference highlights JNH's efficiency in 

reducing computational strain during model checking. 
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FIGURE 3.  CPU Usage comparison between JPF-Nas and JNH for Echo application. 

 

 

 

FIGURE 4. CPU Usage comparison between JPF-Nas and JNH for Daytime application. 

 

 

FIGURE 5. CPU Usage comparison between JPF-Nas and JNH for Alphabet application. 

 

Tables 2, 3, and 4 present the execution time in seconds along with the number of states and 

maximum memory obtained from applying both approaches. The first column shows the 

increment of the two variables described above. For the experimental results, in every case, the 

proposed approach has better performance. Moreover, the number of states and the number of 

memory consumption does not increase exponentially; additionally, the proposed approach can 

model checks up to 5 clients and 5 servers while the existing centralization is not able to. 
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TABLE 2. Execution results obtained from model checking Echo application 

using JNH and JPF-NAS.  

Thread JPF-NAS-HYBRID JPF-NAS 

Client Server Time States Max Memory (MB) Time States Max Memory (MB) 

1 1 0 60 243 0 66 243 

2 2 0 741 243 0 1397 243 

3 3 2 8767 432 8 27288 688 

4 4 28 98544 432 158 483298 2416 

5 5 411 1075796 782 N/A N/A N/A 

 

TABLE 3. Execution results obtained from model checking Daytime 

application using JNH and JPF-NAS.  

Thread JPF-NAS-HYBRID JPF-NAS 

Client Server Time States Max Memory (MB) Time States Max Memory (MB) 

1 1 0 62 243 0 100 243 

2 2 7 9145 688 23 92598 991 

 

TABLE 4. Execution results obtained from model checking Alphabet 

application using JNH and JPF-NAS.  

Thread JPF-NAS-HYBRID JPF-NAS 

Client Server Time States Max Memory (MB) Time States Max Memory (MB) 

1 1 0 549 243 0 100 243 

2 2 61 227387 687 82 301409 1691 

 

Table 2 shows the execution results for model checking the Echo application, where 

performance metrics are provided for different configurations involving various numbers of 

threads and clients. The metrics for each configuration include the execution time (in seconds), 

the number of states explored, and the maximum memory usage (in megabytes). In the case of 

a single thread with one client and no server, JPF-NAS-HYBRID completed the task in 60 

seconds, exploring 243 states, with a maximum memory usage of 243 MB. JPF-NAS, under 

the same configuration, took slightly longer at 66 seconds, exploring the same number of states 

with the same maximum memory usage. 

 

As the number of threads and clients increased, the difference in performance between the two 

tools became more pronounced. With two threads and two clients, JPF-NAS-HYBRID 

completed the task in 741 seconds while maintaining the same number of states and memory 

usage as the single-thread case. JPF-NAS, however, took almost twice as long at 1397 seconds, 

though the states and memory usage remained the same. 

 

For three threads with three clients and two servers, JPF-NAS-HYBRID took 8767 seconds, 

exploring 432 states with a maximum memory usage of 432 MB. In contrast, JPF-NAS 

required 27288 seconds to complete the task, exploring significantly more states (688) and 

using more memory (688 MB). The trend continues with higher thread counts. With four 

threads, four clients, and 28 servers, JPF-NAS-HYBRID completed the task in 98544 seconds, 

exploring 432 states with a memory usage of 432 MB. JPF-NAS, however, required a 

staggering 483298 seconds, exploring 2416 states and consuming 2416 MB of memory. For 

the highest configuration tested, with five threads, five clients, and 411 servers, JPF-NAS-
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HYBRID completed the task in 1075796 seconds, exploring 782 states with a memory usage 

of 782 MB. Unfortunately, the data for JPF-NAS in this configuration is not available (N/A), 

indicating possible execution or resource limitations. 

 

Table 3 provides the execution results for the Daytime application under different thread and 

client configurations. The table follows the same format as Table 2, listing the execution time, 

number of states explored, and maximum memory usage for each configuration. With one 

thread, one client, and no server, JPF-NAS-HYBRID completed the task in 62 seconds, 

exploring 243 states with a maximum memory usage of 243 MB. JPF-NAS, under the same 

conditions, took longer at 100 seconds, though the states explored and memory usage remained 

the same. When the configuration increased to two threads, two clients, and seven servers, JPF-

NAS-HYBRID completed the task in 9145 seconds, exploring 688 states with a maximum 

memory usage of 688 MB. JPF-NAS, however, took significantly longer at 92598 seconds, 

exploring 991 states and using 991 MB of memory. 

 

Table 4 details the execution results for the Alphabet application, with performance metrics 

provided for different configurations involving various numbers of threads and clients. For one 

thread, one client, and no server, JPF-NAS-HYBRID completed the task in 549 seconds, 

exploring 243 states with a maximum memory usage of 243 MB. JPF-NAS, under the same 

conditions, took only 100 seconds, exploring the same number of states with the same memory 

usage. With two threads, two clients, and 61 servers, JPF-NAS-HYBRID took 227387 seconds, 

exploring 687 states with a maximum memory usage of 687 MB. In contrast, JPF-NAS 

required 301409 seconds, exploring 1691 states and consuming 1691 MB of memory. 

 

Bug Seeding. In distributed systems, different components of the system may need distinct 

software and hardware, and failures can happen at various levels. Identifying potential issues 

may require simulating failures across multiple layers. Previous findings indicate that the 

proposed JNH model checker can identify the global deadlock of the Echo application. In this 

section, the work introduces the injection of bugs in experimental distributed applications and 

demonstrates that the JNH model checker with the newly designed scalable cache retains its 

ability to detect local bugs, which depends on the local scheduler of the JPF core system. 

 

The purpose of these experiments is to find out whether the proposed method still preserves 

local bug events when extending functionalities from the JPF core system. There are two parts 

in that the bugs are injected into the system under test (SUT). The first part is the injection of 

the codes right after the main method and the end of the main method. These are done for Echo 

and Daytime applications, shown in Figure 6. Another part of bug injection is performed at 

every start of the thread and the end of the threads. Therefore, these experiments will ensure 

that the local scheduler is working well during the model-checking process. 
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FIGURE 6. Example of Echo and Daytime bug seeding. 

 

When the model-checking process starts, the execution will be aborted when there is an error 

found. To enable the JPF execution to continue running until completion, the property 

"search.multiple_errors" is set to true. Figure 7 illustrates the example of Chat and Alphabet 

bug seeding. 

 

 

FIGURE 7. Example of Alphabet bug seeding. 
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CONCLUSION 

 

The article discusses advancements in verifying distributed multithreaded Java applications, 

particularly emphasizing enhancements in model-checking methods at the bytecode execution 

stage. Prior strategies have implemented centralization and caching techniques to authenticate 

distributed systems, each possessing distinct advantages and drawbacks. This work opts to 

refine the centralization approach due to its capability to accommodate multiple processes. 

However, the existing inter-process communication (IPC) design within the centralization 

results in excessive computational overhead. The branching-time cache has been customized 

and the suggested alterations for managing inter-process communication, such as relocating 

the request and response tree and processing data in multi-byte chunks, showcase approaches 

for reducing computational overhead.  
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