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Abstract
Most research on the agricultural impacts of climate change has focused on the major annual crops, yet perennial cropping

systems are less adaptable and thus potentially more susceptible to damage. In regions where perennial crops are economically and

culturally important, improved assessments of yield responses to future climate are needed to prioritize adaptation strategies. These

impact assessments, in turn, must rely on climate and crop models that contain often poorly defined uncertainties. We evaluated the

impact of climate change on six major perennial crops in California: wine grapes, almonds, table grapes, oranges, walnuts, and

avocados. Outputs from multiple climate models were used to evaluate climate uncertainty, while multiple statistical crop models,

derived by resampling historical databases, were used to address crop response uncertainties. We find that, despite these

uncertainties, climate change in California is very likely to put downward pressure on yields of almonds, walnuts, avocados,

and table grapes by 2050. Without CO2 fertilization or adaptation measures, projected losses range from 0 to >40% depending on

the crop and the trajectory of climate change. Climate change uncertainty generally had a larger impact on projections than crop

model uncertainty, although the latter was substantial for several crops. Opportunities for expansion into cooler regions were

identified, but this adaptation would require substantial investments and may be limited by non-climatic constraints. Given the long

time scales for growth and production of orchards and vineyards (�30 years), climate change should be an important factor in

selecting perennial varieties and deciding whether and where perennials should be planted.
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1. Introduction

Climate change resulting from human activity has

the potential to substantially alter agricultural systems

(Adams et al., 1990; IPCC, 2001b; Parry et al., 2004;

Rosenzweig and Parry, 1994). Many studies have

emphasized the potential for adaptation to reduce costs

or increase gains associated with climate change,
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suggesting that systems that are slow to adapt are more

vulnerable (Burton and Lim, 2005; Rosenzweig and

Hillel, 1998). Yet despite the perceived importance of

agricultural adaptation, very little research has focused

on impacts in perennial cropping systems, which

include long-lived crops and therefore change much

more slowly than annual systems. Exceptions include

studies of Valencia orange yields in the southern United

States (Tubiello et al., 2002) and of wine grape yield

(Bindi et al., 1996) and quality (Hayhoe et al., 2004;

Jones et al., 2005; White et al., 2006) in major wine-

producing regions.

In California, perennial crops represent a multi-billion

dollar industry. The fruit, nut, and berry harvest of 2003

was worth US$ 7.8 billion in farm receipts alone

(California Agricultural Statistics Service, 2004b), with

additional value from manufacturing, tourism, and other

related activities likely several times that amount. Models

of climate change in California unanimously project

warming over the next century, with mixed predictions of

precipitation changes (Hayhoe et al., 2004; Snyder et al.,

2002). To evaluate the potential impact of these climate

changes for perennial crop production, we consider here

the six most valuable California perennial food crops:

wine grapes, almonds, table grapes, oranges, walnuts,

and avocados (Table 1). Each of these crops is typically

planted only once every 25 or more years. Therefore,

adoption of new varieties – a commonly cited option for

climate change adaptation – occurs much more slowly

than for annual crops.

Assessments of climate change impacts must consider

uncertainties both in future climate and in the response of

crops to climate changes. Climate change uncertainties

are often evaluated by utilizing projections from multiple

climate models, which can each be run with multiple

emission scenarios (IPCC, 2001a). Because the prob-

abilities of individual model-emission combinations are

generally unspecified, the value of multiple climate

model outputs is mainly to define the range of potential

outcomes. Model inter-comparisons, however, often cite
Table 1

Life span and trends in area and yield for six major California perennial c

Wine grapes Almond

Productive lifea (years) 25 22–25

First harvest (age in years) 3 3

Full production (age in years) 5–6 6

Area change 1980–2003 (%) 116 69

Yield change 1980–2003 (%) 9 57

Average yields 2000–2003 (ton acre�1) 6.9 0.9

All crops are irrigated.
a Life span and production information from http://coststudies.ucdavis.ed
the percent of models with a certain outcome as a

measure of uncertainty, which implicitly assigns equal

probability to each model (IPCC, 2001a).

Uncertainties in crop response to climate are often

less thoroughly evaluated than climate uncertainty in

regional and global assessments. For example, in major

global assessments (Fischer et al., 2005; Parry et al.,

2005) crop responses are simulated using process-based

models that are calibrated for individual sites and then

implicitly assumed to be perfectly accurate. Mearns

et al. (1999) evaluated impacts of climate change on

corn and wheat yields in the central Great Plains using

two crop models (CERES and EPIC), and found

significant differences between crop models that were

comparable to differences obtained when varying

climate model resolutions. Aggarwal and Mall (2002)

compared the ORYZAIN and CERES rice models in

India, and found differences that were nearly as large

those due to an optimistic versus pessimistic climate

change scenario. Thus, crop model uncertainty appears

an important source of overall yield uncertainty that

should be explicitly treated in impact assessments.

In this study, we evaluated the responses of

California perennial yields to projected changes in

temperature and precipitation, with explicit considera-

tion of both climate and crop model uncertainties.

Effects of elevated CO2 and farmer adaptations, both of

which may moderate climate impacts, were not

explicitly modeled but are discussed with the results.

The projections presented in this paper are therefore not

intended as predictions of climate change impacts,

which will depend not only on climate but factors such

as CO2 and farmer responses. Instead, the primary goal

of this study was to quantify (with uncertainties) the

sensitivity of major California perennial crops to

expected temperature and precipitation changes, which

can provide a basis for prioritizing adaptation efforts. A

secondary goal was to evaluate the relative contribu-

tions of climate and crop uncertainties, as well as their

interaction, to total uncertainty.
rops

s Table grapes Oranges Walnuts Avocados

25 40 35 30

2–3 2–4 4 3

4 12–13 8 7

68 22 26 �12

25 9 24 �44

8.3 13.0 1.5 2.7

u/.

http://www-pcmdi.llnl.gov/
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2. Methods

2.1. Crop models

The response of yields to temperature and precipita-

tion changes was described for each crop using statistical

models developed from 1980–2003 records of state-wide

yield and monthly average temperatures (minimum and

maximum) and rainfall variations (Lobell et al., in press).

The use of statistical yield models was necessitated by a

lack of reliable process-based models for the perennial

crops considered in this study. One advantage of

statistical models is that they intrinsically account for

a wide variety of mechanisms that can influence yields in

a changing climate. These include not only plant

physiological processes but also factors like climate-

related influences of pests, pathogens, and air pollution

that are omitted from most process-based models.

Another advantage is that uncertainties are readily

estimated with statistical models, for example using

resampling techniques, whereas uncertainties in process-

based models are often difficult to measure (see Section

1). However, unlike process-based models, statistical

models do not allow explicit consideration of manage-

ment changes or other factors, such as CO2 increases, that

may alter the effect of climate on yields in the future.

The statistical models used in this study are

described in detail by Lobell et al. (in press). Briefly,

monthly averages of minimum and maximum tempera-

tures (Tn and Tx) and precipitation (P) were computed

for 382 individual meteorological stations throughout

the state for 1980–2003. For each crop, a state-wide

time series was computed by taking a weighted average

of the individual time series, with the weights

proportional to the area of the crop in the stations’

counties. The most important climate variables and

months for each crop were then identified based on

exploratory analysis of state yield records (California

Agricultural Statistics Service, 2004a) and the climate
Table 2

Statistical yield models used in this study (from Lobell et al., in press)

Crop Equation

Wine grapes Y = 2.65Tn,4 � 0.17T2
n;4 þ 4:78P6 � 4.93P2

6 � 2:24

Almonds Y = �0.015Tn,2 � 0.0046T2
n;2 � 0:07P1 + 0.0043P

Table grapes Y = 6.93Tn,7 � 0.19T2
n;7 þ 2:61Tn,4 � 0.15T2

n;4 þ 0

Oranges Y = 1.08Tn,�12 � 0.20T2
n;�12 þ 4:99P5 � 1.97P2

5 �
Walnuts Y = 0.68Tx,�11 � 0.020T2

x;�11 þ 0:038P2 � 0.0051

Avocados Y = 17.71Tx,�8 � 0.29T2
x;�8 þ 3:25Tn,5 � 0.14T2

n;5

Y represents yield anomaly (ton acre�1). Subscript numbers indicate month o

prior to harvest. Tn, minimum temperature (8C); Tx, maximum temperature
data for months prior to harvest. Multiple linear

regression models to predict yield anomalies were then

computed, with linear and quadratic terms for each

selected climate variable used as predictor variables.

Table 2 presents the yield functions used for each

crop, as well as the adjusted R2, a common measure of

model agreement with observations. As described above,

the models were developed from monthly averages

aggregated to the state scale, and therefore did not

explicitly consider factors such as extreme heat events or

spatial variations in crop response to climate. None-

theless, the models provided a fairly accurate description

of historical yield variations, with more than 50% of the

variance in yield anomalies explained for all crops.

Fig. 1 shows the historical relationship between yield

and the monthly temperature variable that explained the

highest proportion of yield variance. All of the crops

except almonds have an optimum temperature above and

below which yields decline. Interestingly, these optimal

temperatures are roughly equivalent to the average values

from 1980–2003, illustrating that the current varieties are

well suited to the current California climate.

Fig. 1 also provides a clear example of the imperfect

empirical relationship between yields and monthly

climate, and thus the uncertainty associated with yield

projections based on climate. Two aspects of crop

model uncertainty were considered here: the uncer-

tainty due to the fact that empirical models are based on

finite historical observations, and do not perfectly

describe historical yield–climate relationships (referred

to as sampling uncertainty), and the added uncertainty

due to the fact that simulated future monthly

temperature and rainfall may exceed the extremes of

the historical record used to generate the empirical

models (referred to as extrapolation uncertainty).

Sampling uncertainty was estimated using bootstrap

resampling of the historical record to generate new

estimates of the model coefficients (Efron and Gong,

1983), and then applying these models repeatedly to the
R2
adj

P�9 + 1.54P2
�9 � 10:50 0.66

2
1 þ 0:28 0.88

:035P1 + 0.024P2
1 þ 1:71P�10 � 0.673P2

�10 � 73:89 0.77

2:47 0.75

P2
2 � 5:83 0.59

þ 1:00P�10 � 0.31P2
�10 � 288:09 0.73

f climate variable, with negative values denoting a month from the year

(8C); P, precipitation (mm).
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Fig. 1. Observed (points) and modeled (line) yield anomalies for 1980–2003 vs. most important temperature anomaly (8C) for each crop. Vertical

line shows 1980–2003 average temperature.
simulated climate. A total of 100 bootstrap replicates

were used. Extrapolation uncertainty was evaluated by

applying the crop models with and without allowing

simulated yields to exceed historical extremes. The

latter approach reflects a very conservative assumption

that extreme temperatures or rainfalls do not affect

yields beyond what has been observed.

Other aspects of crop model uncertainty were not

considered here. For example, changes in variables not

included in the model are implicitly assumed to not affect

future yields. These include extreme temperature or

rainfall events, as well as months other than the few

selected for each crop based on historical analyses. To the

extent that changes in omitted variables are uncorrelated

with model variables, their effects introduce an additional

source of uncertainty into model projections.

2.2. Climate models

Outputs of 22 coupled ocean–atmosphere general

circulation models are archived by the Program for

Climate Model Diagnosis and Intercomparison

(PCMDI) at Lawrence Livermore National Laboratory

(http://www-pcmdi.llnl.gov; Table 3). Three scenarios

of emissions trajectories are available for future climate

(defined as 2001–2099): the A2 (medium–high), A1b
(medium), and B1 (low) emissions scenarios from the

IPCC Special Report on Emission Scenarios (SRES)

(Nakicenovic et al., 2000). Temperature change

projections for California in these models range from

�1 to 3 8C for 2050 and 2 to 6 8C for 2100, while

precipitation changes range between �40% and +40%

for both 2050 and 2100 (Fig. 2).

Since crops are differentially sensitive to nighttime

and daytime temperatures (e.g., Fig. 1), subsequent

analysis focused only on the six climate models that

provided monthly output on average daily minimum

and maximum temperatures in addition to average

temperatures and precipitation for both historical and

future simulations (CSIRO-Mk3.0, GISS-AOM, INM-

CM3.0, MIROC3.2 (hires), MIROC3.2 (medres), and

NCAR CCSM3). Three scenario-model combinations

were not available in the PCMDI database (Scenario A2

for GISS-AOM, and A1b and A2 for MIROC3.2

(hires)), leaving a total of 15 scenario-model combina-

tions. These six models represent well the range of

climate uncertainties seen across the IPCC models since

their trends in average temperature and precipitation

spanned the range of the entire set of models (Fig. 2). A

single time series for 1960–2099 for each scenario-

model was generated, using the average for all grid cells

over California. Some models provided output from

http://www-pcmdi.llnl.gov/
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Table 3

Names of climate models whose output are shown in Fig. 2

Model name Model description Country Tn and Tx

BCCR-BCM2.0 Bjerknes Centre for Climate Research Norway

BCC-CM1 Beijing Climate Center China

CCSM3 National Center for Atmospheric Research USA X

CGCM3.1(T47) Canadian Centre for Climate Modelling & Analysis Canada

CGCM3.1(T63) Canadian Centre for Climate Modelling & Analysis Canada

CNRM-CM3 Météo-France/Centre National de Recherches Météorologiques France

CSIRO-Mk3.0 CSIRO Atmospheric Research Australia X

ECHAM5/MPI-OM Max Planck Institute for Meteorology Germany

ECHO-G Meteorological Institute of the University of Bonn, Meteorological

Research Institute of KMA, and Model and Data group.

Germany/Korea

FGOALS-g1.0 LASG/Institute of Atmospheric Physics China

GFDL-CM2.0 US Dept. of Commerce/NOAA/Geophysical Fluid Dynamics Laboratory USA

GFDL-CM2.1 US Dept. of Commerce/NOAA/Geophysical Fluid Dynamics Laboratory USA

GISS-AOM NASA/Goddard Institute for Space Studies USA X

GISS-EH NASA/Goddard Institute for Space Studies USA

GISS-ER NASA/Goddard Institute for Space Studies USA

INM-CM3.0 Institute for Numerical Mathematics Russia X

IPSL-CM4 Institut Pierre Simon Laplace France

MIROC3.2 (hires) Center for Climate System Research (The University of Tokyo),

National Institute for Environmental Studies, and Frontier Research

Center for Global Change (JAMSTEC)

Japan X

MIROC3.2 (medres) Center for Climate System Research (The University of Tokyo),

National Institute for Environmental Studies, and Frontier Research

Center for Global Change (JAMSTEC)

Japan X

MRI-CGCM2.3.2 Meteorological Research Institute Japan

PCM National Center for Atmospheric Research USA

UKMO-HadCM3 Hadley Centre for Climate Prediction and Research/Met Office UK

UKMO-HadGEM1 Hadley Centre for Climate Prediction and Research/Met Office UK

Only models with Tn and Tx were used for crop yield projections. Description of models available at http://www-pcmdi.llnl.gov.

Fig. 2. Change in California annual average temperature (a) and precipitation (b) for 2070–2100 period relative to 1960–1990 for different models

and scenarios in PCMDI database. Gray points show models whose output were used in crop models. Scenarios are A1b (square), A2 (circle), and B1

(triangle). See Table 2 for description of model names. Scenarios A2 for GISS-AOM, and A1b and A2 for MIROC3.2 (hires) were not available in the

PCMDI database.

http://www-pcmdi.llnl.gov/
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multiple realizations, in which case the mean of all

realizations was used.

The GCM time series for each month and variable

were down-scaled to correct for biases in the coarse-scale

GCM outputs. First, the trend for the GCM series was

computed as a 41-year moving average and subtracted

from the original GCM time series. This detrended time

series was then divided by the standard deviation over the

1980–2000 period. Observed monthly time series for

1980–2000 were computed separately for each crop by

weighting observed values from 382 individual stations

by the proportion of crop area in the stations’ counties.

For each crop, the standardized GCM time series were

then multiplied by the standard deviation of the observed

climate record for 1980–2000, and then added to the

1980–2000 average difference between observed and

GCM simulated values. The previously removed GCM

trend was added back to produce a final simulated time

series. This downscaling approach ensures that the

simulated mean and variance match the observational

record for the period 1980–2000, while preserving any

simulated trends in mean or variance of each climatic

variable for each month (Maurer and Duffy, 2005; Wood

et al., 2002).

2.3. Uncertainty analysis

The yield models were applied to the monthly

simulations of minimum and maximum temperatures

and precipitation for 1980–2099 to assess impacts of

climate change on yields. The effect of climate model

uncertainty was assessed by applying the yield models

to each of the individual climate scenarios, producing a

distribution of yields for each simulation year. The

results obtained from this analysis are referred to as

yield impacts with climate uncertainty only. The

combined impact of crop and climate model uncertainty

was assessed by creating 100 separate statistical crop

models, based on bootstrap resampling of the historical

data, and applying each model to each climate time

series. These results are referred to as yield impacts with

both climate and crop uncertainty. As discussed above,

crop models were applied first with and then without

truncation of simulated values to historical extremes, as

a measure of extrapolation uncertainty.

3. Results and discussion

3.1. Projected yield impacts and uncertainties

Median projections for wine grape yields exhibited

very small changes over the next century due to climate
change, while the other five crops exhibited moderate to

substantial yield declines (Fig. 3). The impact of

climate uncertainty on projections was substantial but

not overwhelming. For example, the 95th percentile of

yield change generally differed from the median

projection by less than 10% of current yields for all

crops except avocados, in the case without model

extrapolation. The uncertainties were slightly larger in

the negative direction. The differences in climate

uncertainty between crops reflect the fact that each crop

responds in different ways to climate.

Crop model sampling uncertainty added signifi-

cantly to the overall uncertainty in projected yield

changes (Fig. 3), although the impact was smaller than

for climate uncertainty. When yields were allowed to

exceed historical extremes (Fig. 4), three important

results were observed. First, the effect of both climate

and crop model sampling uncertainty was increased,

indicating that uncertainties can interact. For example,

estimates of the effect climate uncertainty will depend

on the type of crop model used (in this case, whether it

allows extrapolation or not). This finding agrees with

the observation by Mearns et al. (1999) that the impact

of climate model resolution differed greatly depending

on the crop model used.

Second, the impact of extrapolation uncertainty was

very large for some crops (walnuts, avocados) but

relatively small for others (almonds) (compare Figs. 3

and 4). Third, even for crops such as avocados, the

impact of extrapolation uncertainty was small until

�2020, after which it became more important. These

latter points suggest that while the occurrence of

climate conditions outside historical ranges, and the

consequent uncertainties associated with extrapolation,

may be important for long-term projections, they may

be relatively minor for time scales of interest for most

adaptation studies. Instead, the most important changes

over these time scales are the increasing frequency of

warm years for which historical analogues do exist.

While a common criticism of empirical models is their

inability to extrapolate beyond past climate (e.g.,

Challinor et al., 2003), this deficiency may be largely

irrelevant over the next few decades for many crops.

Even with consideration of both crop and climate

model uncertainties and with the conservative estimate

that yield changes are limited to historical extremes

(Fig. 3), less than 5% of simulations for almonds, table

grapes, walnuts, and avocados indicated a non-negative

(i.e., zero or positive) response to climate change by

mid-century. Two main factors contribute to this result.

First, all of these crops are either at or above their

optimum temperatures in current climate (Fig. 1), and



D.B. Lobell et al. / Agricultural and Forest Meteorology 141 (2006) 208–218214

Fig. 3. Crop yield changes associated with future climate scenarios, with yield anomalies constrained to historical extremes. Yields are expressed in

units of percent anomaly from 2000–2003 average yields, and are plotted as 19-year running averages to highlight trends rather than year-to-year

variability. Black line shows median projections, dark shaded area shows 90% confidence interval after accounting for climate uncertainty, and light

shaded area shows 90% confidence interval after accounting for both climate and crop uncertainty.
all climate models project at least some warming

(Fig. 2). Second, all of these crops are irrigated, so that

the large uncertainties in precipitation projections

(Fig. 2) have a relatively minor effect.
Fig. 4. Same as Fig. 3 except yields were a
3.2. Potential impacts of shifts in growing regions

The simulated impacts are based on the assumption

that producers do not move to other locations with more
llowed to exceed historical extremes.
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Fig. 5. County maps of California, showing (from left to right) the percent of current statewide area in each county, modeled yields for each county

under current climate (expressed as a percentage of current statewide average yields), and modeled yields for a 2 or 4 8C warming above current

temperatures. Summary statistics are given in Table 4.
favorable climates. Especially with long-lived perennial

plants, moving to another region within California is a

limited option. Still, we assessed the potential impact of

shifting production toward counties with more favor-

able climate by simulating, for each county, the

expected yields under current climate and scenarios

of 2 and 4 8C warming (Fig. 5, Table 4). These simple

climate change scenarios approximate the low and high

end of projected temperature changes by late century

(Fig. 2).

Much of the current crop area is in counties that have

among the highest simulated yields, indicating that

producers have selected regions appropriate for each

crop as well as varieties well suited to the regions of

current production. Under 2 8C warming, there are no
counties in California in which walnut yield reaches

95% of the current state average (Table 4). For almonds,

table grapes, and avocados in a climate 2 8C warmer,

some areas in the state have climate conditions

consistent with yields near or even above current

levels. These are, however, sufficiently disjoint from the

areas with the bulk of current production that the

necessary shifts in production could be difficult,

expensive, or culturally challenging. In addition, as

our model considers only climatic constraints to yields,

some of the counties may be less suitable in reality than

predicted here.

For 4 8C warming, fewer counties exhibit yields at

least 95% of current averages, and all crops except wine

grapes have less than 5% of current area in these
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Table 4

The number of counties in different climate scenarios with average simulated yields of at least 95% of the current state average, and the percentage of

current crop area within those counties (%current area)

Crop Current climate +2 8C +4 8C

No. of counties Current area (%) No. of counties Current area (%) No. of counties Current area (%)

Wine grapes 25 80.9 38 76.9 26 32.5

Almonds 31 70.0 18 8.0 13 1.3

Table grapes 7 83.7 10 38.3 10 4.4

Oranges 7 67.3 4 70.5 1 0.0

Walnuts 18 64.8 0 0.0 0 0.0

Avocados 1 40.8 2 0.0 2 2.9
counties. For oranges, walnuts, and avocados, not only

are the areas with the potential for high yields

dramatically reduced—the areas with appropriate

climate tend to be in dry or mountainous regions with

limited opportunities for agriculture. As future climate

will significantly change the relative suitability of

counties within California for perennial agriculture,

opportunities may exist to shift production in response

to climate change. The feasibility of these shifts would,

however, depend on a range of other factors, including

topography, soils, irrigation infrastructure, transporta-

tion infrastructure, and competing land uses.

4. Conclusions

Despite uncertainties in emission scenarios, climate

responses, and crop behavior, the unambiguous effect of

warming from climate change will be to reduce yields

for several major perennials. Our approach did not

explicitly account for non-climatic trends that affect

yields, such as increased atmospheric CO2 and

management or technological changes, and therefore

cannot estimate net changes in yields from present. The

yield trends since 1980 for these crops (Table 1) are

negative for avocados but positive for the other crops,

ranging from 9% to 57% over 24 years. Analysis of

historical climate trends indicate that little if any of

these yield trends can be attributed directly to climate

(Lobell et al., in press). Thus, past changes in

technology and atmospheric CO2 improved yields as
Table 5

Correlation between California production anomalies (%) and price anomal

changes for each crop

Wine grapes Almonds Table

Correlation 0.06 �0.71 0.06

Slope 0.06 �1.04 0.05

p-Value 0.78 <0.001 0.79

Calculated from state averages for 1980–2003 (California Agricultural Sta
much or more than the median anticipated effect of

climate change over the next two decades.

In the future, actual yield changes will reflect the

combined influence of the (generally negative) effects

of warming and the potentially positive effects of

management, technology, and atmospheric CO2. The

effects of elevated atmospheric CO2 on perennial crops

are not well known, as few experiments have been

conducted (e.g., Bindi et al., 2001; Idso and Kimball,

2001). A recent meta-analysis of free-air CO2 enrich-

ment (FACE) experiments with various (mostly annual)

crops concluded that yield increases under elevated CO2

(�475–600 ppm) average roughly 17% (Ainsworth and

Long, 2005). While climate change is only one of

several factors that will significantly influence future

yields, it appears that future gains from improved

management, varieties, and elevated CO2 and technol-

ogy will need to be roughly as large as in the past simply

to offset the reductions from warming.

The economic impacts of climate related yield losses

will be distributed between producers and consumers

through effects of yield changes on prices (Adams et al.,

1990; Mjelde et al., 2000; Reilly et al., 2003). Three of the

crops studied here – almonds, oranges, and avocados –

exhibited a highly significant ( p < 0.001) negative

correlation between statewide production and price

anomalies since 1980 (Table 5). For example, a 50%

decline in almond yields from 1994 to 1995 corresponded

to roughly a doubling of almond prices over the same

time period. Thus, yield declines may incur much higher
ies (%), and the slope of a regression of price response to production

grapes Oranges Walnuts Avocados

�0.91 �0.20 �0.89

�0.90 �0.28 �1.02

<0.001 0.34 <0.001

tistics Service, 2004a).
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costs to consumers than producers, whose profits may be

helped by higher prices.

In addition, given the increasing globalization of

food production, the net effect of climate change on

California growers and consumers may depend as much

or more on what happens in other regions as what

happens locally. Thus, global assessments of perennial

crop impacts, such as those that have been attempted for

annual crops, appear warranted. Such assessments

would ideally also consider trends in demand and

technologies, which can interact with climate changes.

The approach presented in this paper, namely to use

statistical crop models derived from historical yield and

spatially aggregated climate data, and apply these

models to a range of future climate scenarios, may

provide a useful foundation for studies of perennial

crops in other regions. As discussed above, considera-

tion not only of climate change uncertainty but of

uncertainty in the response of crops to climate change

should be a central component of such an analysis.

The projections presented in this study may be used

to guide future adaptation efforts, for example by

focusing efforts on developing heat tolerant almond

varieties. The full potential of adaptation to reduce

impacts of climate change are currently unclear and

indeed may be large, but as several authors have noted

(e.g., Reilly, 1999; Schneider et al., 2000), realizing the

potential benefits of adaptation may involve substantial

costs, risks, and additional research. Moreover, some of

the negative effects were simulated to occur within the

lifetime of trees and vines that are currently in the

ground, especially for almonds. Therefore, short-term

losses may largely be unavoidable.

The long time horizon of perennial agriculture

creates special challenges in a changing climate.

Favorable areas may become unfavorable during the

life of a single orchard or vineyard. The choice of a

variety is complicated by the risk that the best variety

for the current climate may be poorly suited for future

climates. In addition, the perennial habit slows the

process of developing new varieties, potentially limiting

the options for shifting varieties to cope with a changing

climate (Koski, 1996). While these factors do not

necessarily mean that perennial agriculture is more

vulnerable than other sectors, they argue for effective

integration of climate science with agricultural practice.
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Gaffin, S., Gregory, K., Grübler, A., Jung, T.Y., Kram, T., Rovere,

E.L.L., Michaelis, L., Mori, S., Morita, T., Pepper, W., Pitcher, H.,

Price, L., Riahi, K., 2000. Special Report on Emissions Scenarios:

A Special Report of Working Group III of the Intergovernmental

Panel on Climate Change. Cambridge University Press, Cam-

bridge, UK.

Parry, M., Rosenzweig, C., Livermore, M., 2005. Climate change,

global food supply and risk of hunger. Philos. Trans.: Biol. Sci.

360, 2125–2138.

Parry, M.L., Rosenzweig, C., Iglesias, A., Livermore, M., Fischer, G.,

2004. Effects of climate change on global food production under
SRES emissions and socio-economic scenarios. Global Environ.

Change 14, 53–67.

Reilly, J., 1999. What does climate change mean for agriculture in

developing countries? A comment on Mendelsohn and Dinar.

World Bank Res. Observ. 14, 295–305.

Reilly, J., Tubiello, F., McCarl, B., Abler, D., Darwin, R., Fuglie, K.,

Hollinger, S., Izaurralde, C., Jagtap, S., Jones, J., Mearns, L.,

Ojima, D., Paul, E., Paustian, K., Riha, S., Rosenberg, N.,

Rosenzweig, C., 2003. U.S. agriculture and climate change:

new results. Clim. Change 57, 43–69.

Rosenzweig, C., Hillel, D., 1998. Climate Change and the Global

Harvest. Oxford University Press, New York, 324 pp.

Rosenzweig, C., Parry, M.L., 1994. Potential impact of climate-

change on world food-supply. Nature 367, 133–138.

Schneider, S.H., Easterling, W.E., Mearns, L.O., 2000. Adaptation:

sensitivity to natural variability, agent assumptions and dynamic

climate changes. Clim. Change 45, 203–221.

Snyder, M.A., Bell, J.L., Sloan, L.C., Duffy, P.B., Govindasamy, B.,

2002. Climate responses to a doubling of atmospheric carbon

dioxide for a climatically vulnerable region. Geophys. Res. Lett.

29, 1514, doi:10.1029/2001GL014431.

Tubiello, F.N., Rosenzweig, C., Goldberg, R.A., Jagtap, S., Jones,

J.W., 2002. Effects of climate change on US crop production:

simulation results using two different GCM scenarios. Part I:

Wheat, potato, maize, and citrus. Clim. Res. 20, 259–270.

White, M.A., Diffenbaugh, N.S., Jones, G.V., Pal, J.S., Giorgi, F.,

2006. Extreme heat reduces and shifts United States premium

wine production in the 21 st century. Proc. Natl. Acad. Sci. 103,

11217.

Wood, A.W., Maurer, E.P., Kumar, A., Lettenmaier, D.P., 2002. Long-

range experimental hydrologic forecasting for the eastern United

States. J. Geophys. Res. Atmos. 107, 4429, doi:10.1029/

2001JD000659.

http://dx.doi.org/10.1016/j.agrformet.2006.10.006
http://dx.doi.org/10.1016/j.agrformet.2006.10.006
http://dx.doi.org/10.1016/j.agrformet.2006.10.006
http://dx.doi.org/10.1016/j.agrformet.2006.10.006

	Impacts of future climate change on California �perennial crop yields: Model projections with �climate and crop uncertainties
	Introduction
	Methods
	Crop models
	Climate models
	Uncertainty analysis

	Results and discussion
	Projected yield impacts and uncertainties
	Potential impacts of shifts in growing regions

	Conclusions
	Acknowledgements
	References


