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ABSTRACT

Developing reliable distributed systems poses significant challenges due to the non-
deterministic nature of thread and process execution, as well as communication channels.
Software model checking offers a means to verify system correctness by exhaustively
analyzing all program execution paths. However, the existing bytecode model checker, capable
of verifying multiple processes, suffers from computational overhead. This paper introduces
Java PathFinder (JPF)-Nas-Hybrid (JNH), a novel model checker addressing these limitations.
JNH employs a redesigned inter-process communication (IPC) model and integrates a scalable
caching mechanism. The experimental results show that the hybridization of centralization with
cache significantly reduces the computational overhead and improves verification performance
as well. Additionally, the paper explores bug detection strategies, distinguishing between local
and global bugs, and evaluates various search strategies to explore distributed program state
spaces. In every case, the proposed method results in a smaller state space, fewer bytecode
instructions, and a shallower search graph.

Keywords: Distributed systems, Software model checking, Java PathFinder, Centralization
approach, Cache-based approach

ABSTRAK
Membangunkan sistem teragih yang boleh dipercayai menimbulkan cabaran yang ketara

disebabkan oleh sifat bukan penentu bagi pelaksanaan thread dan proses, serta saluran
komunikasi. Pemeriksaan model perisian menawarkan cara untuk mengesahkan ketepatan
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sistem dengan menganalisis secara menyeluruh semua laluan pelaksanaan program. Walau
bagaimanapun, penyemak model kod bait sedia ada, yang mampu mengesahkan pelbagai
proses, mengalami overhed pengiraan. Artikel ini memperkenalkan Java PathFinder (JPF)-
Nas-Hybrid (JNH), penyemak model baru yang menangani batasan ini. JNH menggunakan
model komunikasi antara proses (IPC) yang direka bentuk semula dan menyepadukan
mekanisme caching berskala. Keputusan eksperimen menunjukkan bahawa penghibridan
pemusatan dengan cache dengan ketara mengurangkan overhed pengiraan dan juga
meningkatkan prestasi pengesahan. Selain itu, artikel ini meneroka strategi pengesanan pepijat,
membezakan antara pepijat tempatan dan global, dan menilai pelbagai strategi carian untuk
meneroka ruang keadaan program yang diedarkan. Dalam setiap kes, kaedah yang dicadangkan
menghasilkan ruang keadaan yang lebih kecil, arahan kod bait yang lebih sedikit dan graf
carian yang lebih cetek.

Kata kunci: Sistem teragih; Semakan model perisian; Java PathFinder; Pendekatan pemusatan;
Pendekatan berasaskan cache

INTRODUCTION

Modern society depends heavily on complex software systems, which are integral to various
sectors such as banking, automotive, retail, and entertainment. These systems are typically
large, distributed, and designed to meet specific quality standards. As our reliance on these
intricate distributed systems grows, ensuring their correctness and subjecting them to thorough
analysis becomes crucial. The most common method for analyzing distributed systems is
testing. After a system is designed, it is evaluated using a finite set of test cases to confirm it
functions as intended. Although testing can be effective, especially when test cases are selected
with relevant domain expertise, it is important to recognize that testing cannot guarantee
success for all potential system behaviors.

On the other end of the analytical spectrum, formal methods use mathematical techniques to
verify if a system meets a specified property under all possible conditions. One important sub-
discipline of formal methods is model checking (Clarke et al. 2018). Conventional model
checkers for distributed systems necessitate the utilization of abstract modeling languages like
TLA+ (Lamport 1994), PlusCal (Lamport 2009), Coq (Barras et al. 1999), and SPIN
(Holzmann 1997). This approach demands a substantial investment of developer effort and
does not guarantee the identification of all bugs in the system implementation. These model
checkers can only detect bugs within the specified system model and have no way of finding
bugs in the actual implementation (Anand 2020).

A novel approach within the research community involves applying model checking directly
to the actual implementations of distributed systems. The direct verification of real-world
implementations enhances confidence in meeting software safety requirements. It's essential to
recognize that adherence to system design specifications does not ensure compliance in the
implementation phase. Numerous bugs related to concurrency, including race conditions,
deadlocks, and assert violations, often come from programming errors during implementation.
Verification during the design phase cannot definitively ensure the final deliverables will be
free of bugs. Concrete model checkers (YYabandeh et al. 2009; Musuvathi et al. 2008; Lukman
et al. 2019; Leesatapornwongsa et al. 2014; Laroussinie and Larsen 1998; Killian et al. 2007;
Guo et al. 2011; Guerraoui and Yabandeh 2011; Deligiannis et al. 2016; Artho et al. 2017,
Yang et al. 2009; Anand 2020; 2018) focus on testing and debugging unmodified distributed
systems to detect failures, crashes, and violations of user-defined properties. They are model
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checker tools for distributed systems, which are designed to address specific programming
languages, such as Go (Anand 2020), or to examine the systems operating at the operating
system level to identify bugs. Furthermore, concrete model checkers suffer from massive state
space explosion and programming language coverage.

Unlike any other concrete model checkers, the Java Pathfinder (Artho et al. 2024) or JPF model
checks bytecode rather than native code or operating system code. This approach reduces a
large number of unrelated state spaces. Additionally, JPF offers fundamental support for
verifying distributed systems (Artho and Visser 2019). It provides a structure for examining
Java bytecode, primarily utilizing an explicit state model checker. Created by the Robust
Software Engineering Group at NASA Ames Research Center, JPF has been available as open
source since 2005.

Two primary approaches have been utilized for model-checking distributed systems during
bytecode-level executions: centralization (Shafiei and Mehlitz 2014) and caching (Artho et al.
2009). Centralization involves capturing multiple processes and inspecting them for both local
and global faults. This method requires Inter-Process Communication (IPC) for storing
communication data. A tool for centralization has been developed as an extension to JPF,
referred to as JPF-NAS (Network Asynchronous System). Conversely, the caching approach
captures only one process at a time, allowing other processes to function within their native
environments. This approach seeks to minimize the state space by analyzing one process at a
time and is implemented as NET-IOCACHE (Network Input/Output Cache), an enhancement
of JPF. Communication data in this technique is stored in a branching-time cache (Artho et al.
2009), storing either the server or client side of communication data.

The current JPF-NAS tool uses two ArrayByteQueue buffers—one for the server to send data
to the client and another for the client to send data to the server. These buffers store
communication data and process them byte by byte. During state exploration, the centralization
process writes one character to the queue, moves to the next state, removes the same character
from the queue, and updates the state accordingly. Unfortunately, the write and read operations
(which write and remove data from the queue) of the data streams result in computational
overhead.

In contemporary distributed systems, bytecode-level executions pose significant computational
challenges, especially within centralized approaches. Our research aims to explore these
challenges, seeking solutions to enhance system efficiency and performance. Specifically, we
focus on addressing the intricate computational hurdles encountered by distributed systems,
with a particular emphasis on bytecode-level executions within centralized frameworks. Our
central inquiry revolves around how a hybridized approach, integrating caching mechanisms
at the model checker level within centralized systems, can effectively manage computation
overhead, mitigate the state space explosion problem, and optimize communication data
management between processes.

This paper is structured as follows: Section 2 covers the background, detailing the formalism
for defining distributed systems and the design of a scalable branching-time cache, along with
its integration into centralization. Section 3 outlines our methodology. Section 4 presents the
results and discussions. Finally, Section 5 concludes and suggests future research directions.
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BACKGROUND

Labeled Transition Systems with Inputs and Outputs. A labelled transition system featuring
inputs and outputs serves as a mathematical construct employed to precisely articulate the
functioning of communication systems (Leungwattanakit et al., 2014; Bos, P. V. D., &
Vaandrager, F. 2021). . The behaviour of this system can be represented by a labelled transition
system, which is a 5-tuple <S, Ly, Lo, T, so>, where:

e Sis afinite set of process states;

Liand Lo are a set of input labels and a set of output labels, respectively;
LiNLo=0.

TS Sx(LiULoU {t}) x Sis a set of transitions;

7 L1 ULo is an unobservable action;

So € S is the initial state;

A process transitions from one state to another state based on a label. This label signifies an
action within the process, which can be an input from another process, an output to another
process, or an action that is not externally observable. The unobservable action can be viewed
as an internal computation that occurs without interaction with the external environment. While
there may be multiple distinct unobservable actions, this formalization simplifies by using the
label t to represent all of them without differentiation. In contrast to unobservable actions, the
action| €L, ULois observable. The set of labels for the LTS of P, represented as L(P), includes
every label, thatis Ly ULo U {z}.

Consider a distributed system made up of a single process that includes a finite number of
threads represented by the set @. Each thread T in & performs a series of actions. The behaviour
of this system can be represented by a transition system (TS), which is a tuple <S, Act, —, so>,
where:

S is a set of states,

Act is a set of actions,

—-C S X Act x @ X S is the transition relation, and

so € S is the initial state.

The set of actions Act is divided into the set of visible actions V, and the set of invisible actions
I. Instead of (s, a, T, s’) €, it is written as s % s’. The action « is said to be enabled in the
state s, if

AT € ¢ : ElS’ES!S%)S,
Statement 2.2 describes if there exists a thread T in a set of threads @, then there exists next

state s’ in the set of states S. Therefore, the state s moves to the state s’ for each thread T taking
an action a.

It uses enable(s) to denote the set of all enabled actions of any state s, that is,
enabled(s) = {a € Act | AT € ®:3s' € S:s % s'}

Statement 2.3 describes the set of all enabled actions of any state s that is if there exists an
action a in a set of actions Act or an element of thread T in the set of threads @, then the next
state s’ exists in the states S; therefore, the thread T moves from the state s to the next state s’
by taking action a.
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Each thread is assumed to be deterministic. At any state s, for each thread T, there is at most
one action a and state s’, where s % s’. This is expressed by

al arr
if s>s'ands —>s'" thena' = a"ands' =s"
T T

Think about a distributed system made up of a collection of (multi-threaded) processes. Let the
set of threads @ in the system represent all threads regardless of the process they belong to.
The behaviour of this system can be represented by modeling it as a single process system
made up of these threads and using a transition system TS.

A state s is called a global state if,
enabled(s) €V
The set of global states is denoted by g(S). Assuming that all actions to be executed from the
initial state are visible and expressed by
enabled(so) € V
As a consequence, So € g(S).

It's believed that the actions of one thread that are not visible do not impact actions taken by
other threads. In software model checking, the focus is on the system states and transitions,
which are influenced by instruction execution, including interactions with other systems. A
state in a software system can consist of stack and heap data, as well as information about
threads.

Stream Abstraction. A request is a message sent from a process that is being analyzed using
a model checker to an external process. The response is the message received by the process
from the external process. A data stream s is a finite sequence of messages m:s = <
my, ..., Msj—1 >. A stream pointer sp; = i refers to a specific index i in the message sequence
of a given data stream. A communication trace t =< req, resp, limit > consists of two data
streams, a request stream and a response stream, and a limit function limit(spreq) ! SDresp
that maps a request pointer to its corresponding response pointer.

A program works with a set of communication traces t (which are equivalent to streams or
sockets in a particular programming language). Each socket is linked to a single
communication trace. The standard program state consists of a global heap and multiple
threads, each with its program counter and stack, as well as a pair of stream pointers for every
communication trace. This expanded program state is monitored by the model checker and is
subject to backtracking. All communication traces must be consistent with the first trace
observed. In any possible program execution, there must be a single trace t’ such that, for all
thread schedules, t =t” when the program ends normally.

Properties of Verification Systems. Errors in an LTS represent unfavorable conditions within
a system, encompassing issues like local and global deadlocks, assert violations, and unhandled
exceptions. Model checking aims to identify and locate these error states. Model checkers
provide a conclusive determination regarding the existence of system faults through an
exhaustive exploration of the state space.

The Existing Caching Techniques: The study by (Artho et al. 2009) proposes the concept of
caching input/output (1/0O) traces for verifying various network applications. They introduce a
tree data structure called branching-time cache, which accommodates diverging
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communication traces between different thread schedules. In this approach, communication
traces are captured and stored in a tree, as depicted in Figure 1. Figure 1 illustrates the
branching-time cache data structure for two cache entries. The request pointer moves from one
node to another. Non-root nodes can be either requesting nodes or response nodes. Requesting
nodes can have either one or more request child nodes or one response node, but not both.
Response nodes can only have one or more request child nodes. Each response node can
contain multiple characters.

With the branching cache data structure, a cache entry can hold a group of request nodes and a
response node. However, this technique requires restarting the peer to generate the
corresponding response for the request. The revised version of the I/0O cache approach
introduces a data structure known as the request/response tree (abbreviated as the RR tree).
The RR tree is a tree data structure that always includes the root node, making it non-empty.
Every descendant of the root node has a positive integer identification (ID) and an event node
other than the root node is categorized as either a requesting node or response node based on
the type of event, which is also grouped.

The ID of the root node is always zero. Events are classified as either request events or response
events. A request event represents a communication event initiated by the target program, such
as sending a character, while a response event represents an event initiated by the external
environment that affects the target program, such as accepting a connection request or receiving
a character. Request events and response events are contained in request nodes and response
nodes, respectively, which are attached to the RR tree. Request nodes can be followed by either
request nodes or response nodes. The tree also includes pairs of state pointers, request pointers,
and response pointers. The request pointer points to the node representing the most recent
message sent by the target program, while the response pointer points to the node representing
the most recent message read by the target program.

In the case of multiple logical connections, there can be more than one pair of request and
response pointers in the tree. Each pair of pointers corresponds to one logical connection, and
the number of pairs equals the number of logical connections referenced by the target program.
All connections share the same tree, assuming that they connect the target program to the same
peer. If the target program happens to connect to multiple peers, the cache layer would create
a separate tree for each peer. Although this work does not cover scenarios with multiple peers,
it is a potential area of future support.

For each pair of pointers, the request pointer and the response pointer always exist on the same
trace. Not all response messages in the tree are available. A response that has not been
requested should not be visible to the target process. Only one pair of request and response
pointers is active at any given time to simplify operations on the RR tree. It is referred to the
node pointed to by the active request/response pointer as the active request/response node.
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FIGURE 1. Branching-time request/response tree.

METHODOLOGY

The research methodology involves three main experimental steps: preliminary, experimental,
and evaluation. In the preliminary phase, experiments on centralization and caching are
conducted, and limitations are identified. Initially, experiments are conducted on centralization
and caching using benchmark distributed applications, and information logs are gathered.
Subsequently, the study identifies the limitations of centralization by meticulously examining
specific areas for improvement.

Based on experimental findings, the study leans towards investigating the branching-time
cache due to its adaptable design and primary role in storing communication data for model
checking in distributed systems. Considering that the branching-time cache only stores one
side of communication data, either client or server data, the study proposes a scalable
branching-time cache capable of storing communication data from multiple processes.
Ultimately, the research advocates for a hybrid model checker designed to integrate with the
previously designed branching-time cache.

The second part of the research methodology entails the experimental process, which includes
comparing existing centralization with the proposed centralization. Both model checkers are
evaluated in terms of computational overhead. Finally, the concluding phase involves assessing
the proposed work by evaluating both model checkers based on computational overhead using
a JVM monitor. Figure 2 depicts the comprehensive research methodology employed in this
study.

The Proposed Reduction Techniques. This section discusses the formal models and
definitions essential for supporting the proposed hybridization of centralization and cache
approaches. The branching-time cache has been modified for scalability and enabling it to store
multiple process communication data rather than just individual process communication data.
Subsequently, the endeavor integrates the scalable cache into the centralization model checker
to address computational overhead and reduce the state space. Two significant modifications
to the current limitation of the existing Inter-Process Communication (IPC) are outlined as
follows:

1. With the communication data now accessible in the cache, the newly designed IPC
employs multiple pointers to navigate through the data. This approach is significantly
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more cost-effective than the previous method of writing and reading (read and remove)
one byte at a time with ArrayByteQueue during backtracking, thereby minimizing
computational overhead.

2. Instead of processing communication data byte by byte during the backtracking
process, the updated IPC now processes data in multi-byte chunks, thereby reducing
the number of explored states.

1.1 Experimenting Model Checker Level Cenlralization 1.3 Experimenting Branching-Time Cache
Exparimenting JPF-NAS with sample application. : Exparimenting MET-IDCACHE with sample application.
Increasing number of processes, threads, and : Increasing number of processes, threads, and
communication data. : communication data.
Collect result based on five metrics (time, stales, max i | Collect result based on five metrics (time, states. max :
g- memony, bylecoda, max depth) 5| memory, bytecode, max depth)
8 | |
E 1.2 Formulating the limitation and identifying critical 1.4 Formulating the limitation and selection of branching-time
E parts for further improvemaent cache for further investigation.
E [ I
|
1.5 Customizing branching-time cache to siore multiple process communication data by looking into existing design, classes,
algorithms, and codes
1.6 Developing the proposed model checker called JPF-MAS-HYBRID with the integration of the proposed branching-time
cacha
1.7 Developing formal model, definitions, and algorithms to support the proposed work.
; Conlralization (withoul cache) ~ Ceniralizabion (with cache)
| Experimenting JPF-MAS I | Experimenting JPF-NAS-HYBRID |
g 1 i
5 [ Running on benchmarked applcations I | Running on benchmarked applications |
5 1 i
E : InCrgasing number of processes, threads, and Increasing number of processes, threads, and
E communication data communication data
g 1 i
P I Collecting results based on computational overhead I I Collecling results based on computational overhead |
: 2.1 Compare both model checkers using benchmark applications.
5
H : 3.1 Evaluating bolh medel chackers based on compulalional overhead using JVM manitor,
¥
"
=
T T

FIGURE 2. Research methodology framework

Computational overhead in model checking refers to the additional computational resources
required to perform the verification or analysis of a system when compared to its baseline,
unmodified form. Consider a cache C is a set of cached data, where each cached state c € C is
associated with a unique identifier and stores the result of some previously performed
computation.

Definition 1: A state space exploration is a sequence of states so,S, ..., sn such that for each i, 0
<i < n, there exists an action a; € Act such that as si — si+1 by taking action a.
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Definition 2: Given a state s in the exploration, if s is found in the cache C, it is a cache hit.
Otherwise, it is a cache miss.

Definition 3: The cache utilizes pointers to efficiently traverse through the data stored in
memory. Each cached state ¢ may have pointers that indicate connections to other cached states
or relevant information.

Let E be the total computational cost of using “ArrayByteQueue”, and E’ be the total
computational cost with the applied cache pointers. Computational overhead reduction (R) is
formally defined as (R) = E — £. This reduction cost quantifies the difference in computational
overhead between the two approaches, indicating how much more efficient the multiple
pointers in the cache are compared to the queue-based approach.

For example, suppose the model checker has a SUT where communication data needs to be
frequently accessed and processed. Let's say the queue-based approach takes E = 1000
computational units for a specific workload, while the multiple pointers in cache take £’ = 500
computational units for the same workload. The computational reduction cost would then be
(R) = 500 computational units. This means that using multiple pointers in a cache reduces the
computational overhead by 500 units compared to the queue-based approach for the given
workload.

EVALUATION

Our study evaluated a set of distributed Java applications, detailed in Table 1. These programs,
referenced in previous research (Shafiei and Mehlitz 2014), range from simple, single-threaded
applications (Echo) to more complex, multi-threaded ones (Alphabet). Echo involves single-
threaded server and client processes, whereas Alphabet includes multi-threaded server and
client processes.

TABLE 1. Distributed Java Applications

Application Size (LOC) Min. Thread Architecture
Echo server 25 1 main thread Client/server
Echo client 38 1 main thread, 1 worker thread  Client/server
Daytime server 22 1 main thread Client/server
Daytime client 34 1 main thread, 1 worker thread  Client/server
Alphabet server 40 1 main thread, 1 worker thread  Client/server
Alphabet producer 14 1 main thread Client/server
Alphabet consumer 19 1 main thread Client/server
Alphabet client 31 1 main thread Client/server

The empirical analysis of these benchmark applications focused on various factors such as
computational performance, time complexity, maximum memory consumption, state space
exploration, bytecode execution, and search tree depth, as noted in prior studies
(Leungwattanakit et al., 2014; Shafiei & Mehlitz, 2014). The following sections elaborate on
the empirical analysis of the experiments.

Computational Performance and Time Complexity: We measure the algorithm's efficiency
by evaluating how long it takes to execute and the computational resources it consumes. This
includes analyzing the time complexity to understand the scalability of the proposed method
with increasing input sizes.
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Maximum Memory Consumption: The memory usage of the algorithm is monitored to
ensure it remains within acceptable limits. This is crucial for applications with limited memory
resources.

State Space Exploration: We leveraged Java PathFinder (JPF) to explore the state space using
multiple listeners:

1. DistributedSimpleDot Listener: Generates a dot file that visualizes the search graph
explored by JPF. It differentiates between local and global scheduling points, depicted
as circles and octagons, respectively.

2. StateSpaceAnalyzer Listener: Collects data on the choices made during the model-
checking process, allowing identification of factors contributing to the size of the state
space.

3. JPF Logging System: Used for troubleshooting and understanding the execution of
bytecodes on the JPF JVM level.

Hardware and Software Setup: Experiments were run on a machine with the following
configuration:

Operating System: Windows 10 Pro 64-bit (10.0, Build 19044)

Processor: Intel(R) Core(TM) i7-10870H CPU @ 2.20GHz (16 CPUs, ~2.2GHz)

Memory: 16GB

Java Development Kit: 1.8.0_391

Java PathFinder Core System Version: 8.0

Eclipse IDE: 4.14.0

JVM Monitor Version: 3.8

This setup provided a reliable environment for testing and validating the method under
realistic conditions.

RESULT AND DISCUSSION

A comparison of CPU usage between JPF-NAS and JNH for the Echo, Daytime, and Alphabet
applications is presented in figures 3, 4, and 5 respectively. In these experiments, CPU usage
was monitored over time, with the x-axis representing the computer time and the y-axis
indicating CPU usage as a percentage.

During model checking with JPF-NAS, CPU usage remained consistently high. Notably, in the
Echo application, there was a drop to 65%, but in most cases, the CPU maintained a 100%
usage, leading to computational overhead. This sustained usage caused the CPU to halt,
preventing it from handling other tasks efficiently.

On the other hand, JNH demonstrated a more balanced CPU usage. The system was able to
release CPU resources as needed, allowing it to remain responsive to users and manage
additional tasks concurrently. This performance difference highlights JNH's efficiency in
reducing computational strain during model checking.
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FIGURE 4. CPU Usage comparison between JPF-Nas and JNH for Daytime application.

FIGURE 5. CPU Usage comparison between JPF-Nas and JNH for Alphabet application.

Tables 2, 3, and 4 present the execution time in seconds along with the number of states and
maximum memory obtained from applying both approaches. The first column shows the

increment of the two variables described above. For the experimental results, in every case, t
proposed approach has better performance. Moreover, the number of states and the number

he
of

memory consumption does not increase exponentially; additionally, the proposed approach can

model checks up to 5 clients and 5 servers while the existing centralization is not able to.
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TABLE 2. Execution results obtained from model checking Echo application
using JNH and JPF-NAS.

Thread JPF-NAS-HYBRID JPF-NAS
Client Server Time States Max Memory (MB) Time  States Max Memory (MB)
1 1 0 60 243 0 66 243
2 2 0 741 243 0 1397 243
3 3 2 8767 432 8 27288 688
4 4 28 98544 432 158 483298 2416
5 5 411 1075796 782 N/A  N/A N/A

TABLE 3. Execution results obtained from model checking Daytime
application using JNH and JPF-NAS.

Thread JPF-NAS-HYBRID JPF-NAS
Client Server Time States Max Memory (MB) Time States Max Memory (MB)
1 1 0 62 243 0 100 243
2 2 7 9145 688 23 92598 991

TABLE 4. Execution results obtained from model checking Alphabet
application using JNH and JPF-NAS.

Thread JPF-NAS-HYBRID JPF-NAS
Client Server Time  States Max Memory (MB) Time  States Max Memory (MB)
1 1 0 549 243 0 100 243
2 2 61 227387 687 82 301409 1691

Table 2 shows the execution results for model checking the Echo application, where
performance metrics are provided for different configurations involving various numbers of
threads and clients. The metrics for each configuration include the execution time (in seconds),
the number of states explored, and the maximum memory usage (in megabytes). In the case of
a single thread with one client and no server, JPF-NAS-HYBRID completed the task in 60
seconds, exploring 243 states, with a maximum memory usage of 243 MB. JPF-NAS, under
the same configuration, took slightly longer at 66 seconds, exploring the same number of states
with the same maximum memory usage.

As the number of threads and clients increased, the difference in performance between the two
tools became more pronounced. With two threads and two clients, JPF-NAS-HYBRID
completed the task in 741 seconds while maintaining the same number of states and memory
usage as the single-thread case. JPF-NAS, however, took almost twice as long at 1397 seconds,
though the states and memory usage remained the same.

For three threads with three clients and two servers, JPF-NAS-HYBRID took 8767 seconds,
exploring 432 states with a maximum memory usage of 432 MB. In contrast, JPF-NAS
required 27288 seconds to complete the task, exploring significantly more states (688) and
using more memory (688 MB). The trend continues with higher thread counts. With four
threads, four clients, and 28 servers, JPF-NAS-HYBRID completed the task in 98544 seconds,
exploring 432 states with a memory usage of 432 MB. JPF-NAS, however, required a
staggering 483298 seconds, exploring 2416 states and consuming 2416 MB of memory. For
the highest configuration tested, with five threads, five clients, and 411 servers, JPF-NAS-
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HYBRID completed the task in 1075796 seconds, exploring 782 states with a memory usage
of 782 MB. Unfortunately, the data for JPF-NAS in this configuration is not available (N/A),
indicating possible execution or resource limitations.

Table 3 provides the execution results for the Daytime application under different thread and
client configurations. The table follows the same format as Table 2, listing the execution time,
number of states explored, and maximum memory usage for each configuration. With one
thread, one client, and no server, JPF-NAS-HYBRID completed the task in 62 seconds,
exploring 243 states with a maximum memory usage of 243 MB. JPF-NAS, under the same
conditions, took longer at 100 seconds, though the states explored and memory usage remained
the same. When the configuration increased to two threads, two clients, and seven servers, JPF-
NAS-HYBRID completed the task in 9145 seconds, exploring 688 states with a maximum
memory usage of 688 MB. JPF-NAS, however, took significantly longer at 92598 seconds,
exploring 991 states and using 991 MB of memory.

Table 4 details the execution results for the Alphabet application, with performance metrics
provided for different configurations involving various numbers of threads and clients. For one
thread, one client, and no server, JPF-NAS-HYBRID completed the task in 549 seconds,
exploring 243 states with a maximum memory usage of 243 MB. JPF-NAS, under the same
conditions, took only 100 seconds, exploring the same number of states with the same memory
usage. With two threads, two clients, and 61 servers, JPF-NAS-HYBRID took 227387 seconds,
exploring 687 states with a maximum memory usage of 687 MB. In contrast, JPF-NAS
required 301409 seconds, exploring 1691 states and consuming 1691 MB of memory.

Bug Seeding. In distributed systems, different components of the system may need distinct
software and hardware, and failures can happen at various levels. Identifying potential issues
may require simulating failures across multiple layers. Previous findings indicate that the
proposed JNH model checker can identify the global deadlock of the Echo application. In this
section, the work introduces the injection of bugs in experimental distributed applications and
demonstrates that the JNH model checker with the newly designed scalable cache retains its
ability to detect local bugs, which depends on the local scheduler of the JPF core system.

The purpose of these experiments is to find out whether the proposed method still preserves
local bug events when extending functionalities from the JPF core system. There are two parts
in that the bugs are injected into the system under test (SUT). The first part is the injection of
the codes right after the main method and the end of the main method. These are done for Echo
and Daytime applications, shown in Figure 6. Another part of bug injection is performed at
every start of the thread and the end of the threads. Therefore, these experiments will ensure
that the local scheduler is working well during the model-checking process.
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FIGURE 6. Example of Echo and Daytime bug seeding.

When the model-checking process starts, the execution will be aborted when there is an error
found. To enable the JPF execution to continue running until completion, the property
"search.multiple_errors" is set to true. Figure 7 illustrates the example of Chat and Alphabet
bug seeding.
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FIGURE 7. Example of Alphabet bug seeding.
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CONCLUSION

The article discusses advancements in verifying distributed multithreaded Java applications,
particularly emphasizing enhancements in model-checking methods at the bytecode execution
stage. Prior strategies have implemented centralization and caching techniques to authenticate
distributed systems, each possessing distinct advantages and drawbacks. This work opts to
refine the centralization approach due to its capability to accommodate multiple processes.
However, the existing inter-process communication (IPC) design within the centralization
results in excessive computational overhead. The branching-time cache has been customized
and the suggested alterations for managing inter-process communication, such as relocating
the request and response tree and processing data in multi-byte chunks, showcase approaches
for reducing computational overhead.
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