²¹⁰Po and ²¹⁰Pb in the Zooplankton at Pulau Redang, Terengganu, Malaysia

Phang Feong Kuan¹, Zaharuddin Ahmad² & Che Abd. Rahim Mohamed^{1*}

¹Pusat Pengajian Sains Sekitaran dan Sumber Alam, Fakulti Sains dan Teknologi, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia

²Malaysian Institute Nuclear Technology (MINT) 43600 Bangi, Selangor, Malaysia

*Corresponding author: carmohd@pkrisc.cc.ukm.my

ABSTRACT

Concentrations of natural radionuclide such as ^{210}Po and ^{210}Pb were measured in the zooplankton collected from eight stations at Pulau Redang, Malaysia using the Alpha Spectrometry. The total activity of ^{210}Po was much greater than the activity of ^{210}Pb . The mean concentration of ^{210}Po in the zooplankton was found to be 21.88 ± 1.26 dpm/g (dry wt.) while the mean concentration for ^{210}Pb was about 5.62 ± 0.41 dpm/g (dry wt.). The range activity ratio of $^{210}\text{Po}/^{210}\text{Pb}$ was from 3.46 to 4.71 and factor which influenced the concentration activity of ^{210}Po and ^{210}Pb in the zooplankton may be related to their feeding habits.

ABSTRAK

Kepekatan radionuklid tabii iaitu ²¹⁰Po dan ²¹⁰Pb telah diukur dengan alfa spektrometri dalam zooplankton yang dipungut dari lapan stesen di Pulau Redang, Malaysia. Aktiviti total ²¹⁰Po adalah lebih tinggi berbanding dengan aktiviti ²¹⁰Pb. Kepekatan purata ²¹⁰Po dalam zooplankton yang diperolehi adalah 21.88 \pm 1.26 dpm/g (berat kering) sementara kepekatan purata untuk ²¹⁰Pb adalah 5.62 \pm 0.41dpm/g (berat kering). Julat nisbah aktiviti ²¹⁰Po/²¹⁰Pb ialah dari 3.46 ke 4.71. Faktor yang menyebabkan perubahan kepekatan ²¹⁰Po dan ²¹⁰Pb dalam zooplankton mungkin bergantung kepada tabiat pemakanan.

213

Keywords: ²¹⁰Po; ²¹⁰Pb; zooplankton

213

Bab20.pmd

Introduction

The naturally occurring alpha-radioactive nuclide such as ²¹⁰Po is concentrated in most marine organisms and is the major source of the relatively high natural radiation dose to which such organisms are exposed (Cherry et al. 1987). ²¹⁰Po, a member of the uranium decay series, is an alpha-emitter which decays with a half-life of 138.4 days to stable lead. In the marine environment, ²¹⁰Po is largely produced from the decay of ²¹⁰Pb (T1/2 = 22.3 years) deposited from the atmosphere. A small amount of ²¹⁰Po in the seawater originates from the atmospheric deposition of polonium itself (Uğur et al. 2002).

The behavior of ²¹⁰Po in the ocean differs from that of ²¹⁰Pb, especially because of the higher affinity of ²¹⁰Po for organic matter. In the water column, plankton absorbs polonium and forms complexes with organic matter, while lead reveals a stronger tendency to be sorbed on mineral suspended matter (Skwarzec & Bojanowski 1988; Bacon et al. 1980; Fellows et al. 1981). The ²¹⁰Po /²¹⁰Pb activity ratio for zooplankton collected in coastal water is about 10 and increases from 20 to 30 for open water organisms (Bacon et al. 1980). The present study was carried out to determine the distribution of ²¹⁰Po and ²¹⁰Pb in zooplankton collected from Pulau Redang.

Materials and Methods

Zooplankton samples were collected from eight stations at Pulau Redang, Terengganu (Figure 1). Samples were collected using plankton net with a mesh size of 250 µm towed at the back of the boat for 15 minutes. All samples were stored in PVC bottles in 4% formalin.

FIGURE 1: Sampling Stations at Pulau Redang

214

214

Bab20.pmd

In the laboratory, the samples were filtered through a 0.45 μ m membrane filter paper and dried in an oven at 60°C until constant weight. About 1-2 g of the samples was digested with HNO₃, H₂O₂, HClO₄ and HCl for 2 hours (Yamamoto et al. 1994). About 1ml of ²⁰⁹Po (17.27 \pm 0.6960 dpm/ml) was used as a tracer to calculate the chemical recovery. The aqueous part was filtered using a filter paper and evaporated on a hot plate until dryness. The residue was redissolved with 80 ml of 0.5M HCl. About 0.15 g of ascorbic acid was then added following spontaneous deposition on a silver disc. The activity of ²¹⁰Po was counted using an alpha spectrometer, while ²¹⁰Pb was determined after 3 months ingrowths from ²¹⁰Po.

Results and Discussions

The 210 Po and 210 Pb concentrations measured at 8 stations in Pulau Redang are given in Table 1. The concentration of 210 Po ranged from 3.74 ± 0.19 dpm/g to 33.62 ± 1.85 dpm/g (dry wt) with a mean of 21.88 ± 1.26 dpm/g. Meanwhile, t he mean concentration of 210 Pb was 5.62 ± 0.41 dpm/g (dry wt.) with a concentration ranged from 0.80 ± 0.05 dpm/g to 9.73 ± 0.70 dpm/g (dry wt.).

The concentration of ²¹⁰Po was high at most of the stations. This is due to the feeding habits of the zooplankton where grazing zooplankton accumulate ²¹⁰Po through ingestion of particulates and absorption of ²¹⁰Po into their digestive organs (Skwarzec & Falkowski 1988). Besides that, zooplankton also can repackage the nuclides into feacal pellets.

Concentrations of ²¹⁰Pb were 3 to 4 times lower than the concentrations of ²¹⁰Po. This is because ²¹⁰Pb tends to be sorbed on to mineral suspended matter (Skwarzec & Bojanowski 1988; Fellows et al. 1981). Kadko (1993) demonstrated that biological uptake may be more important than inorganic absorption for ²¹⁰Po, and it is opposite for ²¹⁰Pb. The ²¹⁰Po/²¹⁰Pb ratio ranged from 3.46 to 4.71. This ratio was rather low compared to other studies where the 210Po/210Pb activity ratio for zooplankton collected in coastal waters is about 10 (Skwarzec & Bojanowski 1988). According to Gasco et al. (2002) if the ratio of ²¹⁰Po/²¹⁰Pb differed from the unity, the ²¹⁰Po/²¹⁰Pb was not in equilibrium. The higher concentrations of ²¹⁰Po with respect to ²¹⁰Pb could be explained by the biomagnification in zooplankton. Besides, the concentration of ²¹⁰Po in zooplankton is not only from the decay of ²¹⁰Pb. A selected uptake for ²¹⁰Po from the environment is also occurred in zooplankton (Smith & Towler 1993; Wildgust et al. 1998).

Conclusions

The concentrations of ²¹⁰Po and ²¹⁰Pb in the zooplankton from Pulau Redang were slightly different. Several factors affect these distributions, mainly the high affinity of ²¹⁰Po absorbed by zooplankton as compared to ²¹⁰Pb that causes the high concentrations of ²¹⁰Po in the zooplankton. The data for ²¹⁰Po and ²¹⁰Pb in Malaysian zooplankton is less available. The assessment of ²¹⁰Po and ²¹⁰Pb in zooplankton is very important for determining its contribution to the background radiation as well as for estimating the

Bab20.pmd 215 21/03/32, 10:31 '

TABLE 1: ²¹⁰Po and ²¹⁰Pb Concentrations in Pulau Redang Zooplankton

Stations	Location	²¹⁰ Po, dpm/g (dry wt.)	²¹⁰ Pb, dpm/g (dry wt.)	²¹⁰ Po/210 Pb
S1	05° 43' 35N	32.12 ± 1.55		3.67
	102° 59' 41E		8.76 ± 0.47	
S2	05° 44' 44N	33.62 ± 1.85		3.46
	103° 02' 19E		9.73 ± 0.70	
S 3	05° 45' 21N	22.29 ± 1.14		3.57
	103° 02' 18E		6.25 ± 0.38	
S4	05° 46' 54N	9.19 ± 0.47		3.58
	103° 03' 06E		2.56 ± 0.15	
S5	05° 47' 54N	20.27 ± 1.16		4.01
	103° 02' 54E		5.05 ± 0.33	
S6	05° 49' 22N	29.22 ± 2.06		4.71
	103° 00' 31E		6.20 ± 0.69	
S7	05° 44' 44N	3.74 ± 0.19		4.69
	102° 57' 42E		0.80 ± 0.05	
S8	05° 47' 28N	24.60 ± 1.65		4.37
	102° 56' 04E		5.62 ± 0.47	
	Mean	21.88 ± 1.26	5.62 ± 0.41	4.01
	Range	3.74 - 33.62	0.80 - 9.73	3.46 - 4.71

intake levels of these radionuclides by marine organisms. Therefore, more detailed studies should be undertaken to investigate the role of transport ²¹⁰Po and ²¹⁰Pb transport within the marine environment within the food chain.

Acknowledgement

The authors would like to thank the laboratory assistant from UKM and MINT for the technical support during sampling and sample analysis.

References

- Bacon, M. P., Brewer, P. G., Spencer, D. W., Murray, I. W., Goddard, I. 1980. Lead-210, polonium-210, manganese and iron in the Cariaco Trench. *Deep-Sea Research*, **27A**: 119-135.
- Cherry, M. I., Cherry, R. D., Heyraud, M. 1987. Polonium-210 and lead-210 in Antarctic marine biota and sea water. *Marine Biology*, **96**: 441-449.
- Fellows, D. A., Karl, D. M., Knauer, G. A. 1981. Large particle fluxes and the vertical transport of living carbon in the upper 1 500m of northeast Pacific Ocean. *Deep-Sea Research*, **28**: 921-936.
- Gascó C. Antón, M. P., Delfanti, R., González, A. M., Meral, J., Papucci, C. 2002. Variation of the activity concentrations and fluxes of natural (²¹⁰Po, ²¹⁰Pb) and anthropogenic (239, ²⁴⁰Pu, ¹³⁷Cs) radionuclides in the Strait of Gibraltar (Spain). *Journal of Environmental Radioactivity*, **62**: 241-262.
- Kadko, D. 1993. Excess ²¹⁰Po and nutrient cycling within the California coastal transition zone. *Journal of Geophysical Research*, **98**: 857-864.

Bab20.pmd 216 21/03/32, 10:31

- Skwarzec, B & Falkowski, L. 1988. Accumulation of ²¹⁰Po in Baltic Invertebrates. *Journal of Environmental Radioactivity*, **8**: 99-109.
- Skwarzec, B. & Bojanowski, R. 1988. ²¹⁰Po content in sea water and its accumulation in southern Baltic plankton. *Marine Biology*, **97**: 301-307.
- Smith, J. D. & Towler, P. H. 1993. Polonium-210 in cartilaginous fishes (Chondrichthyes) from South-eastern Australian waters. *J. Mar. Freshwater Res.*, **44**: 727-733.
- Uğur, A., Yener, G., Başsari, A. 2002. Trace metals and ²¹⁰Po (²¹⁰Pb) concentrations in mussels (*Mytilus galloprovincialis*) consumed at western Anatolia. Applied Radiation and Isotopes, **57**: 565-571.
- Wildgust, M. A., McDonald, P. & White, K. N. 1998. Temporal changes of ²¹⁰Po in temperate coastal waters. *Sci. Total Environ.*, **214**: 1-10.
- Yamamoto, M., Abe, T., Kuwabara, J., Komura, K., Ueno, K., Takizawa, Y. 1994. Polonium-210 and lead-210 in marine organisms: intake levels for Japanese. *Journal of Radioanalytical and Nuclear Chemistry*, **178**: 81-90.

Bab20.pmd 217 21/03/32, 10:31 '

217