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Applying a Stochastic Model to the Tenn 
Structure of Interest Rates in Malaysia 

Warren Bailey 

ABSTRACT 

Malaysia's money and bond markets are increasingly large, complex, 
and volatile. This paper explains how the Cox, Ingersoll, and Ross 
model of the term structure of interest rates can be used to value 
securities and manage risk in such an environment. Computational 
procedures are discussed and a parameter estimation method is 
demonstrated using a sample of Malaysian interbank deposit rates. 

ABSTRAK 

Pasaran wang dan bon di Malaysia adalah bertambah besar, kompleks 
dan tidak menentu. Kertas ini menerangkan bagaimana model Cox, 
Ingersoll dan. Ross tentang bentuk struktur kadar bunga boleh digunakan 
untuk menilai sekuriti dan mengurus risiko dalam suasana yang 
sedemikian. Turut dlbincangkan ialah prosedur pengiraan dan, kaedah 
penganggaran parameter yang ditunjuk dengan menggunakan sampel 
kadar deposit antara bank Malaysia. 

INTRODUCTION 

Financial markets are among the critical elements of a fully-functioning 
free market economy. In this regard, Malaysia is a leader among 
developing countries. Within only a few decades of the nation's birth, 
the brokerage, financial intermediation, and portfolio management 
industries are firmly ' established. Trading in corporate stock, foreign 
currencies, commodity futures contracts, and goverment securities is 
active and growing. 

The economies of North America, Europe, and Japan have recently 
experienced growth in the size and volatility of their financial markets 
and an explosion in the trading of complex securities such as option 
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and futures contracts. In this environment, the effect of volatile interest 
rates on the value of interest rate sensitive assets and portfolio is 
consid~rable. Academic researchers have responded by adapting financial 
theories to produce a variety of techniques for valuing assets and 
managing portfolios. The usefulness of such techniques is not confined 
to the financial markets of fully-developed countries. For example, such 
innovations as the first issues of mortgage-backed securities in Malaysia' 
require a sophisticated approach to valuation and portfolio analysis. 

The growth of financial markets in Malaysia call for the introduction 
of advanced techniques for the management of portfolios . and the 
valuation of assets. The purpose of this paper is to introduce a model of 
the term structure of interest rates, the one-factor model of Cox, Ingersoll, 
and Ross (1985). Because the model allows for a term structure which 
varies stochastically through time, it can be adapted to value complex 
securities (such as mortgage-backed bonds, callable bonds, and options 
on bonds) and to design strategies to protect bortd portfolio against 
changes in interest rates. 

THE COX, INGERSOLL, AND ROSS ONE-FACTOR MODEL 

Cox, Ingersoll, Ross (1985) derive asset pricirig formulas in a single 
good, single production technology general equilibrium setting. A 
fundamental result of their analysis ia an expression for the dynamic of 
r, the yield on an instantaneously-maturing riskless deposit: 

dr = k(m - r)dt + (1.../r dz (1) 

The instantaneous change in r, dr, has a deterministic component, 
k(m - r)dt, which indicates that r tends to revert to its "long-run" mean, 
m, with a speed-of-adjustment of kdt. The instantaneous change in r 
also has a stochastic component, G'lrdz. This stochastic component 
consists of the increment of a Brownian motion process, dz, mUltiplied 
by a constant, (1, times the square root of the current value of r.2 

While r represents the yield on an instantaneously-maturing deposit, 
it does not equal the yield on a longer-maturity riskless instrument.3 Let 
P(r, t, T) represent the current value (conditional on r) of a zero coupon 
bond which matures (paying one dollar) at time T in the future. Cox, 
Ingersoll, and Ross (1985) present a partial differential equation for the 
value of P: 

(2) 
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In equation (2), the subsripts indicate partial derivatives while g 
represents the equilibrium risk premium for interest rate risk. Because 
the value of the zero coupon bond is constrained by unusually simple 
boundary conditions (the bond can never sell for less than zero or 
greater than one, and it must pay exact one at maturity), Cox, Ingersoll, 
and Ross are able to solve the partial differential equation (2). They 

. obtain an expression for the value of the zero coupon bond given the 
current value of r: 

P(r, t, T) = A(t, T) exp{-B(t, T) r} (3) 

A(t T) = [ 2 h exp{ (h + k + g)(T - t)/2} ]2km1U 2 (3a) 
, (h + k + g)(exp{ h(T - t) I-I) + 2h 

2 (exp (h(T - t)} - I 
B(t,T) = (h + k + g)(exp{h(T - t)} - 1) + 2h (3b) 

h = -V[(k + g)2 + 2cr] (3c) 

By taking the natural log of I/p(r, t, T) and dividing by the time until 
maturity (T - t), we obtain an expression for R(r, t, T), the yield to 
maturity (or internal rate of return) of zero coupon bond: 

R(r, t, T) = [r B(t, T) - In{A(t, T)}]/(T - t) (4) 

Given estimates of the parameters k, m, (J, and g, it is straightforward 
to compute the value P(r~ t, T) for any values of the instantaneous yield, 
r, and time until zero coupon maturity, T - t, required. 

The formula for P(r, t, T) has important uses beyong valuing zero 
coupon deposits or Treasury bills. Consider the value of a coupon bond: 
it may be valued as the sum of values of its component parts (coupon 
payments plus final principal repayment). Each component (a single 
coupon or principal cash flow) is akin to a zero coupon bond and can 
be valued using the formula for P(r, t, T). Therefore, we may express 
the value, B(r, t, T), of a coupon bond as: 

B(r, t, T) = I.;=t [coupon • P(r, t, i)] + [principal • P(r, t, T)] (5) 

In a related paper, Cox, Ingersoll, and Ross (1981) present closed 
form solutions for forward and futures contracts for delivery of zero 
coupon bonds.4 Both forward and futures contracts require delivery of 
the underlying price. Both have zero initial cost. A distinction between 
the two is that the price is paid in full at maturity in the case of the 
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forward contract while any gains or losses are paid incrementally over 
the life of the futures contract. 

The formulas presented in Cox, Ingersoll, and Ross (1981) are as 
straightforward to evaluate as those for bonds. Let G(r, t, T, s) denote 
the current forward price for a contract which matures at time T and 
requires delivery of a zero coupon bond with one dollar face value 
which matures at time s, where is s greater than T. The formula for the 
forward price is: 

A(t, s) 
G(r, t, T, s) = A(t, T) exp{ - r[B(t, s)-B(t, T)]} (6) 

Let H(r, t, T, s) denote the current futures price for a contract which 
matures at time T and requires delivery of a zero coupon bond with one 
dollar face value which matures at time s, where s is greater than T. 
The formula for the futures price is: 

. '. 2km/cY-
H (r, t, T, s) = A(T, s) [n/(B(T, s) + n)] • 

. { n B(T, s) exp{ - (k + q) (T - t) } 
exp - r B(T, s) + n (7) 

n = [2(k + q)]/[S2(1- exp{- (k + q)(T - t)})] (7a) 

In addition to the ease with which the formulas presented above 
can be evaluated, the existence of closed form solutions facilitates the 
computation of derivatives. The computation of derivatives is critical to 
the management of fixed income portfolios. 

ESTIMATING THE PARAMETERS REQUIRED 
BY THE MODEL 

Estimation of the parameters k, m, (j, and g presents two problems. 
First, the dynamics of r, Equation (1), are specified as if r is continously 
observable when in fact it can only be observed periodically. Second, 
the interest rate risk premium, g, is unobservable and cannot be estimated 
from observations of r. To remedy the first problem, we use a discrete 
time approximation to equation (1): 

(8) 

e
t 
is a random variable distributed normally with mean zero and variance 

lcY- while i represents the size of the observation interval. For example, 
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if r is observed monthly, t equals 1/12. If this discrete time approximation 
is used as a regression specification, it will have heteroskedastic errors 
(due to the time-varying -vrt _ 1 term multiplying et) and violate a basic 
assumption of OLS regression. Therefore, the equation is divided through 
by the square root of rt _ 1 to yield a regression specification with 
homoskedastic errors: 

(9) 

From this equation, we obtain estimates ~ and ~ directly. An estimate 
of Cf is obtained from the standard deviation of the estimated residual 

. " senes, et" 
To estimate the coefficients of specifications (9), we obtain a time

series of average end-of-month seven day interbank rates from Bank 
Negara Malaysia publications.5 This time series, extending from January 
1983 to December 1987, is used to proxy for rt, the yield on an 
instantaneously-maturing deposit. The resulting regression estimate is:6 

(rt - rt_l)/-vrt_l = 0.0127/-Vrt_1 
- 0.1816 -vrt_l (10) 

(.704) (.108) 

Standard errors are reported in parentheses beneath each coefficient 
estimate. The regression has an R2 of 0.053, standard deviation of 
residuals of 0.0111, atJd autocorrelation of residuals of ~.245. Adjusting 
for the t factor of 12, the resulting parameter estimates to input to the 

. " " " model are K = 2.179, m = 0.070, and Cf = 0.038.7 The parameter 
estimates imply that the seven day interbank rate has a long-run mean 
of 7% and tends to revert to that mean at a rate of about 218% per year. 

To solve the second problem of estimating the risk premium, g, we 
will obtain as estimate conditional on Q, ~, and &. Returning to Bank 
Negara published records, we take a matching end-of month time-series 
of three month interbank rates for January 1983 to December 1987. 
Represent this series as Yt. We then predict each value in the series 
using the formula for the yield-to-maturity on a three-month zero coupon 
deposit, equation (4). t ~, and ~, along with a guess at g, are plugged 
into the formula for R(rt, t, t + 0.25). We then compute the average 
squared relative error between actual and predicted yields: 

6~L ~~~3 [Yj - R(rj, i, i + 0.25]/Yj (11) 

We continue to try various values of g until finding one which minimizes 
equation (11). For this particular dataset, the procedure yields g = .058. 
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NUMERICAL METHODS FOR V ALUING SECURITIES 

Given the closed form solutions provided in Cox, Ingersoll, ~d Ross 
(1981, 1985), ordinary bonds and future delivery contracts for zero 
coupon bonds can be easily valued ina stochastic interest rate 
environment. The key to obtaining these formulas is to solve the 
fundamental partial differential equation for asset prices in the Co~, 
Ingersoll, and Ross economy: 

1 ' "2 dr V rr + [k(m - r) - gr] Vr + VI - rV + c = 0 (12) 

Equation (12) is a generalized from of Equation (2) in that it includes a 
term, c, representing a coupon flow from the asset whose price is V. 
The equation is solved with the boundary conditions appropriate to the 
particular security being valued. 

Unfortunately, most problems have boundary conditions which, 
when combined with Equation (12), cannot be solved for a closed 
form solution. However, numerical solutions can be applied. This will 
not yield a formula and, furthermore, requires the use of a computer 
and carefully-prepared program. However, a numerical method can give 
a valu~ for any security given parameter estimates and a specific value 
or f. 

Smith (1978) provides an excellent introduction to numerical 
methods while McDonald (1978) offers a step-by-step guide to applying 
numerical methods to implement the cox, Ingersoll, and Ross model. 
While a detailed discussion of numerical methods is beyond the scope 
of this introductory paper, the basic idea is as follows. First, replace the 
partial derivatives in Equation (12) with finite differences: 

V = [V(r. l' t) - V(r. l' t)]/[r. 1 - r. 1] 
r J + J - J + J-

V rr = [V(rj + l' t) - 2 V(rj, t) + V(rj _ l' t)]1 

[(1/2)(rj + 1 - rj _ 1)]2 

VI = [V(r., t + 1) - V(r., t)]/[(t + 1) - t] 
J J 

(13a) 

(13b) 

(13c) 

Next, solve the equation iteratively, working backwards from the terminal 
boundary condition and imposing other boundary conditions at each 
step until the security's current value is obtained. 

To illustrate the type of information a numerical procedure can 
produce, Table 1 includes values of bonds and comparable callable 
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TABLE 1. Prices for Callable Bonds Simulated by the Cox, 
Ingersoll, and Ross One-Factor Model a 

Callable Bondb 

Non-Callable Bond 
Instantaneous Time until 
Interest Maturity Bond First Callable 
Rate, r in years Coupon Price in Years Price 

0.01 10 7% 103.9~3 5 103.308 
0.04 10 7% 102.601 5 101.975 
0.07 10 7% 101.278 5 100.660 
0.10 10 7% 99.704 5 99.096 
0.13 10 7% 97.437 5 96.844 

0.04 10 7% 102.601 3 101.677 
0.07 10 7% 101.278 3 100.367 
0.10 10 7% 99.704 3 98.808 

0.04 10 7% 102.601 8 102.355 
0.07 10 7% 101.278 8 101.035 
0.10 10 7% 99.704 8 99.465 

0.04 20 7% 103.297 15 102.980 
0.07 20 7% 101.964 15 101.652 
0.10 ~O 7% 100.379 15 100.072 

0.04 10 4% 80.596 5 80.596 
0 .. 07 10 4% 79.547 5 79.547 
0.10 10 4% 78.294 5 78.294 

0.04 10 10% 124.605 5 114.879 
0.07 10 10% 123.006 5 113.409 
0.10 10 10% 121.112 5 111.672 

0.01 10 7% 104.399 * 5 102.379* 
0.04 10 7% 103.072 * 5 101.077 * 
0.07 10 7% 101.770* 5 99.801 * 
0.10 10 7% 100.479 * 5 98.536* 
0.13 10 7% 99.206 * 597.289* 

a Bonds have a face value of $1 00. Calculation are based on parameter estimates ofk = 2.179, 
m= 0.070, and g = 0.058. All calculation are based on G = 0.038 except for those cases 
marked with a '*', which are based on G= .38. 
b The callable bond has the same maturity and coupon as the non-callable. bond. 
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TABLE 2. Prices for Bond Options simulated by the Cox, 
Ingersoll, and Ross One-Factor Model a 

Instant- Underlying Bond Options 
aneous 
Interest Maturity Life Strike Call Put 
Rate, r in Years Coupon Price in Years Price Price Price 

0.01 10 7% 103.943 0.5 96 7.943 <0.001 
0.04 10 7% 102.601 0.5 96 6.601 <0.001 
0.07 10 7% 101.278 0.5 96 5.278 <0.001 
0.10 10 7% 99.704 0.5 96 4.452 <0.001 
0.13 10 7% 97.437 0.5 96 3.478 0.175 

0.01 10 7% 103.943 0.5 98 5.943 <0.001 
0.04 10 7% 102.601 0.5 98 4.601 <0.001 
0.07 10 7% 101.278 0.5 98 3.289 <0.001 
0.10 10 7%. 99.704 0.5 98 2.614 0.007 
0.13 10 7% 97.437 0.5 98 2.027 0.864 

0.01 10 7% 103.943 0.5 - 100 3.943 <0.001 
0.04 10 7% 102.601 0.5 100 2.601 <0.001 
0.07 10 7% 101.278 0.5 100 1.314 <0.001 
0.10 10 7% 99.704 0.5 100 0.808 0.296 
0.13 10 7% 97.437 0.5 100 0.401 2.592 

0.01 10 7% 103.943 98 5.943 <0.001 
0.04 10 7% 102.601 98 4.601 <0.001 
0.07 10 7% 101.278 98 3.299 <0.001 
0.10 10 7% 99.704 98 2.876 0.011 
0.13 10 7% 97.437 98 2.726 0.864 

0.01 10 7% 103.943 100 3.943 <0.001 
0.04 10 7% 102.601 100 2.601 <0.001 
0.07 10 7% 101.278 100 1.333 <0.001 
0.10 10 7% 99.704 100 1.050 0.296 
0.13 10 7% 97.437 100 0.890 2.592 

0.01 10 7% 104.399 * 0.5 100 4.399* 0.093 '" 
0.04 10 7% 103.072. * 0.5 100 3.103 * 0.204* 
0.07 10 7% 101.770 * 0.5 100 2.410 * 0.388 * 
0.10 10 7% 100.479 * 0.5 100 1.957 * 0.685 * 
0.13 10 7% 99.206* 0.5 100 1.614 * 1.170 * 

a Bonds have a face value of$1 00. Calculation are based on parameter estimates ofk = 2.179, 
m = 0.070, and g = 0.058. All calculations are based on G = 0.038 except for tl,tose cases 
marked with a '*', which are based on G= .38. 
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bonds. A callable bond differs from a regular bond in that the issuer of 
the bond can, at pre specified times, choose to refund the principal value 
of the bond early, thus retiring the debt. The chance that the bond may 
be called tends to reduce its value relative to the non-callable bond, as 
indicated by the table. The table shows that the degree to which the 
value is reduced varies wi~ely with the maturity of the bond, time until 
it may be called, and the current interest rate, r. 

Table 2 includes values of put and call options on bonds. These 
contracts allow the holder to either sell ("put") or buy ("call") the 
underlying bond at a pre specified price ("strike") prior to the time the 
contract expires. The option premium is the difference between the 
option's current value and its value if exercised immediately. Consider 
the last line in the table. Given a strike price of $100 and a current bond 
price of only $99.206, the call option should not be exercised: a rational 
investor will not pay $100 for a bond worth only $99.206. However, 
the call option still has value ($1.614) because it is possible that the 
bond price will increase beyond $100 and allow the . call to be exercised 
profitably. 

Throughout Tables 1 and 2, it is apparent that volatility has an 
important effect on securities. The last several lines of each of Tables 1 
and 2 recompute bond and option values based on a = 0.38, rather than 
0.038. The resulting values are very different from the otherwise 
indentical values computed with a= 0.038. Differences between callable 
and regular bonds and levels of put and call prices are greater for the 
larger level of volatility. 

USING THE MODEL TO MANAGE INTEREST RATE RISK 

Aside from valuing various securities, the Cox, Ingersoll, and Ross 
model can be used to manage a portfolio against interest rate risk.8 

Given the closed form solutions for bond, forward, and futures prices, 
we can compute the partial derivatives of these price with respect to r. 
For the zero coupon bond differentiate equation (3) to obtain: 

Pr (r, t, T) = -B(t, T) P(r, t, T) (14) 

For the coupon bond, differentiate equation (~) to obtain: 

Br(r, t, T) = L;=t [coupon • Pr(r, t, i)] + [principal • Pr(r, t, T)] (15) 

For forward and futures prices, differentiate equations (6) and (7) to 
obtain: 
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Gr(r, t, T, s) = - [B(t, s) -B(t, T)] G(r, t, T, s) (16) 

H ( t T ) = _ n B(T, s) exp{ - (k + q)(T - t)} H( T) (17) 
r r" ,s B(T, s) + n r, t, ,s 

In the case of callable -bonds, options on bonds, and other complex 
securities, there is no closed form solution. to the valuation equation. 
Therefore, we cannot compute derivatives directly. However, we can 
use a numerical procedures to get an estimate of the derivative at a 
particular value of r. Let V(r, t) represent the price of the security 
estimated by numerical methods and let r' represent the particular value 
ofr at which we wish to estimate the derivative Yr. We use a differencing 
approach to estimate the derivative: 

Vr(r', t) ~ [V(r' + 0.01, t) - V(r' - 0.01, t)]/0.02 (18) 

In effect, we plug into the numerical' formula values' of r which surround 
r', then produce values of the security and compute an approximation 
to the derivative using defferences in V(r, t) and r. 

The derivative is a measure of the degree to which a security's 
price changes in response to a change in the interest rate, r. It is, in 
effect, the measure of the security's interest rate risk. Table 3 presents 
some calculation of these derivatives for several types of hypothetical 
securities. Consider the value of -48.85 reported for the ten year coupon 
bond when the interest rate is 10%. This mean that, if the interest rate 
goes from 0.10 to 0.11, the change in the bond's price will be 
approximately minus fifty cents (-48.85 times 0.01). It is clear from the 
table that the behaviour of the derivative varies widely across securities. 
Note also that the derivative is different for different values of r. 
Furthermore, the derivative changes as time passes and the maturity (or 
expiration) of the security becomes less distant. 

Given the derivatives for various securities" Boyle (1978) details 
how to modify a bond portfolio to protect it against interest rate risk. 
We will consider examples based on the derivatives presented in Table 
3. Suppose we begin with a portfolio of ten of the ten year 7% coupon 
bonds. Let the current value of r be 0.10. An increase in interest rates 
will reduce the value of the portfolio. Therefore, we wish to add 
additional positions in securities to the portfolio so as to offset the 
potential loss. 

Consider adding some call options to the portfolio. To be hedged 
against interest rate risk, the derivative of the portfolio's value with 
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TABLE 3. The Interest Rate Risk Measure, V
r
, Computed for 

a Variety ofSecurities and Interest Rates, r a 

Value of Vr Given r Equals 
Security 0.01 0.04 0.07 0.10 0.13 

1/2 Year Zero Coupon 
Bond ($1 Face) -0.295 -0.295 -0.290 -0.290 -0.280 

1 Year Futures 
Contract on 
1/2 Year Zero Coupon 
Bond ($1 Face) 0.055 0.100 0.105 0.100 0.\00 

10 Year 7% Coupon 
Bond $100 Face), 
Callable in 5 Years -42.45 -44.20 -43.40 -48.55 -1.25 

10 Year 7% Coupon 
Bond ($100 Face), 
Not Callable -42.75 -44.50 -43.65 -48.85 -3.25 

1 Year Call Option 
on the Non-Callable 
Bond, Strike Price 
of $100 -42.75 -44.50 -26.00 -6.00 -5.15 

1 Year Put Option 
on the Non-Callable 
Bond, Strike Price 
of $100 0.00 0.00 0.00 33.25 5.95 

a Derivatives for callable bond, call option, and put option are estimated numerically with 
equation (18) in the text. Calculations are based on parameter estimates of k = 2.179, m = 
0.070, g = 0.058, and 0'=0.038. 

respect to r must equal zero. If Nb equals the number of bonds in the 
portfolio and Nc equals the number of calls, the following condition 
must hold: 

[Nb • Bond Derivative] + [Nc • Call Derivative] = 0 (19) 

Substituting in for Nb and the two derivatives yields: 

[10 • -48.85] + [Nc • -6.00] = 0 (20) 

,The condition is satisfied if Nc equals -80.92. Therefore, we must sell 
approximately 81 call options short, investing the proceeds in the 
instantaneously-maturing deposit yielding rdt. 
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Similar calculations indicate how many zero coupon bond futures 
contracts would hedge the bond portfolio. Letting Nf denote the number 
of futures contracts, the condition to be satisfied is: 

[Nb • Bond Derivative] + [Nf • Futures Derivative] = 0 (21) 

Substituting for the known quantities and solving yields Nf equal to 
4855. Therefore, future.s contracts on zeros with a total face value of 
$4855 can be used instead of call options. The advantage to this strategy 
is that futures require no initial cash flow. Alternatively, consider the 
number of puts needed to hedge the portfolio of ten bonds. Calculations 
similar to those performed previously yield 14.60 puts as the optimal 
number to hedge the portfolio. 

For all these strategies, the optimal composition of the hedging 
portfolio changes as r varies, time passes, and the derivatives change. 
Ideally, the portfolio should be rearranged frequently to reflect current 
values of the derivatives. However, it may be optimal to rearrange 
infrequently so as to avoid brokerage fees and other trading costs. 

AN INTRODUCTION TO OTHER 
TERM STRUCTURE MODELS 

The Cox, Ingersoll, and Ross model has stimulated other authors to 
produce more complex asset pricing models of the stochastic interest 
rate environment. We will introduce a few of th~se in this section. 

Brennan and Schwartz (1979) point out two potentially unrealistic 
features of the Cox, Ingersoll, and Ross approach. First, it relys on only 
a single variable, r, to generate a stochastic interest rate environment. 
Second, that single variable reverts to a target, m, which is unchanging 
through time. Brennan and Schwarts (1979) propose a two variable 
model similar to the following: 

dr = k(1 - r)dt + G rdz (19a) 

dl = l(s'2 + s'g + 1 - r)dt + <ildz' (19b) 

I represent the yield on a coupon bond with an infinite maturity (known 
as ·a "con sol" bond), d is a parameter, and dz' is the increment of a 
second Brownian motion process, which has correlation pdt with dz. 
Essentially, the return on an instantaneously-maturing deposit, r, now 
reverts to a "moving target", 1, rather than the fixed target, . m, in the 
Cox, Ingersoll, and Ross model. Furthermore, these are now two distinct, 
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not necessarily correlated sources of uncertainty, r and 1. This allows 
the term structure of interest rates to vary in more complex ways than 
the Cox, Ingersoll, and Ross model. Unfortunately, the mathematics of 
the model require complicated numerical solutions. 

Other authors have adapted the cox, Ingersoll, and Ross model to 
pricing of mortgage-backed securities with the following specification 
of uncertainty factors: 

dr = k(m - r)dt + aVrdz (20a) 

dS = m'Sdt + (J' Sdz' (20b) 

In this case, the Cox, Ingersoll, and Ross interest rate dynamics are 
retained: equation (20a) is identical to equation (1). However, a second 
equation is added to represent the dynamics of S, the value of the 
property underlying the mortgage. Given that a drop in property values 
can cause a default on a mortgage and thus affect the value of mortgage
backed securities, the addition of equation (20b) may make the model 
more realistic and accurate. Hendershort and Van Order (1987) provide 
a review of such models. Unfortunately, complex numerical solutions 
are required. Bailey (1987) discusses numerical solution techniques for 
a similar problem in option pricing. 

Most recentlu, papers, by Ho and Lee (1986) and Health, Jarrow, 
and Morton (1988) have introduced an entire new class of term structure 
models. Rather than"assume that the term structure is driven soley by 
one or two uncertainty variables, these new models start with the entire 

. term structure of zero coupon bond yields as the uncertainty vector. 
While even a cursory description of these models is beyond the scope 
of this paper, these models may prove to be of great use because they 
build upon the entire initially observed term structure (not just r, or r 
and 1) and can be implemented with relatively simple computer 
programs. 

CONCLUSION 

This paper has briefly illustrated the use of the one-factor model of 
Cox, Ingersoll, and Ross (1985) in valuing securities and managing 
interest rate risk in a stochastic terin structure environment. The growth 
of securities trading and the emergence of markets for complex securities 
increases the importance of these activities and enhances the potential 
usefulness of this model. This paper is not intended to advocate the 
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Cox, Ingersoll, and Ross model as the best possible way to model 
Malaysia's term structure of interest rates, value Malaysian securities, 
or manage fixed income portfolios in Malaysia. A variety of models, 
computational techniques, and parameter estimation methods have 
appeared in the academic literature and are gradually being assessed 
and, in many cases, adopted by progressive investment professionals. 
This paper should be thought of as merely an introduction to the 
potentially useful applications of stochastic term structure models. 
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NOTES 

I The national mortgage corporation of Malaysia; Cagamas Bhd., become operatio
nal in October 1987. Cagamas has purchased housing loans held by fmancial institutions 
and the government and has issued mortgage-backed bonds. Valuing mortgages is 
particularly complex due to both contractual features (prepayment, default) and interest 
rate risk. See Dunn and McConnell (1981), Hendershoot and Van Order (1987), and 
McDonald (1987). 

2 For an introduction to the use of continuous time stochastic models in economics 
see Merton (1971) and Fischer (1975). 

3 It is important to note that the formulas apply only to riskless bonds where there 
is no probablity of default on the payments promised by the issuer. Furthermore, the 
formulas are derived in an economy where there is no money (only a single consum
ption 'good) so tI;1ere is no 'inflation and no distinction between real and nominal rates. 

4 Such contracts are important risk management tools and already trade on 
established futures exchanges. Futures on U.S. Treasury bills trade in Chicago while 
futures on Eurodollar deposits trade in Chicago, London, and Singapore. 

S In using the models and estimating parameters, all rates should be expressed as 
fractions, not as percentages. For example, an interest rate of three percent should be 
expressed as "0.03", not as "3.0". 

6 The use of monthly data from a five year period is only intended to illustrate how 
the parameter estimation might be conducted. For example, better results might be 
obtained with weekly observations from only the most recent year, or by using a maximum 
likelihood or method-of moments estimator. 

7 Multiply 0.1816 by 12 to get t: Divide 0.0127 by 0.1816 to get (h. Multiply 
0.0111 by the V 12 to get ~ 

8 Note that traditional risk management based on "duration" cannot be applied to 
complex securities such as callable bonds, mortgages, and options. Furthermore, the 
assumption underlying duration may be inconsistent with an arbitrage-free capital market. 

See the articles contained in Kaufman, Bierwag, and Toevs (1983). 
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