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a b s t r a c t

The spatial and temporal impacts of climate change on irrigation water requirements and yield for sug-
arcane grown in Swaziland have been assessed, by combining the outputs from a general circulation
model (HadCM3), a sugarcane crop growth model and a GIS. The CANEGRO model (embedded with
the DSSAT program) was used to simulate the baseline and future cane net annual irrigation water
requirements (IRnet) and yield (t ha�1) using a reference site and selected emissions scenario (SRES A2
and B2) for the 2050s (including CO2-fertilisation effects). The simulated baseline yields were validated
against field data from 1980 to 1997. An aridity index was defined and used to correlate agroclimate var-
iability against irrigation need to estimate the baseline and future irrigation water demand (volumetric).
To produce a unit weight of sucrose equivalent to current optimum levels of production, future irrigation
needs were predicted to increase by 20–22%. With CO2-fertilisation, the impacts of climate change are
offset by higher crop yields, such that IRnet is predicted to increase by 9%. The study showed that with
climate change, the current peak capacity of existing irrigation schemes could fail to meet the predicted
increases in irrigation demand in nearly 50% of years assuming unconstrained water availability.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Many studies in the research literature describe how agricul-
tural production in Africa will be one of the sectors most vulnera-
ble to climate change and variability (Challinor et al., 2005). This is
because a significant proportion of the African economy is depen-
dent on agriculture, most of Africa’s water (85%) is used for agricul-
ture (Downing et al., 1997), farming techniques are relatively
primitive and the majority of the continent is already hot and
dry (Kurukulasuriya and Mendelsohn, 2008). Spatial and temporal
changes in precipitation and temperature patterns will thus have
major impacts on the viability of both dryland and irrigated farm-
ing (Benhin, 2008). For an important commodity crop such as sug-
arcane where water is a limiting factor in production, the priorities
are to assess the impacts of climate change on both resource avail-
ability (for irrigation abstraction) and water demand (for crop pro-
duction). However, most studies to date have focussed on
agriculture and rural livelihoods, with limited attention to impacts
on sugarcane in southern Africa (Deressa et al., 2005).

In many African countries, including Nigeria (Binbol et al.,
2006), South Africa (Hassan and Olbrich, 2000), Zambia and Zimba-
bwe, sugarcane forms the mainstay of the economy. In Swaziland,
ll rights reserved.

.

production dates back to the mid-1950s, with the establishment of
mills at Big Bend, Mhlume and Simunye. Sugarcane production has
grown steadily, and in 2007 accounted for 59% of Swaziland’s agri-
cultural output and 24% of gross domestic product (GDP). In 2008
production was reported to be 5,100,456 tonnes with an average
annual yield of 102 t ha�1 (SSA, 2009). Most cultivation is concen-
trated on large plantations in the Lowveld and Lower Middleveld
regions, where fertile soils and high temperatures provide ideal
conditions for production, although all are dependant on irrigation
to supplement low rainfall during the growing season. In this con-
text, Swaziland is unique, as sugarcane cannot be grown without
irrigation, in contrast to neighbouring countries such as South Afri-
ca where 40% of the total cropped area is irrigated (Inman-Bamber
and Smith, 2005). As a consequence, the majority of water ab-
stracted for agriculture (96%) in Swaziland is used for sugarcane
production (Matondo et al., 2005).

The total cane cropped area is currently 52,071 ha (SSA, 2009)
having increased from 14,500 ha in the late 1960s (Murdoch,
1968); further irrigation developments are underway which will re-
sult in an additional 19,000 ha being cultivated. This will add pres-
sure on already strained water resources, and is likely to lead to
increased tensions with neighbouring riparian states regarding
water allocations for agriculture (Nkomo and van der Zaag, 2004).
At present, sugarcane irrigation needs vary between 10,000 and
14,000 m3 ha�1 depending on variety, soil and agroclimate
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conditions. Although traditional methods such as furrow are still
popular (39% of the total area), sprinklers (54%), centre pivots (3%)
and drip (3%) are gaining favour (Nkomo and van der Zaag, 2004)
as estates switch technology to improve water efficiency (more
‘crop per drop’), coupled with concerns regarding labour availability
(Merry, 2003).

Deressa et al. (2005) assessed the economic impacts of climate
change on sugarcane in South Africa using a Ricadian approach. By
combining critical damage point analyses with information on
agroclimate variability their analyses showed that sugarcane reve-
nue is more sensitive to predicted increases in temperature, rather
than rainfall. Their analysis excluded the impacts of CO2-fertilisa-
tion on productivity. Previous studies have investigated the im-
pacts of climate change on water resources in Swaziland but
have not considered sugarcane production (Matondo et al., 2004).
Other studies have assessed agronomic impacts and the potential
for using spatial (GIS) modelling for yield prediction (Kiker,
2000). The objective of this study was to conduct a preliminary
assessment of climate change impacts on sugarcane production
in Swaziland.
2. Methodology

In summary, the outputs from a general circulation model
(GCM), a sugarcane crop growth model and a geographical infor-
mation system (GIS) have been combined to assess the spatial
and temporal impacts of climate change on cane yield and irriga-
tion needs. Using selected IPCC SRES scenarios for the 2050s (Nak-
icenovic et al., 2000), future climate datasets were derived for a
reference site using outputs from the HadCM3 model. The net an-
nual irrigation water requirements (IRnet) and crop productivity
(t ha�1) for the baseline and selected IPCC scenario were then sim-
ulated using the CANEGRO model embedded within the DSSAT
(Decision Support System for Agrotechnology Transfer) program
(Jones et al., 2003). The crop simulations considered future emis-
sions scenarios both with and without CO2-fertilisation effects.
Using potential soil moisture deficit (PSMD) as an aridity index,
maps showing future changes in agroclimate were produced. Final-
ly, a linear regression analysis between agroclimate variability and
irrigation need was used to estimate current and future volumetric
water demand for sugarcane. A brief description of the study site,
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Fig. 1. Mean monthly rainfall and reference evapotranspiration (ETo) at M
the climate change scenarios and datasets, crop modelling and
GIS mapping, is provided below.
2.1. Study site

The study site was Mhlume (Lon: 26:03:02S; Lat: 31:50:05E), in
the eastern Lowveld, an area in which nearly half the total area of
irrigated sugarcane in Swaziland is located. The Commonwealth
Development Corporation (CDC) established a sugar mill at
Mhlume in the 1950s, now owned by the Royal Swaziland Sugar
Corporation (RSSC) who manage approximately 20,000 ha of sug-
arcane which is milled at Mhlume and Simunye factories. RSSC is
one of the largest companies in Swaziland, producing two-thirds
of the country’s sugar. Mhlume has a sub-tropical steppe climate
and compared to other parts of the country, the Lowveld region
is characterised by low rainfall and high temperatures. For this
study, daily weather records for 1969–1996 for the site were avail-
able. In January, the mean monthly temperature is 31 �C, but with
daily maximum temperatures as high as 39 �C. The minimum
monthly mean temperature (9 �C) occurs in winter (June to July),
but on some days can be as low as 3 �C. Nearly 80% of annual rain-
fall occurs between October and March. Reference evapotranspira-
tion (ETo) (Allen et al., 1998) exceeds rainfall in all months, with
the greatest moisture deficits occurring between May and Septem-
ber (Fig. 1). A cropping database for RSSC provided detailed field
records on planting and harvest dates, varieties grown, soil types,
ratoon periods, irrigation methods, and yields (harvested cane
and sucrose) from 1980 to 2007. This database was used for vali-
dating the CANEGRO simulation outputs.
2.2. Climate change scenarios and datasets

Climate projections were based on the HadCM3, a third gener-
ation coupled atmosphere-ocean general circulation model devel-
oped at the Hadley Centre for Climate Prediction and Research
(Johns et al., 1997). It was developed from the earlier HadCM2
model, used to generate predictions of climate change for the IPCC
3rd and 4th Assessment Reports, and has been widely used in Afri-
ca for impact assessments. For example, Tanser et al. (2003) stud-
ied the effects of climate change on malaria transmission in Africa
using HadCM3 and three climate scenarios. Thomas et al. (2005)
Jul Aug Sep Oct Nov Dec

hlume, Swaziland, based on daily historical data from 1969 to 1996.
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studied the mobilization of southern African desert dune systems
using outputs from three GCMs (HadCM3, HadCM2 and CGCM1).
They showed that for the HadCM3 model, index values for dune
activity bore a very close relationship to those derived from ob-
served data for the 1961–1990 period.

The HadCM3 has a higher spatial resolution than previous ver-
sions (2.5� � 3.75�, latitude by longitude) and allows the radiative
effects of CO2 and other minor greenhouse gases, including water
vapour and ozone to be represented. In order to provide informa-
tion on possible changes in global climate, the model is forced to
consider future scenarios where changes in atmospheric CO2 con-
centration are assumed depending on anthropogenic activity for
three 30-year mean periods (2020s, 2050s, and 2080s). The scenar-
ios reflect different ‘storylines’ based on differing rates of demo-
graphic change, industrial activity, dependence on fossil fuels,
and other socio-economic indicators. These represent mutually
consistent characterisations of future states of the world during
the 21st century, and are neither predictions nor forecasts of future
conditions. Rather, they describe alternative plausible futures that
conform to sets of circumstances or constraints within which they
arise. The true purpose of scenarios is thus to determine the possi-
ble ramifications of climate change along one or more plausible
(but indeterminate) paths.

The emissions are based on those developed by the IPCC (Nak-
icenovic et al., 2000) and known as SRES (Special Report on Emis-
sion Scenarios). In simple terms, there are four ‘marker scenarios’
that combine two sets of divergent tendencies. One set varying be-
tween strong economic values and strong environmental values,
the other set varying between increasing globalisation and
increasing regionalisation (IPCC–TGCIA, 1999). The scenarios are
commonly referred to as A1 (economic-global), B1 (environmen-
tal-global), A2 (economic-regional), and B2 (environmental –regio-
nal). For this research, the A2 and B2 scenarios for the 2050s were
chosen. The A2 scenario has the higher atmospheric CO2 concen-
tration and temperature increase with the highest population in-
crease, the B2 is less extreme, assuming greater efforts to control
global CO2 emissions (de Silva et al., 2007) (Table 1). Strzepek
and McCluskey (2006) assessed the impacts of climate change on
regional water resources and agriculture in Africa using five differ-
ent models (CSIRO2, HadCM3, CGCM2, ECHAM and PCM) using the
same emission scenarios. An approach involving downscaling the
HadCM3 outputs for each scenario was chosen in preference to
using a regional climate model (RCM) as previously used in South
Africa (Hudson and Jones, 2002; Tadross et al., 2005) since these
studies considered only one socioeconomic scenario (SRES A2)
for 2100. The challenges of choosing an appropriate GCM, a repre-
sentative number of emissions scenarios and time slices and the
Table 1
IPCC defined climate change scenarios (A2 and B2) and their characteristics for the
2050s (Source: IPCC, 1999).

Characteristic IPCC scenario

A2 B2

Population growth High Medium
GDP growth Medium Medium
Energy use High Medium
Global CO2 emissions (GtC/year) 17.43 11.01
Atmospheric CO2 concentration

(ppmv)a
547 601

Land-use changes Medium /
high

Medium

Resource availability Low Medium
Technological change Slow Medium
Change favouring Regional Dynamics as

usual

a Bern-CC model predictions.
downscaling approach in order to capture an appropriate degree
of uncertainty in the modelling are considered under the method-
ological limitations section.

When downscaling, changes in climate need to be considered
relative to a ‘baseline’. In this study, a baseline climatology devel-
oped by the International Water Management Institute (IWMI)
was used (New et al., 2002). This 100 resolution dataset includes
gridded mean monthly surface climate data, derived from observed
data for 1961–1990, to match the World Meteorological Organisa-
tion (WMO) standard. However, it is important to check that the
baseline (historical) climate for a study site is consistent with the
equivalent gridded baseline climatology data. For Mhlume, the his-
torical baseline referred to 1969–1996. A comparison between
Mhlume and the equivalent IWMI grid pixel (1961–1990) using
mean monthly data for rainfall and reference evapotranspiration
(ETo) is shown in Fig. 2. Although the time series are different, lin-
ear regression analyses showed a very high correlation between
the two datasets (Rainfall R2 = 0.96 and ETo R2 = 0.98) confirming
that the IWMI baseline climatology was appropriate for the down-
scaling process.

It is acknowledged that GCMs do not simulate the present cli-
mate perfectly, and that model changes predicted from the present
to the future are generally more reliable than the present or the fu-
ture climate predicted alone (Carter et al., 1994). Downscaling
GCM outputs for the study site was undertaken using a well estab-
lished procedure using ‘change factors’ (Diaz-Nieto and Wilby,
2005). A baseline climatology for the site was first established.
Changes in the equivalent climate variables for the GCM grid box
closest to the target site (Mhlume) were calculated by taking the
difference between the transient HadCM3 GCM runs with the
IWMI observed climate data from the 30 year baseline period (Ta-
ble 2). Finally, these ‘change factors’ (CF) were applied to the his-
torical baseline – adding the changes in temperature to the
observed temperature, and multiplying ratio changes for precipita-
tion and other variables (e.g. solar radiation, wind, ETo) by their
observed daily values during the period 1961–1990 (Alexandrov
and Hoogenboom, 2000). Two new datasets were generated, to
represent the future climate at Mhlume under each SRES scenario
(2050_A2 and 2050_B2). Using this approach, all the daily climate
values in each month are altered by the same percentage, each day
and in each year of record. This approach has the virtue of simplic-
ity and maintains a realistic temporal structure of climate data. It
also assumes that the relative variability in climate from day to
day and year to year (the shape of the frequency distribution) re-
mains constant. Whilst it is recognised that this is not necessarily
true of future climate, it avoids introducing additional uncertainty
into the analysis. Similar CF approaches for downscaling have been
applied in the UK (Pilling and Jones, 1999), Bulgaria (Alexandrov
and Hoogenboom, 2000), Spain (Rodríguez Díaz et al., 2007) and
Sri Lanka (de Silva et al., 2007). The historical baseline and per-
turbed future climate datasets for Mhlume were used as inputs
for the sugarcane crop modelling.

2.3. Modelling sugarcane yield and water use

For simulating baseline and future sugarcane yield and irriga-
tion needs, the CANEGRO model was used; this is one of 16 crop
models embedded within the DSSAT (v4.0) program (Jones et al.,
2003). A brief description of the CANEGRO model is given below,
but readers interested in a detailed description are referred to In-
man-Bamber (1991, 1995) and O’Leary (2000). The CANEGRO mod-
el was originally developed by the South African Sugar Association
Experiment Station (SASEX) to determine optimal harvest age be-
cause of risks from the stalk borer Eldana sacchararina (Inman-
Bamber, 1995). It has since been embedded into DSSAT and used
in Africa (Inman-Bamber and Kiker, 1997), Asia (Jintrawet and
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Fig. 2. Comparison of observed mean monthly rainfall (mm/month) and mean daily
(mm/day) reference evapotranspiration (ETo) for Mhlume against simulated grid
pixel data from the IWMI baseline climatology.

Table 2
Derived changes in mean monthly climate, between the baseline and each SRES emission

Scenario Variable January February March April May

Temperature (�C) 2.70 2.44 2.33 2.91 3.89
Rainfall (%) �5.80 18.60 �23.01 �7.35 22.62
Solar radiation (%) 5.06 �1.07 4.31 1.56 �3.86
Wind (%) 3.03 �1.18 0.79 0.80 4.03
RH (%) �3.31 �4.63 �2.61 �2.70 3.93

2050 A2 ETo (%) 12.47 7.56 10.65 11.29 9.39
Temperature (�C) 1.87 2.19 2.21 1.98 3.30
Rainfall (%) �5.80 18.60 �23.01 �7.35 22.62
Solar radiation (%) 2.68 2.37 4.37 3.17 �3.01
Wind (%) �2.93 �0.28 1.43 0.09 �3.50
RH (%) �1.90 �3.25 �2.61 �2.58 4.66

2050 B2 ETo (%) 7.15 8.86 10.45 9.19 5.49
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Prammanee, 2005) and America. The model contains carbon simu-
lation, crop development, energy and water simulation compo-
nents. Although it was coupled to a soil and plant nitrogen
model from the CERES-Maize model (Jones and Kiniry, 1986) in
the DSSAT program this has not yet been validated, and hence
CANEGRO remains a radiation-water-temperature limited model
that takes no account of nutrient status (O’Leary, 2000). The model
has, however, been extensively tested for simulating above ground
biomass and water status for NCo376, a popular cultivar grown in
Swaziland. Keating et al. (1995) has shown CANEGRO to be robust
for simulating biomass with water or nitrogen stress and Inman-
Bamber (1994, 1995) reported on its application at two different
locations. The model requires input data relating to the local
weather, crop and soil characteristics, and management practices
(fertilizer and irrigation regimes) and runs on a daily time-step
to calculate crop phasic and morphological development using
temperature, day length and genetic characteristics. The weather,
crop and soil datasets and assumptions used for parameterising
CANEGRO are outlined below.

Three weather datasets were used. A historical baseline dataset
containing daily maximum and minimum temperature, wind
speed, solar radiation, rainfall, and relative humidity for Mhlume
for 1969–1996, and two equivalent perturbed datasets for the SRES
2050_A2 and 2050_B2 scenario, respectively, as described previ-
ously. Crop modelling was based on NCo376, a cultivar which is
grown extensively in Swaziland. An analysis of RSSC field data
for 1980–2007 showed that on average this variety accounts for
66% of the total cropped area. The study assumed a plant cane
crop; however, in reality, sugarcane is ratooned and only a small
proportion (typically 10%) is plant cane. At Mhlume, over three-
quarters (77%) of the annual cropped area is ratooned cane aged
1 and 6 years (Fig. 3). This was acknowledged to be a methodolog-
ical limitation as plant cane yields are higher than ratooned cane.
However, analysis of RSSC field data actually showed that the aver-
age yield for plant cane was not significantly different from ra-
tooned cane aged 1–6 years (Fig. 3). It was therefore assumed
that simulating plant cane yield would provide a reasonable indi-
cation of ‘typical’ yield for cane under both current and future
climates.

Planting and emergence dates were assumed to be identical.
This is because in ratoon cane the stems are cut to ground level
and the stumps appear above ground, as in emergence. Normal
practice is to stagger planting in order to optimise cane supplies
to the factory. For the modelling exercise, November planting
was chosen as this coincides with higher temperatures and rainfall
(Fig. 1) which is the ideal condition for germination and filleting
(Doorenbos and Kassam, 1979). The assumed irrigation method
was furrow as this represented 52% of the irrigated area in the re-
gion. An automatic irrigation schedule (defining the timing and
amount of irrigation) was chosen, with irrigation scheduled to re-
s scenario, by variable and month, for Mhlume.

Jun July August September October November December

4.80 4.96 3.77 3.33 3.87 2.30 2.68
5.07 �32.71 �26.21 �21.91 �28.82 �2.73 �2.73
�4.35 3.89 1.57 1.99 6.30 �4.69 1.67
�7.08 1.73 5.84 6.78 9.13 0.51 0.51
6.49 1.98 �8.35 �10.05 �12.20 �17.62 �2.48
8.42 18.22 20.23 19.07 24.06 12.72 9.34
4.33 4.81 3.36 2.97 2.54 1.45 1.92
5.07 �32.71 �26.21 �21.91 �28.82 �2.73 �1.03
�2.83 �1.14 1.04 2.34 2.89 �3.23 4.56
�3.99 7.00 3.80 6.41 7.60 1.09 �0.99
7.04 0.44 �4.78 �9.24 �11.62 �12.18 �1.51
8.08 18.76 15.58 17.46 17.09 8.51 8.60
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Fig. 3. Reported average cane yield (t ha�1) and cumulative proportion (%) of total cropped area, by ratoon year, at Mhlume, based on data for 1980–2007.
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turn the soil back to field capacity when the profile soil water con-
tent dropped below 65% of total available water. This is assumed
typical of current irrigation management practices in the region.
Irrigation efficiency was assumed to be 100%, as net irrigation
water requirements were being modelled, although in practice sur-
face irrigation efficiencies are considerably lower.

At RSSC, the soils are grouped into three classes ranging from
good (1) to poor (3) in terms of sugarcane suitability. For model-
ling, the fields were assumed to have ‘R-set’ soils. These are Class
1 soils, equivalent to heavy textured Shortlands and Hutton Forms
in the South African Binomial Soil Classification, with an effective
rooting depth of 1 m and an available water capacity (AWC) of
140–180 mm m�1 (SASEX, 1999). They are defined as moderate
to well structured red or reddish brown clay loam to clay soils with
moderate organic matter content, and usually occur in mid-slope
positions on well draining gentle slopes (Nixon, 2006). They are
one of the best soils, giving higher cane yields than other local soils
(Murdoch, 1968). An analysis of RSSC field data showed that 65% of
the cropped area were on Class 1 soils, and 76% of all fields con-
tained R-set soils.

The CANEGRO model was parameterised and used to simulate
annual sugarcane yield and irrigation needs for a baseline ‘scenario’
using data from 1980–1996. The model was then re-run for each
SRES scenario (with and without CO2-fertilisation effects) using
the same crop and soil files, but with the future climate datasets.
For each year of simulation, model outputs included biomass yield
(t ha�1), sucrose yield (t ha�1), irrigation needs (mm), and water use
efficiency (WUE) defined as kilograms of sucrose production per cu-
bic metre of irrigation water usefully applied (kg�1 m�3).

2.4. Model validation

It is important to have confidence that a crop model can predict
with reasonable accuracy historical variations in yield, before
imposing further uncertainty through climate change. The CANE-
GRO model was used to simulate yields for 1980–1996. For valida-
tion purposes, RSSC field data for the same period were obtained.
These contained information on cane yield, including variety, ra-
toon year, planting and harvest dates, and soil type (18,000 records
in total) on a field by field basis. From this, a validation dataset was
produced (based on 1549 fields) containing yields for all fields
growing plant cane (variety NCo376) on R-set soils. A comparison
between the CANEGRO modelled and RSSC observed cane yields
was completed (Fig. 4). Visually, for most years, the modelled yield
compared well to the average observed yield and within ±1 SD (as
shown by the error bars). In some years, the modelled and ob-
served average yields were very similar. To assess whether bias
of modelled yields versus observed yields were statistically signif-
icant, the model outputs were analysed for lack of fit (LOFIT) with
the observed data using a method described by Whitmore (1991).
This test was chosen in preference to more widely used goodness-
of-fit statistics such as the correlation coefficient (r) and root mean
squared error (RMSE) because rather than comparing a single mod-
elled value against a single observed value, it considers multiple
observed values and differing numbers of observed values in a
temporal series. The calculated F value (1.50) was not significant,
confirming there was no evidence to suggest that the modelled
and observed data were statistically different.
2.5. Modelling agroclimate and irrigation demand

The variables that directly influence soil moisture and hence
irrigation are rainfall and reference evapotranspiration (ETo). To
assess the spatial impacts of climate variability on sugarcane irri-
gation needs, an approach was needed to extrapolate the CANE-
GRO modelled outputs for a single site (Mhlume) across
Swaziland. Previous research has shown that a strong relationship
exists between irrigation need and potential soil moisture deficit
(PSMD) for a range of crops and climates, including rice in Sri Lanka
(de Silva et al., 2007) and horticulture in Spain (Rodríguez Díaz
et al., 2007). The advantage of this index over others such as the
Wetness Index (ratio of total annual rainfall and total annual
evapotranspiration) is that the distribution of rainfall and ET
throughout the year is taken into account. Furthermore, in many
African countries where spatial information is sparse or non-exis-
tent, the PSMD agroclimate index is more appropriate than the Pal-
mer Drought Severity Index (PDSI) which requires detailed spatial
soils information (Narasimhan and Srinivasan, 2005). To assess
agroclimate (PSMD) variability across Swaziland a water balance
model was used, working from mean monthly rainfall and ETo
gridded data from the IWMI baseline climatology. The PSMD for
each grid pixel at the end of each month is calculated from:

PSMDi ¼ PSMDi�1 þ ETi � Pi ð1Þ

where PSMDi = potential soil moisture deficit in month i,
mmETi = reference evapotranspiration in month i, mmPi = rainfall
in month i, mm
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fitted to the data points.
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At the start of the sugarcane irrigation season the PSMD is as-
sumed to be zero. In months where Pi > (PSMDi�1 + ETi), no soil
moisture deficit is assumed to occur and PSMDi = 0. In Swaziland,
soil moisture deficits start to build up each month as ET > P, peak
in late summer (August) and then continue through the autumn
and winter. Therefore in Swaziland, the estimation of PSMD starts
with January as month i = 1. The maximum PSMD of the 12 months
of the year is the PSMDmax for that grid pixel. A gridded dataset
containing the PSMDmax for each grid pixel at a resolution of
10 min latitude/longitude (16 � 16 km) for Swaziland was
produced.

A modified approach was required to generate an equivalent
PSMDmax dataset for each SRES scenario. This involved using a
GIS to first downscale the HadCM3 GCM data from a grid mesh
of 2.5� � 3.75� (latitude by longitude) down to a 10 min grid to
match the IWMI baseline climatology (New et al., 2002) using a
krigging interpolation technique. Tanser et al. (2003) used a sim-
ilar approach to interpolate the future climate scenario surfaces
to the resolution of their long-term mean data using bilinear
interpolation. The relative change between the baseline and fu-
ture for each scenario, grid pixel and climate variable was then
calculated:

CFv m;j ¼
VHadCM3 fut m;j

VHadCM3 bas m;j
ð2Þ

where:
CFv_m,j is the change factor for variable v in month m for pixel j

from the HadCM3 model;
VHadCM3_fut_m,j is the predicted value for a climate variable from

the HadCM3 model, and;
VHadCM3_bas_m,j is the baseline value for a climate variable in the

HadCM3 model.
Using krigging interpolation techniques, the change factors cal-

culated in Eq. (2), were then interpolated to the grid pixels in the
IWMI baseline climatology. The relative change between the IWMI
baseline climatology and the HadCM3 future scenario for each cli-
mate variable (temperature, precipitation, solar radiation, wind
speed and relative humidity) for each month and grid pixel was
then calculated. These ‘change factors’ were then applied to the
IWMI baseline climatology to derive two future climate datasets
at 100 resolution:

V100 fut m;i ¼ CFv m;i � V100 bas m;i ð3Þ
Where:
CFv_m,i is the interpolated change factor for variable v in month

m and pixel i;
V100_bas is the pixel value for a climate variable in the IWMI

baseline climatology, and;
V100_fut is the predicted value for a climate variable in the IWMI

baseline climatology.
Two datasets containing gridded PSMDmax values for each SRES

scenario at 100 resolution were produced. Using a GIS, the PSMDmax

data were classified and mapped to show the spatial variability in
agroclimate across Swaziland for the baseline and each SRES
scenario.

To assess the impacts of climate change on volumetric irrigation
demand, a correlation between irrigation need and agroclimate is
necessary. One of the outputs from the CANEGRO model is annual
irrigation need (mm). Using Eq. (1) and the climate data for
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Mhlume, the PSMDmax in each simulated year (1980–1996) was
calculated. A correlation between annual PSMDmax and annual irri-
gation need was derived by linear regression analysis (Fig. 5).
Using a GIS, the PSMDmax dataset for Swaziland was combined
with the regression equation (Fig. 5) to estimate the irrigation need
(mm) in each grid pixel. Data on the location and cropped area (ha)
of sugarcane in Swaziland was obtained and imported into the GIS.
The volumetric irrigation demand (m3) was then calculated by
multiplying the reported sugarcane cropped area (ha) with the
estimated irrigation need (mm) in each grid pixel. The total volu-
metric irrigation demand for sugarcane grown in Swaziland taking
into account the agroclimate variability across the country, for the
baseline and each SRES scenario, was estimated.
3. Results and discussion

3.1. Impacts on sugarcane yield and water use efficiency

The estimated changes in sucrose, biomass yield and WUE from
the baseline for each SRES scenario (with CO2-fertilisation for the
2050_A2 SRES scenario) are summarised in Table 3. With climate
change, relatively minor increases in productivity are estimated,
principally due to increased radiation levels and higher tempera-
tures (1–6% and 10–29% above the baseline, respectively). This is
consistent with Batchelor (1992) who observed trends of increas-
ing growth with increasing temperature. Whilst predicted in-
creases in sucrose yield are small (2–3%), ET was estimated to
increase by between 11% and 14%. This results in a reduction in
WUE by 10% for both SRES scenarios. However, when the CO2 con-
centration for the baseline (330 ppmv) was increased (600 ppmv)
for the 2050s, there was a noticeable increase in biomass and su-
crose yield. This is consistent with IPCC (1996) who reported that
a doubling of CO2 concentration from present levels would in-
crease biomass by 10–30%. CO2 enrichment of the atmosphere in-
creases the rate of photosynthesis, and thus yields, and is expected
to reduce water use. In this study, the crop modelling suggests that
sucrose yield under the SRES 2050_A2 scenario, with CO2-fertilisa-
tion would be 15% higher than the baseline yield. There seems to
be only a minor effect of CO2-fertilisation on WUE. According to
Downing et al. (1997) a doubling of CO2 concentration may in-
crease WUE by up to 50%, with stronger effects for plants with C3

pathways. The 5% WUE increase in this study is low, and possibly
due to sugarcane having a C4 pathway, which is less water-
efficient.

The beneficial effects of climate change on yield due to in-
creased CO2 concentration might offset the potentially negative
impacts of increased irrigation need, particularly in countries
where water resources are scarce. Defining any increase in irriga-
tion need is thus important, because if the increase in irrigation
need is accompanied by an increase in yield, then in producing a
Table 3
Modelled cane yield (t ha�1), ‘design’ dry year irrigation need (mm/year) and water use e

Output BL 2050_A2

mm mm %

Average annual rainfall (mm) 778 738 �
Average annual ETo (mm) 1161 1320 1
ETcrop (mm) 1162 1320 1
IRnet (mm) 605 761 2
Design irrig. need (mm) 668 811 2
Sucrose yield (kg ha�1) 24,747 25,466 3
Biomass yield (kg ha�1) 65,835 69,056 5
Stalk yield (kg ha�1) 45,457 47,911 5
WUE (kg/m3) 2.1 1.9 �
IRnet ‘standard’ yield (mm) 605 739 2
unit weight of economic yield, the same amount of water may still
be used, or even less. Therefore a net increase in irrigation will be
when more irrigation water is required for the same unit weight of
yield (defined as a standard yield). Fig. 6 shows the ranked annual
irrigation needs for the baseline and each future scenario for a
‘standard’ yield. The ‘standard’ yield is defined as one obtained
when the crop has no limitations of water. The results show that
for all scenarios, there is an average increase in irrigation need
from the baseline of between 19% and 21%. However, with CO2-fer-
tilisation, the increase in irrigation need is nearly halved (9%).
3.2. Impacts on sugarcane irrigation water requirements

The predicted changes in seasonal irrigation need (depths ap-
plied, mm) from the baseline for each SRES scenario are summa-
rised in Fig. 6. The crop modelling suggested an increase in crop
water requirement (ETcrop) of between 11% and 14% (Table 3). With
climate change, the combined effect of reduced summer rainfall
and increased evapotranspiration rates, results in an increase in
average irrigation need of 22–26%, depending on scenario. This
could have major implications for both existing sugarcane planta-
tions and new developments because irrigation schemes (pipe dis-
tribution and canal networks, and application equipment) are
designed to meet a certain ‘peak’ daily and seasonal need. Design-
ing for an ‘average’ year would result in under-capacity in dry
years when returns from irrigation are highest. Similarly, designing
for the driest year would lead to unnecessarily large pipes and ca-
nals and would be uneconomical. Hence most irrigation schemes
are designed to meet peak need for a ‘design’ dry usually defined
as a return period equivalent to an 80% probability of non-exceed-
ance. However, with increasing reliance on irrigation to attain high
quality production (rather than just yield increment), combined
with concerns regarding the increased likelihood of future dry
years, many new irrigation schemes are now being designed to
cope with more extreme events (greater than the 80% probability
of non-exceedance). Fig. 6 shows the potential increase in ‘design’
dry year need from the baseline for each scenario. The important
point is that a future ‘average’ year in irrigation terms could well
be more akin to a current ‘design’ dry year, meaning that with cli-
mate change future peak irrigation needs could well exceed cur-
rent design criteria for existing irrigation schemes, and in
approximately 50% of years.
3.3. Impacts on agroclimate and irrigation demand

The spatial variability in agroclimate for the baseline and each
SRES scenario are shown in Fig. 7. For the baseline, the agroclimate
zones show a strong north-south delineation, with the highest
aridity values observed in the west around Big Bend
(700–800 mm) then declining westwards towards Malkerns
fficiency (kg�1 m3) for the baseline (BL) and each climate change scenario.

2050_B2 2050_A2 fert

mm % mm %

5 737 �5 738 �5
4 1292 11 1320 14
4 1292 11 1320 14
6 738 22 761 26
1 795 19 811 21

25,168 2 28,429 15
68,202 4 75,520 15
47,262 4 52,790 16

10 1.9 �10 2.2 5
2 726 20 662 9
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Fig. 6. CANEGRO simulated annual irrigation needs (ranked) for sugarcane at Mhlume, for the baseline and each SRES scenario (2050_A2 and 2050_B2). The average irrigation
need for the baseline is shown in black.

Fig. 7. Spatial variability in agroclimate (PSMD) for Swaziland for the baseline (1961–1990) and IPCC SRES 2050_A2 and 2050_B2 scenarios.
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(300–400 mm). The highest aridity values correspond to where
irrigation needs are highest. With climate change, the zones of
highest aridity are predicted to increase in area and magnitude,
moving further north towards the sugarcane growing areas of
Mhlume and Simunye. Under both SRES scenarios, major changes
in the spatial variability in agroclimate are predicted, with large re-
gions of the country predicted to experience conditions more arid
than those currently experienced anywhere in the country.

For the baseline, the total theoretical volumetric irrigation
water demand is estimated to be 24138 � 106 m3 year�1, with
nearly three quarters (72%) concentrated within three production
areas of Mhlume, Simunye, and Big Bend. With climate change,
the volumetric irrigation demand in these areas is projected to in-
crease by 18–21%. This could have major repercussions on other
abstractors, particularly in water scarce and trans-boundary catch-
ments. For example, Nkomo and van der Berg (2004) investigated
water availability and abstraction in the Komati river basin, which
is shared by Swaziland, South Africa and Mozambique, and where
irrigated sugarcane constitutes the dominant land use. They inves-
tigated the impacts of two new dams on water reliability, and
found that improved water supply for irrigation in Swaziland and
South Africa had been achieved. However, they reported that fu-
ture water demands in 2015 even without climate change would
result in appreciable shortages for irrigation. The preferred adapta-
tion options included increasing irrigation efficiency (from surface
to micro-irrigation) and reducing the sugarcane cropped area in fa-
vour of other less water demanding higher value crops, including
horticulture and flowers.
4. Methodological limitations

Inevitably, the approaches developed in this study which have
linked climate, crop and GIS modelling have numerous limitations.
The crop and agroclimate modelling were based on one GCM, two
scenarios and one time-slice. Although the HadCM3 and SRES sce-
narios (A2, B2) have previously been used in various African stud-
ies (Hulme et al., 2001) a more detailed assessment would need to
consider a range of GCM outputs (to account for individual model
error), additional time slices (2030s, 2080s) and the full ensemble
of SRES scenarios (to consider alternative demographic, socio-eco-
nomic and technological changes). By considering only one GCM
the level of uncertainty in the model outputs cannot be easily
quantified. For example, the ECHAM4 GCM has been shown to sig-
nificantly increase predicted changes in irrigation demand for
some regions compared to the HadCM3 GCM (Doll, 2002).

Arnell et al. (2003) analysed different ways of constructing cli-
mate change scenarios using output from three climate models
(HadRM3H, HadCM3, HadAM3H). Sixteen scenarios were con-
structed, representing different combinations of model scale
(GCM, RCM), whether the simulations were used directly or
changes were applied to an observed baseline, and whether ob-
served or simulated variations from year-to-year were used. The
different ways of deriving climate scenarios resulted in a range
in change in average annual runoff of between 10% and 20% by
2071–2100, depending on the model and approach used. Using a
regional climate model over-estimated rainfall across much of
southern Africa and resulted in excessive simulated runoff. This
led to smaller estimates of change in future runoff than when
changes in climate were applied to an observed climate baseline.
Arnell et al. (2003) concluded that it was preferable to apply mod-
elled changes in climate to observed data to construct climate sce-
narios (as used in this study) rather than derive these directly from
the regional climate model (RCM) simulations.

Although there has been a marked increase in the number of
RCM simulations, very few studies have been conducted over
southern Africa as most research institutions in this region lack ac-
cess to the necessary technology. Regional models, such as Had-
RM3 are also able to resolve tropical cyclones, which affect
eastern tropical regions of southern Africa in summer. The hydro-
logical cycle is stronger in the RCM, with consequent increases in
the intensity of rainfall, in the magnitude of the moisture fluxes
and in soil moisture compared to the driving GCM (Hudson and
Jones, 2002). Further studies should therefore investigate the dif-
ferences in climate change signal derived from using a suitable
RCM compared against using established GCM outputs to provide
a better assessment of the uncertainty associated with the climate
change modelling aspects of this work. Linked to this, is the meth-
od of downscaling. In this study, a popular approach using change
factors (CF) was used, but this has limitations compared to statis-
tical downscaling (SD) using transfer functions and stochastic
weather generators (Diaz-Nieto and Wilby, 2005). The problem is
that the future temporal pattern of wet and dry days remains un-
changed, and so changes in the intensity and frequency of rainfall
events can not be investigated. Further studies should consider
using an alternative SD approach which would allow more detailed
analysis of climate change uncertainty and exploration of temporal
sequencing of meteorological events (e.g. droughts, rainfall). The
effect of different resolution between the HadCM3 model
(2.5 � 3.75�) and the IWMI baseline climatology (100 latitude/lon-
gitude) datasets, and choice of interpolation may also have intro-
duced some distortion. Finally, the GCM outputs were used to
generate future datasets based on predicted ‘average’ changes in
climate. However, in agricultural irrigation, a statistically defined
‘design’ dry year with a defined probability of non-exceedance is
used, rather than an ‘average’ year. The predicted future ‘average’
irrigation needs presented in this study are thus likely to signifi-
cantly under-estimate future ‘dry’ year irrigation demand.

The crop model outputs are of course sensitive to model param-
eterisation. Further modelling would benefit from a sensitivity
analysis of the key variables known to influence water use and
cane yield, including modifying crop characteristics to capture
the effects of varying planting dates for different ratooned cane,
simulating different soil types (textures and depths), assessing
the proportion of effective rainfall, and assessing the impacts of
different irrigation scheduling strategies to reflect either tradi-
tional (furrow) or more efficient (micro) application methods.
Modelling could also investigate the impacts of future changes in
reliability of water supply; this study assumed unconstrained de-
mand, but reducing the availability of water for irrigation at differ-
ing times during the season (for example, due to low flows or
seasonal droughts) would impact on cane development and yield.
5. Conclusions

To produce a unit weight of sucrose equivalent to current opti-
mum levels of production, future irrigation needs were predicted
to increase by 20–22%. With CO2-fertilisation, the impacts of cli-
mate change are offset by higher crop yields, such that IRnet is pre-
dicted to increase by 9%. The study showed that with climate
change, the current peak capacity of existing irrigation schemes
could fail to meet the predicted increases in irrigation demand in
nearly 50% of years assuming unconstrained water availability.

GIS modelling confirmed that climate change will impact
strongly on the spatial variability in agroclimate and hence de-
mand for irrigation. Although the study was based on only one
GCM, and considered a limited number of scenarios, these preli-
minary findings do highlight some of the potential risks that cli-
mate change could impose on sugarcane production in Southern
Africa. The approaches developed in this paper and results
serve to provide a useful baseline from which more detailed
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investigations should be undertaken, from which more strategic
interventions, including adaptations could then be planned.
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