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a b s t r a c t

We present results from a pilot project to characterize and bound multi-disciplinary uncertainties around
the assessment of maize (Zea mays) production impacts using the CERES-Maize crop model in a climate-
sensitive region with a variety of farming systems (Panama). Segunda coa (autumn) maize yield in Panama
currently suffers occasionally from high water stress at the end of the growing season, however under
future climate conditions warmer temperatures accelerate crop maturation and elevated CO2 concentra-
tions improve water retention. This combination reduces end-of-season water stresses and eventually
leads to small mean yield gains according to median projections, although accelerated maturation reduces
yields in seasons with low water stresses. Calibrations of cultivar traits, soil profile, and fertilizer amounts
are most important for representing baseline yields, however sensitivity to all management factors are
reduced in an assessment of future yield changes (most dramatically for fertilizers), suggesting that yield
changes may be more generalizable than absolute yields.Uncertainty around GCMs’ projected changes in
rainfall gain in importance throughout the century, with yield changes strongly correlated with growing
season rainfall totals. Climate changes are expected to be obscured by the large interannual variations
in Panamanian climate that will continue to be the dominant influence on seasonal maize yield into the
coming decades. The relatively high (A2) and low (B1) emissions scenarios show little difference in their
impact on future maize yields until the end of the century. Uncertainties related to the sensitivity of

CERES-Maize to carbon dioxide concentrations have a substantial influence on projected changes, and
remain a significant obstacle to climate change impacts assessment. Finally, an investigation into the
potential of simple statistical yield emulators based upon key climate variables characterizes the impor-
tant uncertainties behind the selection of climate change metrics and their performance against more
complex process-based crop model simulations, revealing a danger in relying only on long-term mean
quantities for crop impact assessment.
. Introduction

The generation of decision support systems for climate change
mpacts relies on a long series of processes from data collection,
ata processing and numerical simulations, analysis of results, and
nterpretation for stakeholder use. Uncertainties exist in each pro-
ess, and must be quantified to enable stakeholders to manage
isk in designing adaptation strategies placing climate uncertainties
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in the proper background of regional and management variability
(Iglesias et al., 2010; White et al., 2011). For each region and agri-
cultural system it is likely that several sources of uncertainty act
as crucial bottlenecks with larger influence on the final messages
received by stakeholders, and therefore locating critical pieces of
information can dramatically improve impacts assessment. This
study examines a pilot climate change impacts for decision sup-
port process from start to finish, identifying these various sources
of uncertainty and isolating areas where further research could

dramatically improve outcomes.

A Mesoamerican pilot location for agricultural impacts was
selected to directly inform two ongoing projects in the region. The
NASA/USAID SERVIR project (http://www.servir.net last accessed

dx.doi.org/10.1016/j.agrformet.2011.10.015
http://www.sciencedirect.com/science/journal/01681923
http://www.elsevier.com/locate/agrformet
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variability (WMO, 1989; Guttman, 1989). Sunshine hours were con-
verted to daily solar radiation and data gaps were filled in using the
WGEN-based weather generator (Richardson and Wright, 1984)
included in Weatherman (a component of DSSAT). Fig. 2 presents
A.C. Ruane et al. / Agricultural and

une 29, 2011; Graves et al., 2005) delivers state-of-the-art NASA
bservations to Mesoamerican users for applications including
griculture, water resources, health, and flash-flood relief. A
ASA GISS/Columbia University/University of Florida project is
lso underway to provide decision support for climate change
mpacts on agriculture across Central America and the Southeast
nited States using dynamic biophysical crop models, with results
esigned to be potentially included in SERVIR’s online resources.
e selected maize (Zea mays), a major commodity and impor-

ant source of food in Mesoamerica, as the crop to be investigated,
nd a range of climate periods to be relevant to ongoing plan-
ing of agricultural policy and infrastructure as well as to provide

onger-term scenarios where the climate change signal is more
learly separated from natural interannual to interdecadal vari-
bility. Giorgi (2006) identified the Central American region as a
ocation where rainfall variability changes pose a substantial risk
more so than mean climate changes), although changes in both
ainfall’s mean and variability are projected to be more signifi-
ant in the November–April dry (and less agriculturally important)
eason not analyzed here.

Dynamic process-based crop models resolve plant and envi-
onmental processes relevant to crop growth and are rooted in
hysical responses dependent on developmental stage and crop
tresses that may interact in a non-linear manner. Unlike sim-
le statistical regression models, process-based crop models are
apable of simulating the impacts of climate conditions outside
f observed historical ranges, including the effects of high carbon
ioxide concentration ([CO2]) environments. Resolution of these
rocesses comes at the cost of spatial coverage – these crop models
re run at a representative field rather than directly representing a
ider region – and an onerous requirement of input data (described

n the next section). These data are simply not available in many
mportant agricultural regions or across the wide diversity of farm-
ng systems in many developing areas, but these regions still need
strategy to address climate vulnerabilities. This study examines
hether the types and amount of required input data may depend

n the application, as the crop model does not necessarily need to
xactly capture baseline yields in order to investigate how yields
espond to climate changes.

This work also explores the potential of future yield changes
o be summarized by a strong response to projections of a small
umber of key climate change metrics. Recent studies have demon-
trated the utility of visualizing climate impacts response surfaces
ased upon projected changes in temperature and rainfall across a
ide range of plausible climate conditions to allow a rapid assess-
ent of key sensitivities (e.g., Jones, 2000; Scholze et al., 2006;
orse et al., 2009; Fronzek et al., 2010; Räisänen and Ruokalainen,

006), however non-linearities in the biophysical response to cli-
ate factors can lead to significant biases in some cases (Hansen

t al., 2006; Schlenker and Roberts, 2006, 2009). The precision of
mpacts response surfaces regressed from crop model simulations
s likely to depend on the crop, region, and degree to which yield
hanges are sensitive to particular climatic variables.

The results presented are a useful pilot exploration of
ncertainty for the Agricultural Model Intercomparison and

mprovement Project (AgMIP; Rosenzweig et al., 2012; this issue),
hich seeks to connect climate scientists, crop modelers, agricul-

ural economics modelers, and information technology specialists
o simulate agricultural production across the world’s important
gricultural regions for analysis of the linked economic impacts
f climate change. The availability of high-quality soil, weather,
ultivar, and agricultural management data reduces many of the

ncertainties in the simulation of climate impacts on crop produc-
ion, but are not always available in data-scarce areas. In addition,
omogeneous areas with more intensive management, modern
ultivars, and heavy use of mechanical equipment are more suited
Meteorology 170 (2013) 132–145 133

to crop model simulations based upon a single representative farm.
This study examines the uncertainties that may be reduced if
crop models are granted access to farm-level information and cli-
mate records to underscore the importance of local involvement in
AgMIP and other crop modeling applications, and also to explore
the transferability of climate impact projections from one particu-
lar farming system to another in a region with diverse agricultural
practices.

2. Material and methods

2.1. The CERES-Maize crop model

Crop model simulations were conducted with the Crop Esti-
mation through Resource and Environment Synthesis crop model
(CERES-Maize), a component of the Decision Support System for
Agrotechnology Transfer (DSSAT v4.5.0.047; Jones et al., 2003;
Hoogenboom et al., 2010). DSSAT is a family of crop models that
simulate daily crop development and complex interactions with
the farm-level environment using biophysical processes that facil-
itate application outside of observed climate conditions. These
crop model simulations require local weather data (daily rain-
fall, minimum and maximum temperatures, and solar radiation),
a detailed soil profile, genetic coefficients describing the specific
maize cultivar, and crop-management practices (e.g. planting dates
and practices; irrigation and fertilizer applications). As of this writ-
ing only a few published studies could be identified that document
maize model applications in Mesoamerica (e.g. Conde et al., 1997,
in Mexico; Maytín et al., 1995; Jones and Thornton, 2003, using
generalized cultivars and management for gridded assessment of
all of Latin America), but these studies do not focus on uncertainty
analysis and not all include [CO2] effects. Crop model applications
are also conducted at some national meteorological or agricultural
agencies; however formal publication and documentation were not
readily located.

2.2. Farm-level data collection and calibration

Panama was selected as a Mesoamerican pilot location due
to its hosting of the headquarters for SERVIR Mesoamerica at
the Water Center for the Humid Tropics, Latin America, and
the Caribbean (CATHALAC) in Clayton, Panama. While domi-
nant throughout Northern Mesoamerica (Nicaragua and north),
maize production lags behind rice production in Panama but
remains a prominent rainfed crop (USDA FAS, available at
http://www.fas.usda.gov/psdonline, last accessed June 30th, 2011).
Panamanian maize cultivation is concentrated on the eastern por-
tion of the Azuero Peninsula that extends into the Pacific from the
South of the country (Fig. 1a). To simulate this region, a representa-
tive weather series at Los Santos (7.95◦N, 80.42◦W) was provided
by the Panamanian Electric Transmission Company (ETESA),1 and
a Panamanian Cambisol soil profile was drawn from the WISE
database (Batjes and Bridges, 1994) to match the Harmonized
World Soil Database (FAO, 2009) reported conditions (Fig. 1b).

Daily rainfall, maximum and minimum temperatures, and sun-
shine hours were collected for 1980–2009 to gauge baseline climate
without being overly obscured by shorter term natural modes of
1 Global station datasets proved to have questionable rainfall totals and limited
spatial coverage for our desired applications.

http://www.fas.usda.gov/psdonline
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ig. 1. (a) 2000 maize production estimates across Panama and surrounding vicinit
antos, is also noted at the neck of the Azuero Peninsula. (b) Harmonized World So

he 1980–2009 climatology of temperature and rainfall for Los San-
os, along with climate model projections described in Section 3.2
elow. Panama’s tropical climate is most strongly affected by the
easonal migration of the Inter-Tropical Convergence Zone, which
rings rainclouds and cooler temperatures to the Azuero Peninsula
rom late April into early December. July often brings a relatively
rier spell known as the veranillo, followed by the wettest time of
ear in September and October. Two growing seasons are there-
ore possible: one before, and one after, the veranillo (referred to
n Panama as primera coa, or “first planting”, and segunda coa, or
second planting”, respectively).

Farmers in Panama cultivate a wide variety of soils using
arying seeds, practices, and amendments. CERES-Maize was cali-
rated for Los Santos and the Azuero Peninsula agricultural region
rimarily from data contained in a report by the Panamanian Insti-
ute of Agricultural Investigation (IDIAP; Gordón, 2009). Although

ocused on more intensive rainfed cultivation with high fertil-
zer applications (130–200 kg N/ha) for the segunda coa season,
ordón et al. (2006) and Gordón (2009) provide planting dates,
lant population, fertilizer application schedules, and data on
0s of MT; from Monfreda et al., 2008). The location of the climate observations, Los
base soil groups for Panama (FAO, 2009).

phenology and yields for 10–25 cultivar trials over the 2001–2007
period.

The majority of maize cultivars grown in Panama come from
the Pioneer brand. In the 1990s Pioneer X-304c made up ∼75% of
the planted crop (this cultivar was examined in Pérez et al., 1991;
Camargo et al., 2002), followed by a short period in the early 2000s
where cultivars like X-1358K replaced X-304c. Pioneer 30F-80 has
made up ∼80% of planted maize in the past 5 years. The Pioneer
X-304c cultivar is included in DSSAT v4.5, and was modified accord-
ing to the Gordón (2009) phenology and yield (which are common
across cultivars in Azuero) to estimate the more current hybrids
(Modified Pioneer X-304c B). Proper simulated flowering and matu-
rity dates (55 and 115 days after planting, respectively), as well as
closer yields, were achieved by reducing the thermal time between
emergence and the end of the juvenile phase (cultivar parameter
P1 in CERES-Maize), lengthening the thermal time from silking to

maturity (P5), and increasing the maximum number of kernels per
plant (G2).

Table 1 describes the calibrated configuration, and the next
section describes the performance of this configuration against
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Table 1
Agricultural options for CERES-Maize crop model run for weather series at Los Santos, Panama. As discussed in Section 5 and shown in Figs. 6 and 7, the range of variation
for climate impacts, holding other selections at default, are also shown for the first six options.

Option Calibrated selection Range of variation tested for
climate impacts

Notes

Season Segunda coa Primera coa and Segunda coa Rainfall in this region initiates in the spring, breaks in
mid-summer (called the veranillo), and is high in the
autumn, allowing two growing seasons. The planting
date representing the primera coa is May 15 (following
Sacks et al., 2010).

Planting date September 1 August 12, August 22, September 1,
September 11, September 21

Calibrated plant date and plausible range for segunda
coa growing season from Gordón et al. (2006), and
Gordón (2009).

Fallow period 14 days 0, 7, 14, 21, 42, and 84 days Provides soil moisture spin-up and resolution of
early-season drought.

Soil profile WI CMPA011 (Ferralic
Cambisol)

14 soil profiles in Panama (6
Cambisols, 2 Acrisols, 2 Andosols, 2
Luvisols, 1 Phaezoem, and 1
Gleysol)

From World Inventory of Soil Emission Potentials
database (WISE; Batjes and Bridges, 1994). Calibrated
for Cambisol according to Harmonized World Soil
Database (HWSD; FAO, 2009) and baseline
performance.

Cultivar Modified Pioneer X-304c B Pioneer X-304c, Modified Pioneer
X-304c A, Modified Pioneer X-304c
B Hybrid Obregon, and PB-8.

Pioneer X-304c historically common in Panama
(Camargo et al., 2002; Pérez et al., 1991). Genetic
coefficients for each included in DSSAT. Pioneer X-304c
modifications speed up flowering date and increase
grain size to match Gordón (2009).

Fertilizer applied 150 kg N/ha 0, 20, 50, 80, 100, 150, and
200 kg N/ha, as well as experiment
with no N-stress permitted.

Although 150 kg N/ha is higher than commonly applied
in Panama today (Gordón et al., 2006; Gordón, 2009),
simulations are designed to resemble high-input yields
in more developed future.

Soil moisture at initialization 75% of saturation throughout
column

Initialization occurs at the beginning of the pre-sowing
fallow period. The actual soil moisture at planting
depends on this initialization and the fallow period
spin-up.

Irrigation None (rainfed) As is common in Panama.
Plant population 6 plants/m2 Gordón (2009). Plant populations were

∼5.33 plants/m2 in the 1990s and have risen to

Fig. 2. Baseline (black line and stars) and A2 End-of-Century projected range
(across 16 GCMs) of monthly, annual, and seasonal a) temperature and b) pre-
cipitation for Los Santos, Panama. S1:primera coa: May–August; S2: segunda coa:
September–December.
6–6.8 plants/m2 today.

observations. Table 1 also presents the parameter variations tested
in the sensitivity exercises examining the effects of management
options and climate change conditions described in Section 5
below. These include an intermediate hybrid (Modified Pioneer X-
304c A) with thermal times and kernel numbers in between the
calibrated Modified Pioneer X-304c B and original Pioneer X-304c
in order to better understand the cultivar adjustments.

3. Calculation

3.1. Crop model performance and reported yields

Fig. 3 presents a comparison between the calibrated crop
model simulations, cultivar trials reported in Gordón (2009), and
annual national maize production reported for Panama by the
United States Department of Agriculture Foreign Agricultural Ser-
vice (USDA FAS; available at http://www.fas.usda.gov/psdonline,
last accessed June 30th, 2011). As the CERES-Maize configuration
was calibrated against mean observed phenology, common man-
agement practices, and representative soils, seasonal correlations
with observed yield are independent of the calibration procedure.
Over the 2001–2007 period, the calibrated segunda coa season sim-
ulations track the mean of the cultivar trials with a correlation
coefficient of +0.92 (significant at 0.001 level). Individual cultivar
trials also exhibit the higher variability of the calibrated simula-
tions. Although low in comparison to the cultivar trials reported
in Gordón et al. (2006) and Gordón (2009), the calibrated sim-
ulations’ fertilizer levels (150 kg N/ha in three applications) and

yields are higher than most Panamanian farms and should therefore
be considered high-input yields for the region. Over the 1980-
2009 period, the calibrated segunda coa season simulated yields
have a mean of 5848 kg/ha and follow USDA FAS Panamanian

http://www.fas.usda.gov/psdonline
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Fig. 3. 1980–2009 yield diagnostics. Baseline yields (kg/ha) simulated under the calibrated configuration are shown in light gray and compared to mean field trial data
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in simulated rainfall during this month could produce dramatic
percentage changes in the associated scenario (as appears to be
black) drawn from Gordón (2009; with ×’s representing individual and linked mult
oreign Agricultural Service.

aize production with a correlation coefficient of +0.55 (signifi-
ant at 0.01 level), underscoring the considerable contribution of
he Azuero Peninsula’s segunda coa maize season to national pro-
uction and establishing the calibrated CERES-Maize configuration
s a useful model for Panama. Among the 14 Panamanian soils in the
ISE database, the calibrated soil profile (WI CMPA011; Ferralic

ambisol) and the segunda coa season compared best against both
he cultivar trials and national production despite being relatively
hallow and prone to water stress.

The relationship between maize yields and key climate metrics
s explored in Fig. 4. As expected, simulated yields generally show
arger absolute correlations to Los Santos data than the national
roduction numbers that are averaged across a wider variety of
reas and farming systems, but both metrics of maize produc-
ion generally agree on the indicative climate metrics. Simulated
ields and reported national production are both negatively corre-
ated with a warm segunda coa growing season (here defined as
eptember–December) that accelerate development and increase
vapotranspiration rates (Fig. 4a). The strongest climate signal is a
ositive correlation between agricultural production and growing
eason rainfall, indicating that water stress is the primary obstacle
o higher and more consistent yields (Fig. 4b; see also Gordón et al.,
004b). Maize also appears to favor a higher number of growing
eason rain days, likely due to the likelihood of more net rainfall but
lso to a reduction in dry spells that cause water stress and a reduc-
ion in nitrogen leaching and runoff in comparison to seasons with
qual total rainfall coming in fewer, more intense storms (Fig. 4c).
inally, higher standard deviations of growing season temperature
orrelate weakly with reduced simulated yields, suggesting a pos-
tive crop response to more consistent temperatures (Fig. 4d). The
mpacts of higher frequency metrics are worth exploring as future
tudies examine the effects of climate change on sub-seasonal tem-
erature and rainfall variability.

.2. Climate scenarios

The primary tools for investigating large-scale climate changes
re the general circulation models (GCMs) developed at modeling
enters around the world and contributed to the Third Coupled
odel Intercomparison Project (CMIP3; Meehl et al., 2007) for anal-

sis informing the Intergovernmental Panel on Climate Change’s
th Assessment Report (IPCC AR4; Solomon et al., 2007; Parry et al.,
007). These models are built on resolved physical dynamics as well
s a set of statistical parameterizations that represent unresolved
rocesses, and have been calibrated by large-scale climate observa-
ions and more detailed studies of complex processes. The models

ork as a holistic system where it is difficult to trace uncertainty

ack to particular biases, but the range of projected outcomes acts
o integrate these discrepancies into a model-based uncertainty
hat can be thought of as a subsample of the actual (but unknown)
field trials) and Panamanian maize production (1000s of MT; dark gray, from USDA

probability distribution of climate sensitivity to greenhouse gases
and other radiatively important agents. It is possible that partic-
ular biases will be common to all GCMs, particularly in areas like
Mesoamerica where coarse model resolution cannot resolve com-
plex mountains and coastlines, but the Azuero Peninsula is near sea
level (Los Santos is at 16 m elevation) and has a largely maritime cli-
mate consistent with the larger GCM scale. To examine uncertainty
owing to societal pathways, we analyze future simulations from
two emissions scenarios (SRES, 2000) – the A2 (higher emissions)
and B1 (lower emissions growth). Outputs for these emissions sce-
narios for 16 GCMs (see Table 2) were available at the CMIP3 archive
at the Program for Climate Model Diagnosis and Intercomparison
(PCMDI).

Future climate scenarios for Los Santos were produced using the
“Delta Method” (Gleick, 1986; Arnell, 1996; Wilby et al., 2004) that
adjusts daily historical observations to match mean monthly cli-
mate changes as determined by GCM simulations. Using AgMIP’s
time slice conventions, climate change factors for temperature
and precipitation were calculated by comparing the “Near-Term”
(2005–2034), “Mid-Century” (2040–2069), and “End-of-Century”
(2070–2099) future simulation from each GCM/emissions scenario
to the same model’s 1980–2009 20th century simulation2 for the
grid box corresponding to Los Santos, Panama. These comparisons
remove much of the inherent biases in each GCM, reduce the
noise produced by interannual modes of variability, and focus on
the climate changes that these models are designed to produce.
This approach is built upon long-term changes, so results are best
interpreted on the 30-year climate timescale recommended by the
WMO (WMO, 1989).

New scenarios were generated by imposing these monthly
changes in temperature and percentage changes in precipitation
on the filled Los Santos historical record, with [CO2] fixed at the
level corresponding to the midpoint of the 30-year time slice in
the corresponding emissions scenario (Table 3). The result is 96
future scenarios (16 GCMs × 2 emissions scenarios × 3 future peri-
ods), each containing 30 years of daily meteorological values that
were used to drive maize simulations. Each scenario’s year-to-year
variation and most day-to-day variations are largely identical to
the baseline period scenario, as all values within a given month
over the 30-year period are shifted using a common change value.
There is also the potential for large changes in rainfall when a GCM’s
incorrect seasonal variation indicates a dry month when observa-
tions suggest rainier conditions, as small, chance absolute changes
2 2000–2009 drawn from B1 emisssions scenario, as 20th century simulations
end in 2000. There is very little difference between emissions scenarios in the first
decade.
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Fig. 4. 1980–2009 evaluation of calibrated yield simulations (kg/ha; gray) and the growing season (a) mean temperature; (b) mean rainfall; (c) number of rain days; and (d)
standard deviation of temperature. The correlation coefficient of the climate metric and simulated yields (SIMr) and Panamanian production from the USDA FAS (FASr) are
also shown.

Table 2
CMIP3 general circulation models analyzed (from the PCMDI), along with their hosting center, approximate grid box resolution, and the equilibrium climate sensitivities of
each model’s atmospheric component to an instantaneous doubling of carbon dioxide relative to preindustrial levels (based upon Randall et al., 2007).

GCM Institution Atmospheric resolution (lat × lon;◦) Climate sensitivity (◦C)

bccr bcm2.0 Bjerknes Center for Climate Research, Norway 1.9 × 1.9 Not reported
Cccma cgcm3.1(T63) Canadian Center for Climate Modeling and Analysis,

Canada
1.9 × 1.9 3.4

cnrm cm3 CERFACS, Center National Weather Research,
METEO-FRANCE, France

1.9 × 1.9 Not reported

csiro mk3.0 CSIRO Atmospheric Research, Australia 1.9 × 1.9 3.1
gfdl cm2.0 Geophysical Fluid Dynamics Laboratory, USA 2 × 2.5 2.9
gfdl cm2.1 Geophysical Fluid Dynamics Laboratory, USA 2 × 2.5 3.4
giss model er NASA Goddard Institute for Space Studies, USA 4 × 5 2.7
Inmcm3.0 Institute for Numerical Mathematics, Russia 4 × 5 2.1
ipsl cm4 Insitut Pierre Simon Laplace, France 2.5 × 3.75 4.4
miroc3.2 (medium resolution) Center for Climate System Research; National Institute

for Environmental Studies; Frontier Research Center
for Global Change, Japan

2.8 × 2.8 4.0

miub echo g Meteorological Institute of the University of Bonn,
Germany

3.9 × 3.9 3.2

mri cgcm2.3.2a Meteorological Research Institute, Japan 2.8 × 2.8 3.2
mpi echam5 Max Planck Institute for Meteorology, Germany 1.9 × 1.9 3.4

USA
USA
ffice,

t
S

f

T
C
m
t

p

ncar pcm1 National Center for Atmospheric Research,
ncar ccsm3.0 National Center for Atmospheric Research,
ukmo hadcm3 Hadley Center for Climate Prediction, Met O

he case for one outlying model in the A2 Near-Term Scenario, see

ection 5.3).

This pilot study seeks to gauge the level of uncertainty owing
rom the suite of GCMs and emissions scenarios and compare

able 3
arbon dioxide concentrations for each simulation period (SRES, 2000), as well as the
edian (across GCMs) of 30-year mean yield change in default simulation compared

o the baseline period (5848 kg/ha).

Scenario Time period [CO2]a Median yield changeb

Baseline 1980–2009 360 ppm –
A2 Near-Term 2005–2034 417 ppm −0.5%
B1 Near-Term 2005–2034 412 ppm −0.1%
A2 Mid-Century 2040–2069 556 ppm +2.4%
B1 Mid-Century 2040–2069 496 ppm −0.8%
A2 End-of-Century 2070–2099 734 ppm +4.5%
B1 End-of-Century 2070–2099 541 ppm +1.5%

a CO2 concentrations for entire 30-year period set at central year’s value.
b Median (across 16 GCMs) 30-year mean yield change in comparison to baseline

eriod.
2.8 × 2.8 2.1
1.4 × 1.4 2.7

UK 2.5 × 3.75 3.3

it to uncertainties in the impacts assessment related to farm-
level information, so a simple delta approach is sufficient. More
complex scenario generations would allow for changes in rainfall
frequency, extreme behaviors, natural modes of variability (such
as the El Niño/Southern Oscillation that has a strong effect on Cen-
tral America), and finer-scale patterns of climate change that may
be determined by complex mountains and coastlines (examined
with a regional climate model, for example). Investigations using
these more complex approaches for Mesoamerica are ongoing, and
methodological uncertainty will also be a focus of AgMIP.

Fig. 2 shows the temperature and precipitation ranges across the
16 scenarios based upon A2 End-of-Century GCMs. A substantial
warming is evident in all GCMs, as expected. The sign and magni-
tude of precipitation changes are unclear, however, with median
rainfall totals matching the baseline to a remarkable degree.
4. Future yield simulations

Fig. 5 shows 30 simulated years from each GCM for the A2 and
B1 scenarios’ Near-Term, Mid-Century, and End-of-Century periods



138 A.C. Ruane et al. / Agricultural and Forest Meteorology 170 (2013) 132–145

F ted 19
a (d) B1

w
3
B
t

m
p
l
1
p
i
∼
M
c
m

b
t
t
i
C
s
c
2
e
w
i
W
a
a
m
a
w
t

ig. 5. Simulated yields (kg/ha) from scenarios of future climate projections. Simula
re shown as gray lines. (a) A2 Near-Term; (b) B1 Near-Term; (c) A2 Mid-Century;

ith the baseline yields for reference. The median (across 16 GCMs)
0-year mean yield changes for each panel are noted in Table 3.
ecause future scenarios contain the same interannual sequence as
he baseline period, each simulation has a similar 30-year pattern.

Simulations of the Near-Term A2 and B1 scenarios produce
edian yield losses of 0.5% and 0.1% compared to the baseline

eriod, respectively, which would hardly be noticed among the
arger seasonal variation. In the 25 years that differentiate the
980–2009 and the 2005–2034 Near-Term period, most GCMs
roject only moderate warming and modest changes in precip-

tation (some wetter, some drier), however [CO2] increases by
15% and keeps mean yields relatively steady. Simulations of the
id-Century A2 scenario produce median yield increases of 2.4%

ompared to the baseline period, while the B1 scenario produces
edian yield losses of 0.8%.
End-of-Century simulations produce median yield gains for

oth scenarios, with the A2 and B1 increasing by 4.5% and 1.5% over
he baseline, respectively. To understand the processes that lead to
hese yield gains it is instructive to note that seasonal yields do not
ncrease uniformly across the 30-year simulation. The A2 End-of-
entury simulations actually show declines in the highest-yielding
easons (years 2, 7, 9, 17, and 24 in Fig. 5e), but also dramati-
ally reduce the incidence of low-yielding seasons (years 4, 12, and
1). This improvement of low-yielding seasons is actually a side-
ffect of the accelerated physiological development of maize under
armer temperatures, which causes maturity a full 10 days earlier

n the A2 End-of-Century simulations than in the baseline period.
hile the low-yielding baseline seasons were greatly affected by

n early end of the rainy season in late November or early December
nd high water stress during the crucial grain-filling phase, crops

aturing 10 days earlier find substantially higher soil moisture

nd are less stressed. High-yielding seasons experience much less
ater stress, and therefore only experience yield decreases from

his accelerated maturation. In sum, accelerated maturity and the
80–2009 baseline yields are shown in black, and scenarios based upon the 16 GCMs
Mid-Century; (e) A2 End-of-Century; (f) B1 End-of-Century.

climatology of Panama’s post-veranillo growing season lead to
mean yield increases and higher yield consistency – both encour-
aging aspects of these simulation results – but considerable
uncertainty is apparent among GCM scenarios.

5. Uncertainty in baseline yield and yield change
projections

Maize is grown in Panama under diverse conditions and it is
likely that very few (if any) farms follow the exact specifications
of the calibrated configuration. Other farms may grow maize dur-
ing the pre-veranillo (primera coa) growing season, use a different
planting date, feature a distinct soil profile, sow a separate maize
cultivar, and/or apply more or less fertilizer, among other fac-
tors. Can a farmer with a unique farming system gain any insight
from the calibrated simulations presented above, or must research
instead start from scratch and calibrate the model for each spe-
cific situation? While it is not practical to cater to each individual
farm, the following section examines the extent to which a specific
simulation configuration (including model-based options such as
the length of the simulated fallow period before planting to deter-
mine initial soil moisture) may typify climate impacts on a broader
region. To explore these options we present the sensitivity of maize
yield to farm-level information and management decisions during
the baseline period (Fig. 6) as well as under future climate sce-
narios (Fig. 7), and compare these changes to uncertainties related
to different aspects of climate change (Figs. 8 and 9). Each 30-year
sensitivity test is identical to the calibrated configuration of CERES-
Maize (as described in Table 1) except for the option in question

in order to demonstrate the crucial sources of uncertainty in the
impacts assessment. Absolute yields from these sensitivity stud-
ies may also be used as an exploration of adaptation options that
may help prioritize field trials in coming years, but yield changes
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Fig. 6. Sensitivity of simulated (a) mean baseline yield (as percentage of mean calibrated yield = 5848 kg/ha) and (b) standard deviation (as % of the experiment’s mean)
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baseline yield. The soil with the highest and most consistent base-
line yields is a 180 cm-deep Andosol, which may be characteristic
of the Chiriqui maize-growing region in Western Panama (recall
Fig. 1b). A shallow Andosol has a similarly productive baseline
f baseline yield to farm-level information and management decisions during the
eriod, soil profile, cultivar, and the amount of fertilizer added. ×’s represent each
alibrated configuration and options tested).

rather than absolute yields) are the primary focus of the future
esults presented here.

.1. Sensitivity of baseline yield to farm-level options

In addition to segunda coa maize, the calibrated simulation was
lso run for primera coa maize planted on May 15th (following
acks et al., 2010). Simulated primera coa maize has 8.7% lower
ean yield than segunda coa maize during the baseline period

Fig. 6a), and is also less consistent (primera coa maize’s standard
eviation of yields, as a percentage of its mean yields, is 25.2%,
s opposed to 20.9% for segunda coa maize; Fig. 6b). Both quan-
ities suggest that a higher reliability on the segunda coa season is

erited.
Five planting date tests (spanning the 41 days centered on the

alibrated date, September 1st) have mean yields ranging from 4.6%
bove to 18.2% below the calibrated simulation. Planting is set to
ccur regardless of field conditions to enable this comparison, how-
ver in reality soil saturation can delay planting and lead to yield
osses from end-of-season dry conditions (as occurred in the 2010
eason). The highest baseline yields come from planting August
2nd, which helps complete the grain-filling stage before acute
ater stress in early December, similar to the benefits of acceler-

ted maturity in the future scenarios discussed in Section 4 above.
he latest planting date (September 21st) has the lowest and least
onsistent yields (its inter-annual standard deviation of yields is

3.5% of its mean yield), as rains ended too early and crops were
orced to complete their development under severe water stresses.

Simulations using six fallow period lengths allowed the model
ore or less time to spin up the soil moisture before planting,

ig. 7. Sensitivity of median (across 16 GCMs) simulated mean yield changes (%)
or the A2 End-of-Century simulation in comparison to baseline yields (5458 kg/ha),
s in Fig. 6. Gray circles represent the percentage change (+4.5%) of the calibrated
onfiguration.
ne period, including growing season, planting date, length of the simulated fallow
tivity test, and gray circles represent the calibrated configuration (see Table 3 for

testing the robustness of the calibrated configuration and the ini-
tialization of soil moisture at 75% of saturation throughout the
profile. Mean baseline yields for fallow period lengths between 0
and 3 weeks hold within ±2% of the calibrated values, while mean-
normalized standard deviations are within 0.2%. Longer fallow
periods slightly increase means and reduce the mean-normalized
standard deviation of yield, suggesting that true initial soil condi-
tions in the middle of the rainy season are actually slightly more
favorable than the calibrated configuration assumes.

The selection of a soil profile from the 14 WISE soil profiles
identified as being in Panama showed a substantial impact on
Fig. 8. Sensitivity of simulated mean yield changes (%) to climate uncertainties in
comparison to baseline yields (5458 kg/ha). Uncertainties include the selection of
emissions scenario for each of the three future periods, the A2 and B1 emissions
scenarios across all three future periods, the range of GCMs for the A2 scenario for
each of the three future periods, and the effect of simulations with and without
[CO2] effects for each of the three future periods. All experiments are presented as
the median (across 16 GCMs) mean yield change with the exception of the GCM
lines that are presented as simply the mean yield change across the 30 year GCM
scenario.
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Fig. 9. Sensitivity of mean yield changes to [CO2]. The black line represents mean yields from baseline climate run under various [CO2], the light gray line displays mean
yields from all future climate change scenarios based upon elevated [CO2] concentrations but where crop model simulations held [CO2] at baseline concentrations, and the
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ark gray line shows the median of simulations performed with all climate change
imulation to facilitate comparison with Figs. 6–8.

eriod. The lowest and least consistent yields are the Phaeozem
rofile characteristic of the Eastern Caribbean coast, an area with

ittle maize production today. Yields from the other soil profiles do
ot otherwise show strong correlations with depth or soil classifi-
ation. CERES-Maize applications to reproduce rain-fed yield must
herefore recognize its high sensitivity to Panama’s diverse soils,
articularly if the goal is to aggregate results to match country-level
roduction.

Five maize cultivar tests reveal that only Hybrid Obregon pro-
uces higher (5%) yields than the calibrated cultivar (Modified
ioneer X-304c B). Hybrid Obregon features very rapid maturation
nd extremely high kernel counts, which suits the water-stressed
nvironment nicely. The Modified Pioneer X-304c A and Pioneer
-304c are 23.8% and 36.6%, respectively, below the calibrated
ultivar due to longer emergence-juvenile phase maturation and
educed kernel numbers, while PB-8 is 34.2% below the calibrated
ultivar due to dramatically lower kernel numbers. Large mean
ield range among cultivars suggests that CERES-Maize applica-
ions benefit greatly from more accurate cultivar traits.

Tests with six fertilizer amounts demonstrate a strong sensitiv-
ty of baseline yields to nitrogen stresses. An additional experiment

as conducted where nitrogen stress was not permitted. Mean
aseline yield increases with additional fertilizer applications
nd reduced nitrogen stresses, as does yield consistency above
0 kg N/ha. The 0 kg N/ha simulation produced mean yields more
han 60% below the calibrated (150 kg N/ha) simulation, while the
00 kg N/ha experiment produced nearly the same yields as the
itrogen-stress-free simulation (3.4% and 3.8% above the calibrated

imulation, respectively), suggesting strongly diminished returns
or fertilizers applications beyond 150 kg N/ha. These results agree
ith field experiments in Panama that revealed a quadratic rise

n yield followed by a plateau above 147 kg N/ha (Gordón et al.,
004a).3 The Nitrogen-stress-free simulation produces a dramatic

mprovement in the mean-normalized standard deviation of yield,
owever.

.2. Sensitivity of yield changes to farm-level options

Baseline yields show substantial sensitivities to farm-level
ptions, but these sensitivities do not necessarily translate into
arge sensitivities when investigating the effect of climate changes

n the field in question. This section examines the potential to
eneralize across farming systems by assuming that the per-
entage yield change caused by climate change in the calibrated

3 147 kg N/ha was the median threshold among field experiments, with some
ocations showing higher and lower sensitivities (see Gordón et al., 2004a, for more
etails).
error bar shows the range of GCM mean yield changes for the A2 End-of-Century

simulation may be more universal than the absolute yields. In this
way we investigate whether model biases in the baseline config-
uration may be independent from the effects of climate change
impacts in an approach that is analogous to the climate scenario’s
Delta Method. This section (and Fig. 7) focuses on the A2 End-
of-Century simulation because the sensitivities’ signals are more
clearly demonstrated under more dramatic climate changes.

A2 scenario maize yields are projected to increase more rapidly
between now and the End-of-Century period during the primera
coa season (+6.9%) than the segunda coa season (+4.5%). Segunda
coa maize, which has higher yields in the baseline, continues to
exceed the primera coa season in absolute yield by 7% in this future
scenario, however.

Maize’s accelerated maturation under warmer conditions has a
dramatic effect on late-planted segunda coa maize, with the largest
percentage yield gains found in maize planted September 21st
(+18.4%) as grain-filling water stress is more frequently avoided.
In contrast, the most productive baseline plant date (August 22nd,
which rarely experienced late-season water stress) shows nega-
tive yield changes (−0.7%). The calibrated September 1st planting
date has the highest absolute yield among all planting dates in
the A2 End-of-Century simulations, with values very similar to the
baseline August 22nd planting due a similar timing for the acceler-
ated grain-filling period. The difference in yields between early and
late planting dates in the segunda coa is substantially decreased,
suggesting more favorable conditions for dual-season maize culti-
vation as there is projected to be more time between the primera
coa season harvest and the end of the productive segunda coa sow-
ing window.

Projected yield changes were not very sensitive to the simu-
lated length of the fallow period before planting. The lowest yield
changes (+0.8%) occurred for the simulations where the soil profile
was initiated at 75% of saturation 7 weeks before the planting date,
while the highest yield changes (+5.5%) were initiated on the day of
planting. Simulations where shorter fallow periods lead to higher
water stress (recall Section 5.1) see a higher benefit from improved
water retention under higher [CO2], but projected climate impacts
on maize yield fall in a relatively tight range regardless of the fallow
period.

Climate impact responses for all soil profiles, the selection of
which accounts for large deviations in mean baseline yield (from
−35.4% to +21.8% in comparison to the calibrated soil), result in
an envelope of mean yield changes between −8.6% and +16.7%
gains. Although still substantial, the soil profile uncertainties of
climate impacts are greatly reduced in comparison to the base-

line soil profile uncertainties. Baseline yields and future changes
display a strong negative correlation (−0.96; significant at 0.001
level), however, meaning soil profiles that produce higher mean
baseline yields are more negatively affected by climate changes. As
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aseline yields are strongly limited by water stresses, these sim-
lations suggest that adaptations alleviating water stress increase
verall yields but reduce the water-holding benefits of elevated
CO2] and accelerated maturity, leading to declining yields as the
etrimental effects of higher temperatures are more evident.

The selection of maize cultivar alters baseline mean yields
y nearly 40%, but has a smaller but still substantial impact on
uture yield changes. Pioneer X-304c shows the highest yield gain
+15.8%), but its absolute yield still falls well below the calibrated
ultivar. Hybrid Obregon (+3.9%) shows a similar yield gain to the
alibrated variety (+4.5%), maintaining its edge in mean yield. Only
B-8 shows a negative yield change (−0.9%). No clear mechanism
inks a cultivar’s mean baseline yield to its yield changes under
uture climate scenarios, so cultivar calibration remains a signifi-
ant challenge to understanding climate impacts.

Fertilizer amounts affect baseline mean yields by up to 60%
ut have a more modest impact on yield changes for the A2
nd-of-Century. Farming systems with low fertilizer amounts
0 and 20 kg N/ha) only show slight yield gains (1.7% and 1.4%,
espectively). Moderate fertilizer systems (50, 80, and 100 kg N/ha)
roduce the highest percentage yield gains (6.8%, 9.4%, and 8.5%),
hile the highly fertilized systems (150 and 200 kg N/ha or no N-

tress simulation) produce lower yield gains (4.5%, 1.9%, and 2%
espectively). Thus, the added yield benefit from applying more
han 100 kg N/ha diminishes in the future scenario.

.3. Sensitivity of yield changes to aspects of climate variability
nd change

The first three lines in Fig. 8 show the median (across 16 GCMs)
0-year mean yield changes for the A2 and B1 scenarios in each
uture time period. Their difference demonstrates the potential
mpact of global greenhouse gases mitigation efforts, which will
etermine the emissions scenario that comes to fruition. The Near-
erm A2 (−0.5%) and B1 (0.0%) scenario yield changes suggest that
iffering emissions trajectories are not very important to changes

n maize yield for the next few decades. Societal emissions path-
ays begin to distinguish themselves in the Mid-Century, with
2 yields trending upwards (+2.4%) while B1 yields hold steady
−0.1%). By End-of-Century the median of both A2 and B1 simu-
ations have increased yields (+4.5% and +1.5%, respectively). The
ext two lines show these results in a different way, demonstrat-

ng how A2 yields increase more rapidly with time while the
1 increase is slower. Sensitivity to time period also reflects the
ncertainty that real changes could arrive sooner or later than
rojected depending on the accuracy of each GCM’s climate sen-
itivity.

These small median yield changes mask a much larger uncer-
ainty, however. Lines 6–8 of Fig. 8 show the 30-year mean
esults from scenarios based upon each of the 16 A2 GCMs for
he future time periods, revealing considerable range in yield
hanges depending on model uncertainty. It is clear that reliance
n a single model would have been problematic, as even in
he Near-Term there are considerable outliers (one GCM had
arm temperatures and pessimistic declines in autumn rain-

all, while another optimistically projected future cooling for
eptember and October). In general the clusters of GCM results
ollow the medians toward increasing yields as the future pro-
resses, however their inter-quartile ranges increase from 2.8%
n the Near-Term to 3.2% in the Mid-Century and then 9.7%
or the End-of-Century, a spread that often exceeds the median
ield changes and leaves Panamanian stakeholders with diffi-

ult risk assessments. The 4 A2 End-of-Century GCM scenarios
ith the lowest projected rainfall over the segunda coa grow-

ng season all project yield declines, suggesting that there is
till considerable need for improved climate model projections
Meteorology 170 (2013) 132–145 141

to tighten the uncertainty in this region. More consistent rain-
fall projections would have a direct impact on stakeholder
confidence in taking action to ensure economic and food secu-
rity.

Even in the most extreme cases described above, projected mean
yield changes remain small in comparison to interannual variabil-
ity of maize yield. In the baseline calibrated simulation (only 30
years; recall Fig. 3), high and low years produced yields nearly
50% below and 40% above the mean, suggesting that the impacts
of climate change on Panamanian maize yields will be difficult to
separate from ongoing seasonal variability unless long-term aver-
ages are compared. The characteristics of interannual variability
are also likely to change and may have a particularly strong influ-
ence on extreme growing seasons. These uncertain changes (which
are the subject of an ongoing study) were not captured by the
delta approach to scenario generation used in this study. Of course,
changes in population, demographics, adaptation, and water sup-
ply will also obscure the climate changes isolated in this impacts
assessment.

5.4. Sensitivity of maize yield to CO2 concentrations

The final three rows in Fig. 8 show the projected yield changes
from simulations of the future periods with, and without, [CO2]
impacts. Elevated [CO2] is widely known to affect agricultural pro-
duction (Easterling et al., 2007; Hatfield et al., 2008), however the
extent that the growth of any given crop is affected is the subject
of considerable debate (Long et al., 2006; Tubiello et al., 2007a,b;
Ainsworth et al., 2008; Challinor and Wheeler, 2008; Kimball, 2010)
and ongoing research in field, chamber, and modeling experiments
(CCSP, 2008; Fleischer et al., 2010; Kimball, 2010; Boote et al.,
2010; White et al., 2011). Boote et al. (2010) recognize that crop
models often rely on [CO2] sensitivity experiments that are now
more than 20 years old (particularly to model the less-sensitive C4
crops like maize), and that fewer [CO2] response trials have been
conducted under diverse climates outside of major mid-latitude
agricultural areas. Challinor and Wheeler (2008) note that, for C3
crops under high [CO2], the water-retention benefits from partial
stomatal closure during dry periods may be offset by higher transpi-
ration from increased leaf area. White et al. (2011), note that few
crop models clearly include the detrimental effects of increased
canopy temperatures with elevated [CO2]. These effects are not
reproduced by CERES-Maize. In conducting this study an additional
uncertainty was also identified whereby projected impacts are sub-
stantially sensitive to differing model versions. The CERES-Maize
version included in DSSAT v4.5.0.0.030 used in early comparisons
has a much stronger response to elevated [CO2] than the DSSAT
v4.5.0.047 version used here, which has seen updates to soil evap-
oration routines and CO2-response functions (following Hatfield
et al., 2008). Despite these improvements, the considerable debate
over whether or not the crop model [CO2] enhancements are accu-
rate will remain until more definitive results from field trials are
incorporated.

Fig. 9 displays the results from a range of sensitivity tests
designed to bound [CO2] uncertainties in CERES-Maize. The black
line and open symbols show mean yields from experiments that
are identical to the calibrated baseline simulations except that
the [CO2] is set to correspond to A2 and B1 projections of the
Near-Term, Mid-Century, and End-of-Century (see Table 3), as well
as a pre-industrial level (285 ppm) and several additional values
(325, 625, 675, 800 m and 900 ppm) to fill in and extend the yield
response curve. The x-axis ([CO2]) acts as a proxy for time as

emissions rise, although the small kink apparent between the B1
End-of-Century simulations and the A2 Mid-Century simulations
reflects the limitations of this proxy as climate reacts differently
to the pace of changes in [CO2] over these unequal periods. Absent
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Fig. 10. Bivariate yield change responses for mean growing season temperature and rainfall under baseline [CO2] for the (a) 1980–2009 baseline; (b) A2 Near-Term; (c) A2
Mid-Century, and (d) A2 End-of-Century. Each dot represents a particular season’s yield as a percentage of the mean calibrated baseline yield.
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ther stresses, maize (as a C4 crop) is expected to have a moder-
tely favorable response (in comparison to the more sensitive C3
rops) to elevated [CO2] due to increased primary productivity, and
he response for all species should eventually flatten out in a sign
f diminishing returns (Kimball, 2010). This pattern is reflected in
he calibrated simulations, however the presence of water stress
llows for additional benefits under elevated [CO2] as more efficient
as exchanges allow more efficient stomatal closure that reduces
ranspiration during droughts (Kimball, 2010).

The light gray line and symbols are the median (among 16
CMs) of the 30-year mean yields simulated for each emission sce-
ario and time period, however for these experiments [CO2] was
eld constant at 1995 levels (360 ppm). These results show the

mpacts of projected changes in temperature and rainfall without
ny field-level [CO2] effects. Considering the ongoing debate over
he magnitude of [CO2] yield impacts, if we assume that the positive
ffects of [CO2] are overestimated by this version of CERES-Maize
ut are non-zero, the gap between the constant [CO2] (light gray)

ine and the constant climate (black) line indicates the increasing
mportance of realistic simulations of [CO2] sensitivity as projec-
ions for this region extend further into the future. Simulations with
oth climate and [CO2] changes (dark gray line and symbols) are
igher than the average of the CO2-only (black) and no-CO2-effect
light gray) simulations due to increased water retention capabil-
ties in elevated-CO2 scenarios with decreased rainfall. To place

hese changes in the context of errors discussed in the previous
ection, the error bar attached to the A2 End-of-Century simula-
ion shows the range of 16 GCMs’ mean yield changes with full
limate and [CO2] changes.
6. Uncertainties in bivariate yield response surfaces

Uncertainty introduced by GCM projections reflects the state
of agreement across models, but it is possible that future condi-
tions fall outside of this projected range and each new climate
simulation requires a costly new impacts assessment. An alter-
native approach would be to use crop models to simulate yield
responses to a broader range of climate states, capturing a wider
uncertainty space and statistically fitting yield response emulators
that could rapidly assess the impacts of new climate projections for
integrated assessment models or other applications. By regressing
yield changes against only two climate change variables, bivariate
yield response emulators may provide a clear visualization to end-
users and give a first estimate of yield changes for newly projected
climate states.

Simple yield emulators are commonly based upon annual
mean temperature and rainfall amounts, as these metrics are
widely available and familiar to stakeholders. For crops in some
regions, however, it is likely that alternative variables, tempo-
ral periods, and frequencies of variation may be more descriptive
of yield variability. Underlying regressions may be based upon
reported historical yields or simulations of complex impacts
assessment models adjusted for different [CO2], for example. In
this study yield emulators are regressed against results from
the baseline and all future climate scenarios (2910 simulated

years in total) under [CO2] held constant at 360 ppm (1995
levels). In order to identify important thresholds, AgMIP sensi-
tivity tests will be designed to expand the uncertainty space for
changes in temperature, precipitation, and [CO2], as well as to
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ig. 11. Bivariate yield change response surfaces (as % of baseline mean yield) unde
emperature and rainfall; (c) mean growing season rain days and the standard devia
aily minimum temperature and mean growing season rainfall.

nvestigate the importance of climate variability on seasonal pro-
uction.

One advantage of bivariate yield responses is their appeal in
isualizing climate and crop model uncertainties for end-users and
takeholders. Fig. 10 depicts the yield changes for all A2 simula-
ions using Los Santos climate under baseline [CO2] (360 ppm; all
f the simulations from the light gray line in Fig. 9) according to
ean growing season temperature and rainfall. Fig. 10a shows just

he baseline years, which are tightly clustered around moderate
ainfall and temperatures within a degree or so of 27.5 ◦C, although
ne outlying year is cooler and wetter (1999). For future periods all
CMs are displayed, demonstrating a progression toward warmer

emperatures and an increasing spread in rainfall due to high GCM
ncertainty. In the A2 Near-Term there are several cool and wet
ears with high yields (Fig. 10b), however future growing seasons
re increasingly in the lower-yielding warm and dry quadrant. By
he End-of-Century period it is extremely rare to be as cool as even
he hottest baseline season. Drier scenarios produce substantial
osses, while the wettest scenarios are showing diminishing returns
nd a reduction due to the high temperatures.

A lot of practical information may be gleaned from this type of
ivariate analysis; however it is also clear that there are excep-
ions to the general bivariate response. For example, there are
xcellent years with slightly warmer conditions and only aver-
ge rainfall while other seasons with similar conditions produce
ediocre yields. Likewise, several cool and wet years have only

verage yields while similar conditions often create bumper crops.
efore a statistical yield emulator may be trusted, it is important to

etermine how robustly various metrics predict yield responses.

Fig. 11 presents yield responses to four combinations of climate
etrics with contours from the corresponding quadratic bivariate

egression whereby yield Q is estimated using a least-squares fit
line [CO2] for: (a) mean annual temperature and rainfall; (b) mean growing season
f growing season daily maximum temperatures; and (d) minimum growing season

to approximate coefficients a, b, c, d, and e according to climate
metrics x and y:

Q = a + bx + cx2 + dy + ey2. (1)

Fig. 11a shows the response to the annual mean temperature
and rainfall, identifying precipitation as the more predictive fac-
tor although yield is more sensitive to high temperatures during
wet times than under drought. High- and low-yield seasons with
nearly identical annual mean temperatures of ∼28 ◦C and rainfall
of ∼3 mm/day demonstrate that annual mean values are not suf-
ficient to describe seasonal maize yields in Panama. When these
variables are used as a seasonal yield emulator, Eq. (1) produces
an RMSE of 17% versus the CERES-Maize simulated yields, which
is likely not sufficient for practical application. Driven by mean
annual rainfall and precipitation from 30-year scenarios, Eq. (1) can
produce mean scenario yield changes with a Pearson’s correlation
of r2 = 0.85. r2 drops to 0.38 when the emulator is used to predict
out-of-sample simulations with elevated [CO2], however, suggest-
ing that emulators based upon present-day conditions alone are
not sufficient to predict future conditions with enough detail to
achieve the accuracy needed for decision-making. As expected,
using growing season temperature and rainfall instead of annual
metrics improves emulator performance (Fig. 11b). It is also worth
noting that growing season rainfall totals above 10 mm/day lead to
predictions of lower yield as a result of nitrogen leaching. Without
[CO2] effects the seasonal emulator RMSE improves to 14.2%, with
the 30-year scenario emulator producing r2 = 0.89.

In addition to mean quantities, seasonal emulators based upon

sub-seasonal metrics perform quite well. Fig. 11c shows the
predictive ability of the standard deviation of growing season max-
imum temperatures and the number of growing season rain days,
which produce a seasonal emulator with lower RMSE (15.3%) than
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he annual metrics. The importance of these variables was also
eflected in the analysis of baseline climate sensitivities in Section
and Fig. 4, where the importance of regular rainfall events and

table temperatures were discussed. The delta scenarios examined
ere do not affect these metrics other than through rounding errors
n large precipitation decreases or through differential monthly
emperature changes, so they do not perform well in predict-
ng future scenario yields in this study (r2 = 0.41 without [CO2]
ffects). In light of these results, the authors are utilizing ensembles
f regional climate models in ongoing studies to assess how cli-
ate change will affect the number of rainy days and temperature

xtremes during the growing season in Mesoamerica.
Fig. 11d shows the climate metric pair that was most descriptive

f yield for the Los Santos simulations. Seasonal emulators using
he minimum of growing season minimum temperatures and the

ean growing season rainfall predict seasonal yields under base-
ine [CO2] with an RMSE of 12.8%, and future yields with r2 = 0.93.
aired with growing season mean rainfall, the lowest recorded
rowing season temperature is actually even more indicative of late
eason water stress than are December rainfall totals, December
olar radiation, or December temperatures as it reflects evaporative
emand as the rainy season fades into seasonal drought.

. Conclusions

The results presented above demonstrate the interacting and
ompeting multi-disciplinary uncertainties that must be addressed
n performing a climate impacts analysis on agriculture. The
ndings underscore the importance of identifying farm-level infor-
ation to reduce the uncertainties in climate impact assessments

n agricultural production, but also show the extent to which a sin-
le calibrated model configuration may shed light on many other
elated farming systems. Even in regions with strong field trial sites,
he application of point models to a broader region for aggrega-
ion or for other interested stakeholders must consider the prime
ources of farm-level uncertainty, either through the end-to-end
imulation of multiple farm configurations or through a combina-
ion of sensitivity studies at a sentinel location and regional surveys
f farm practices and environmental conditions. These approaches
re currently being explored as part of AgMIP.

Projections of Panamanian yield under climate change condi-
ions indicate modest increases in production over the coming
entury. While accelerated crop development is the root cause of
ield losses in much of the world, accelerated maize development
n Panama helps the grain-filling period complete before the worst

ater stresses occur, resulting in a net increase in yield.
In general, farm-level calibration uncertainty has a greater influ-

nce on baseline performance than on climate impacts analysis, and
ater-stressed configurations show more positive yield changes
nder future conditions as accelerated crop maturity and higher
CO2] reduces the incidence and impact of water shortages. As
s apparent in the yield decreases that correspond to the wettest
ears, however, the opposite is also true and suggests that farm-
ng systems with reduced current water stress will experience
he detrimental aspects of climate change more prominently. Both
aseline and future conditions are quite sensitive to cultivar traits
nd the selection of soil profile, while large baseline sensitivities to
ertilizer amounts are greatly reduced in the future scenarios. Base-
ine and future simulations for the primera coa season are quite
imilar to the segunda coa season, and experiments with different
allow period lengths do not substantially alter yields.
GCM projections lead to a wide range of plausible yield impacts
ith uncertainties increasing in the future. Much of this uncertainty

tems from projected trends in Panamanian rainfall, as drier GCMs
roject yield losses in all future periods. The true climate change
Meteorology 170 (2013) 132–145

signal will be difficult to observe in a region where high interan-
nual rainfall variability obscures long-term trends. Additionally,
substantial maize yield gaps in Panama have the potential to be
reduced as continuing development allows for a modernization in
seed, amendments, and agrotechnology; however these challenges
would exist regardless of the additional burdens of climate change.

Bivariate yield impacts response emulators based on CERES-
Maize simulations assist in analysis and a first-guess projection
of new climate scenarios (particularly when tailored to grow-
ing season, rather than annual, metrics), but cannot replace the
more complex maize model in Panama. Emulators of future yield
must also represent [CO2] effects, as emulators trained under con-
stant [CO2] are not useful out-of-sample. One useful product for
AgMIP would be to determine the types of simulations that may
be adequately performed via a calibrated statistical emulator and
to classify the climate change variables (both average and extreme
metrics) that crop yields are most sensitive to. For maize yield at our
pilot location in Panama, application of quadratic bivariate regres-
sions underestimated the yield impacts of extreme seasons and
revealed errors due to the omission of additional crucial metrics
including the number of rainy days and the standard deviation of
temperatures. In similar regions (where no two variables are capa-
ble of predicting yield changes with high skill) AgMIP must continue
to rely on dynamic biophysical crop models to investigate climate
impacts.

It is hoped that this study will encourage similar analyses (possi-
bly through AgMIP) for other crops and regions to determine what
patterns exist in climate impacts uncertainty, and to develop ways
of communicating uncertainty to end-users and stakeholders. In
order to further address the many uncertainties in climate impacts
assessment, an additional study in a region with low yield gaps is
currently underway that will evaluate uncertainty in the context of
farm-level options and future climate aspects, as in this study, but
also on the source of baseline climate information and the types of
climate variables allowed to change in future scenarios.
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