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ABSTRACT

This paper aims to compare the empirical performance of two approaches in detecting structural breaks and outliers 
due to the significant frequent price changes seen in cryptocurrencies. The two approaches are indicator saturation 
(IS) and Bai and Perron (BP). The cryptocurrency data employed in this study are Bitcoin and Ethereum. In comparing 
the performance of the two  approaches, this study performed multiple empirical comparisons using various significant 
levels, different data frequencies, as well as the original and log series (price). The findings showed that the prices 
contained structural breaks and outliers and that the IS approach performed significantly better than the BP test in 
terms of the identified structural breaks as well as outliers across different settings. The contribution of this study 
is providing empirical comparisons between IS and BP approaches using cryptocurrency data. These findings are 
important to the potential stakeholders, in particular,  for quality control in industries, for setting price targets, and for 
confirming trading signals to reduce potential losses.
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ABSTRAK

Kertas kerja ini bertujuan untuk membandingkan prestasi empirikal pendekatan tepu penunjuk (IS) dan Bai dan Perron 
(BP) untuk mengesan perubahan struktur dan kesan pesisih akibat daripada perubahan harga yang ketara  dalam 
mata wang kripto. Untuk mencari perubahan struktur dan kesan pesisih dalam harga Bitcoin dan Ethereum, kajian ini 
menggunakan metodologi IS dan BP, dan untuk membandingkan kedua-dua ujian ini, kajian ini melakukan pelbagai 
perbandingan empirikal seperti menggunakan pelbagai tahap kesignifikanan, frekuensi data yang berbeza, dan data 
harga asal serta data log. Penemuan kajian menunjukkan bahawa harga mengandungi perubahan struktur dan kesan 
pesisih dan pendekatan IS jauh lebih baik daripada ujian BP dari segi mengenalpasti perubahan struktur dan kesan 
pesisih untuk keseluruhan perbandingan. Oleh kerana belum ada perbandingan empirikal kedua-dua ujian tersebut, 
kertas ini mengisi jurang  tersebut dengan menggunakan data mata wang kripto. Penemuan  kajian ini penting kepada 
pihak berkepentingan yang berpotensi, khususnya, dalam membuat kawalan kualiti industri, untuk menetapkan sasaran 
harga, dan untuk mengesahkan isyarat perdagangan bagi mengurangkan potensi kerugian.
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ABSTRACT

This paper aims to study the effect of recomposed institution quality to extreme income inequality. Findings reveal 
aggregated institutional quality of World Governance Indicators (WGI) have anomalies, distorted by its individual 
components’ incongruent relationships with income inequality. The study covers period from 2010 to 2017 and applies 
quantile regression method due to rejection of normality of residuals and present of data clustering. Total of 43 
countries are selected based on availability of data. WGIs do not always have negative relationship with income 
inequality. The recomposed WGI-plus and WGI-minus are all significant at correct sign, except insignificant for one 
case. These findings contribute six implications. Firstly, the WGI has subconsciously set democracy and free market 
as “good quality” institution, yet findings of positive relationship reveal this is not completely true. Secondly, the 
positive findings in control of corruption signal possible serious structural flaws regarding policies, perception, and 
its conceptualization. Thirdly, middle-income countries have relatively more anomalies. Fourthly, relatively more 
insignificant results of certain WGI components in middle-income countries cast doubt on their system of separation 
of power, prompting critical review of political will and governance effectiveness towards inclusiveness. Fifth, the 
significant results of the recomposed WGI enhance call for not aggregating all components of institution quality in 
future research and policy making decision. Sixth, the classic school that propagated free market is not effective to 
reduce inequality. Keynesian economies, especially targeted fiscal expenditure helps in middle-income but not high-
income counties.
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ABSTRAK

Kajian ini mengkaji impak kualiti institusi dikomposisi semula terhadap ketaksamaan pendapatan melampau. Hasil 
dapatan kajian menunjukkan kualiti institusi aggregat World Governance Indicators (WGI) mempunyai anomali, 
disebabkan komponen-komponennya mempunyai hubungan yang berlainan dengan ketidaksamaan pendapatan. 
Kajian ini merangkumi tempoh dari tahun 2010 hingga 2017 dan menerapkan kaedah regresi kuantil kerana penolakan 
kenormalan ralat dan kehadiran pengelompokan data. Sebanyak 43 negara dipilih berdasarkan ketersediaan data. 
WGI tidak selalu mempunyai hubungan negatif dengan ketidaksamaan pendapatan. WGI-plus dan WGI-minus yang 
dikomposisi semula kesemuanya signifikan pada tanda betul, kecuali tidak signifikan untuk satu kes. Penemuan 
kajian ini menyumbang enam implikasi. Pertama, WGI secara tidak sedar telah menetapkan demokrasi dan pasaran 
bebas sebagai institusi “berkualiti baik” tetapi penemuan hubungan positif menunjukkan ini tidak sepenuhnya benar. 
Kedua, penemuan positif dalam pengendalian rasuah menunjukkan kelemahan struktur yang serius mengenai dasar, 
persepsi, dan konsepnya. Ketiga, negara berpendapatan sederhana mempunyai lebih banyak anomali. Keempat, 
hasil dapatan yang tidak signifikan bagi komponen WGI tertentu di negara berpendapatan sederhana menimbulkan 
keraguan terhadap sistem pemisahan kuasa mereka. Ini mendorong tinjauan kritikal terhadap keazaman politik dan 
keberkesanan pemerintahan ke arah keterangkuman. Kelima, hasil dapatan signifikan bagi WGI dikomposisi semula 
memperkuatkan seruan untuk tidak mengagregatkan semua komponen kualiti institusi untuk kajian masa depan 
dan penggubalan polisi. Keenam, sekolah klasik yang mengutamakan pasaran bebas adalah tidak berkesan untuk 
mengurangkan ketaksamaan. Ekonomi Keynesian, terutama perbelanjaan fiskal yang disasarkan berkesan di negara 
berpendapatan sederhana tetapi tidak di negara berpendapatan tinggi.
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INTRODUCTION

A cryptocurrency is a form of digital money that can 
be exchanged via a computer system and is managed 
decentralized. Bitcoin was created in 2008 by Satoshi 
Nakamoto who used it for the first time (Nakamoto 2008).  
Bitcoin was developed primarily as a decentralized 
digital currency for peer-to-peer transactions, whereas 
Ethereum was developed in 2015 as a platform for the 

development of decentralized apps and the use of smart 
contracts. Ethereum and Bitcoin both rely on blockchain 
technology. Since cryptocurrencies are rapidly evolving, 
and highly volatile, investors, traders, and researchers are 
paying close attention to them. The cryptocurrency market 
is subject to unanticipated changes in investor sentiment, 
market acceptance, and regulatory developments. For 
instance, the price of a bitcoin increased from around 36 
cents in 2010 to $9 in 2011, $1000 in 2013, $20,000 in 
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2017, and $69,000 in 2021. The average cost of Ethereum 
in 2017 was $10. In that year, the price has significantly 
climbed, reaching roughly $400.  

The cryptocurrency market has experienced 
significant fluctuations, and several researchers have 
shown the existence of structural breaks (Canh et al. 2019; 
Mandaci & Cagli 2022; Sahoo 2021; Yen et al. 2022). Yen 
et al. (2022) used the BP test and discovered that there 
is a “year-end” influence on the cryptocurrency market 
since there are cyclical shifts in price at the beginning 
and end of each year. Canh et al. (2019) discovered that 
structural breaks are present in all of the well-known 
cryptocurrencies, and the shifts moved from smaller to 
larger cryptocurrencies (in terms of market capitalization). 
In addition, Dutta and Bouri (2022) stated that, except for 
Bitcoin, there is no empirical proof of the existence of 
outliers in the top cryptocurrencies. While Song and Kang 
(2021) found the existence of some outlying observations 
in the Bitcoin return series. Therefore it is still an open 
discussion regarding cryptocurrency price behavior, and 
the present work focuses on uncovering both breaks and 
outliers for Bitcoin and Ethereum prices. 

Traditional methods of identifying breaks and outliers 
based on well-known real events, like Jiun (2019), who 
divided the sample based on a known break date, are not 
precise in the sense that estimates may be inaccurate. 
Because it involves stochastic processes, they may only be 
defined using econometric methods rather than by visual 
inspection. Moreover, the most crucial problems that need 
to be resolved are computing break/outlier dates, testing 
structural breaks/outliers, and estimating the number of 
breaks/outliers in financial data (Bai & Perron 2003). 
When dealing with structural changes in the dataset, 
researchers now use various competing methods that deal 
with outliers and breaks. The breakpoints must typically 
be calculated from the data because they are rarely given 
exogenously (Zeileis et al. 2003). A war, a significant 
shift in governmental policy, or another equally abrupt 
event may cause structural breaks and outliers. Weideman 
et al. (2017) conducted a BP test and showed that most 
of the captured breaks are caused by actual events. So, 
researchers need to be able to understand how to relate 
breaks to macroeconomic or social events (Fattori & 
Carniel 2008). Because the locations of breaks frequently 
refer to political or economic factors, detecting structural 
changes offers a better understanding of the dynamics 
that lead to regime shifts in time series (Telli & Chen 
2020). Extreme events (outliers), such as financial crises 
and wars, have an impact on financial time series and can 
change the estimation parameter (breaks) (Ismail & Nasir 
2018). 

A structural break refers to a change in the behavior 
of a variable over time, such as a spike in the money 
stock (Castle & Hendry 2019). Outliers are referred to 
as data points that do not fit in with the pattern of the 
other observations and are a long way from the fitted 
model (Brooks 2019). This paper evaluates the empirical 

performance of the Bai and Perron tests and the indicator 
saturation approach and identifies their strengths and 
drawbacks. The question is which of the two methods 
is more effective at identifying the most frequent breaks 
and outliers in cryptocurrency. Empirical research helps 
academics comprehend actual phenomena so they can 
draw conclusions with application to the real world. Bai 
and Perron (1998) considered multiple structural changes 
when evaluating a linear model using least squares. This 
test is referred to as BP. On the other hand, the indicator 
saturation (IS) approach by Hendry (1999) improves 
the basics of regression analysis by identifying outliers 
and structural breaks in the regression specification. 
It is useful when there are several unknown outliers or 
shifts at any time in the sample and does not require prior 
knowledge of the numbers, signs, timings, magnitudes, 
or durations of the breaks. Numerous scholars have 
investigated structural breaks in financial data using 
Bai and Perron tests see (Bouri et al. 2019; Mensi et al. 
2019; Tan et al. 2019; Telli & Chen 2020; Weideman et 
al. 2017; Wu 2021; Zainudin & Shah Shaharudin 2011). 
BP test cannot detect more than 5 breaks (Lee et al. 2022; 
Muthuramu & Maheswari 2019).

Additionally, numerous works that applied or 
assessed the efficacy of indicator saturation techniques 
using simulation studies have focused impulse indicator 
saturation approach (IIS) and discovered that IIS as an 
illustration of IS approach performed well and helpful 
tool for locating outliers. These studies include Castle 
et al. (2015), Castle and Hendry (2014), Che Rose et al. 
(2021), Ericsson (2017), Marczak and Proietti (2016), 
Muhammadullah et al. (2022), Nasir and Ismail (2020). 
Results from simulations might not be applicable to 
actual circumstances. Some other researchers compared 
the BP test to other tests to show its performance 
(Enders & Holt 2012; Zarei et al. 2015; Yasir & Önder 
2021). Thus, these two tests were used independently in 
several research. Since there have not been any empirical 
performance comparisons of the two tests, we fill this gap 
using cryptocurrency data, specifically Bitcoin (BTC) 
and Ethereum (ETH) monthly and weekly observations 
for each, the original and log series for each, and 4 or 
5 significant levels for each. This study aims firstly to 
examine the empirical performance of the BP and IS tests 
for spotting breaks and outliers in cryptocurrency data. 
Secondly, to specifically compare the performance of 
the BP Test and SIS. Thirdly, to highlight the impact of 
significant levels and frequencies on the performance of 
each test. 

The remainder of the paper is structured as follows. 
Section 2 presents the development of structural change 
tests in the literature. Section 3 discusses the theoretical 
background of the models used and the methodology 
followed, whereas Section 4 covers the results and 
discussion of the study. The researchers’ conclusion and 
suggestions for further research are presented in section 
5.
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LITERATURE REVIEW

Structural breaks in a series can be found by assuming that 
the break dates are either known, allowing for exogenous 
detection, or unknown, allowing for endogenous 
detection. Chow (1960) pioneered structural break 
testing for regression models, developing the F-test for 
a single break, assuming that the break date is previously 
known under the null of no break. Quandt (1960) altered 
the Chow framework to consider the F-statistic with the 
highest value among all potential break dates to loosen 
the requirement that the candidate break date be known. 
Perron (1989) assumed that a break could happen based 
on significant economic events that are determined 
exogenously. These writers assumed that there was no 
breakpoint at the beginning or end of the period because 
they believed that the likelihood of a breakpoint arising at 
the terminal point was extremely low. Most studies that 
use these approaches assume that 15% of the time, there 
is no break at the beginning or end. Later its allowed for 
multiple breaks, particularly the Bai and Perron tests see 
Bai and Perron (1998, 2003). The consideration of linear 
regression with multiple 
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potential break dates to loosen the requirement that the candidate break date be known. Perron (1989) assumed that a 
break could happen based on significant economic events that are determined exogenously. These writers assumed that 
there was no breakpoint at the beginning or end of the period because they believed that the likelihood of a breakpoint 
arising at the terminal point was extremely low. Most studies that use these approaches assume that 15% of the time, 
there is no break at the beginning or end. Later its allowed for multiple breaks, particularly the Bai and Perron tests see 
Bai and Perron (1998, 2003). The consideration of linear regression with multiple (𝑚𝑚) breakpoints and 𝑚𝑚+ 1 regimes 
was Bai and Perron's (1998) key contribution to the methodology. To study the case with 𝑚𝑚 breaks with uncertain break 
dates, Ohara (1999) also employed a strategy based on sequential t-tests of Zivot and Andrews (1992). Also, Papell and 
Prodan (2003) proposed a test based on restricted structural change that expressly permits two offsetting structural 
changes.  

Therefore, BP procedure is helpful for formal identification of structural breakpoints by some researchers see 
Enders and Holt (2012), Muthuramu and Uma Maheswari (2019), Tule et al. (2019), Yasir and Önder (2021). Many 
other studies have recently concentrated on  Indicator Saturation (IS) approach. Hendry (1999) created the indicator 
saturation (IS) technique to evaluate parameter constancy. This strategy was later extended to the multiplicative 
indicator saturation (MIS) strategy, the trend indicator saturation (TIS) strategy, the step indicator saturation (SIS) 
strategy, and the impulse indicator saturation (IIS) strategy. Castle et al. (2012) identified the capability of the IIS by 
recognizing a similar number of breaks and timing in Bai and Perron (1998) approach. Additionally, Castle et al. (2012) 
demonstrated that IIS could identify several outliers and structural breaks, mainly when the breaks are at the start and 
end of the sample and can also adjust for non-normality. Later, Doornik et al. (2013) introduced step-indicator 
saturation (SIS), which predicts level shifts based on step interventions, to provide an expanded version of the IIS. 
Following that, Castle et al. (2015) discovered that SIS displays a higher power when location change happens than IIS. 
Ericsson et al. (2012) combined IIS and SIS to create the super-saturation indicator technique (SSI) to address the 
effects of outliers and breaks. Pretis et al. (2018) created indicator saturation in general-to-specific (gets) package 
which gives a methodological technique for building econometric models where the researcher starts with a 
comprehensive model and then narrows it down through hypothesis testing (Brooks 2019). Researchers such as Ghouse 
et al. (2022) and Tuan Anh et al. (2020) are currently using this technique.  

Finally, the literature does not only consider these two tests to manage breaks and outliers; other scholars have 
also used other break tests. For instance, to study the fluctuations in stock market values, Wu and Ow (2021) created a 
novel sentiment classifier approach in machine learning algorithms. Tran (2022) used Hodrick-Prescott (HP) and 
Christiano-Fitzgerald (CF) filters to analyze turning points based on the bull and bear markets for stocks. Sahoo (2021) 
used a test known as Narayan and Popp (NP), which only considers structural breaks. Jiang et al. (2023) used BP and 
iterative cumulative sum of squares (ICSS) to spot breaks in cryptocurrency. Gałecki (2020) used the Perron test, 
Andrews and Zivot test, and BP tests to validate the presence of structural breaks. Finally, Pretis et al. (2018), the 
creators of the GETS package, provided a brief comparison of the software packages that implement the IS method and 
examined existing break detection algorithms like the BP test. They discovered that the model selection technique for 
change detection in the IS approach is the main difference. But until now, neither of these two tests has been 
empirically compared or taken into account cryptocurrency data, which this paper does. However, several researchers 
used these two tests separately in different financial data as multiple mean level changes, setting them apart from other 
tests. Furthermore, the IS test is effective at identifying breaks and outliers in the BTC and ETH simultaneously. 
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This section presents the background of the BP and IS tests, the dataset used and the methodology.  The Bai and Perron 
methodology is used to endogenously estimate breaks in a series without knowing the break date beforehand (Bai & 
Perron 1998, 2003). We consider a time series with 𝑡𝑡 = 1, 2, . . . , 𝑇𝑇 and 𝑚𝑚 structural breaks to accommodate 𝑚𝑚+ 1 
regimes (partitions). We set equations for each potential regime if we allow 𝑇𝑇,, 𝑇𝑇-,… , 𝑇𝑇/ signify the breakpoints and 𝑇𝑇 
represent the total number of observations in the series: 

 
𝑦𝑦1 = 𝑥𝑥1𝛽𝛽 + 𝑧𝑧1𝛿𝛿, + 𝑢𝑢1	𝑓𝑓𝑓𝑓𝑓𝑓	𝑡𝑡 = 1,2, . . 𝑇𝑇, 

 
𝑦𝑦1 = 𝑥𝑥1𝛽𝛽 + 𝑧𝑧1𝛿𝛿- + 𝑢𝑢1	𝑓𝑓𝑓𝑓𝑓𝑓	𝑡𝑡 = 𝑇𝑇, + 1, 𝑇𝑇, + 2, . . 𝑇𝑇- 
 
𝑦𝑦1 = 𝑥𝑥1𝛽𝛽 + 𝑧𝑧1𝛿𝛿; + 𝑢𝑢1	𝑓𝑓𝑓𝑓𝑓𝑓	𝑡𝑡 = 𝑇𝑇- + 1, 𝑇𝑇- + 2, . . 𝑇𝑇;                               (1) 

⋮ 
𝑦𝑦1 = 𝑥𝑥1𝛽𝛽 + 𝑧𝑧1𝛿𝛿/=, + 𝑢𝑢1	𝑓𝑓𝑓𝑓𝑓𝑓	𝑡𝑡 = 𝑇𝑇/ + 1, 𝑇𝑇/ + 2, . . 𝑇𝑇 

   
The matrix of the estimated coefficients for each partition is represented by 𝛿𝛿, through 𝛿𝛿/=,, where 𝛽𝛽 denotes the 

matrix of coefficients that remain constant across all partitions. Both 𝑥𝑥1 and 𝑧𝑧1 are vectors of 𝑝𝑝 and 𝑞𝑞 dimensions, 
respectively. The above set of equations can, however, be represented as follows. 
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break could happen based on significant economic events that are determined exogenously. These writers assumed that 
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examined existing break detection algorithms like the BP test. They discovered that the model selection technique for 
change detection in the IS approach is the main difference. But until now, neither of these two tests has been 
empirically compared or taken into account cryptocurrency data, which this paper does. However, several researchers 
used these two tests separately in different financial data as multiple mean level changes, setting them apart from other 
tests. Furthermore, the IS test is effective at identifying breaks and outliers in the BTC and ETH simultaneously. 
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saturation (SIS), which predicts level shifts based on step interventions, to provide an expanded version of the IIS. 
Following that, Castle et al. (2015) discovered that SIS displays a higher power when location change happens than IIS. 
Ericsson et al. (2012) combined IIS and SIS to create the super-saturation indicator technique (SSI) to address the 
effects of outliers and breaks. Pretis et al. (2018) created indicator saturation in general-to-specific (gets) package 
which gives a methodological technique for building econometric models where the researcher starts with a 
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potential break dates to loosen the requirement that the candidate break date be known. Perron (1989) assumed that a 
break could happen based on significant economic events that are determined exogenously. These writers assumed that 
there was no breakpoint at the beginning or end of the period because they believed that the likelihood of a breakpoint 
arising at the terminal point was extremely low. Most studies that use these approaches assume that 15% of the time, 
there is no break at the beginning or end. Later its allowed for multiple breaks, particularly the Bai and Perron tests see 
Bai and Perron (1998, 2003). The consideration of linear regression with multiple (𝑚𝑚) breakpoints and 𝑚𝑚+ 1 regimes 
was Bai and Perron's (1998) key contribution to the methodology. To study the case with 𝑚𝑚 breaks with uncertain break 
dates, Ohara (1999) also employed a strategy based on sequential t-tests of Zivot and Andrews (1992). Also, Papell and 
Prodan (2003) proposed a test based on restricted structural change that expressly permits two offsetting structural 
changes.  

Therefore, BP procedure is helpful for formal identification of structural breakpoints by some researchers see 
Enders and Holt (2012), Muthuramu and Uma Maheswari (2019), Tule et al. (2019), Yasir and Önder (2021). Many 
other studies have recently concentrated on  Indicator Saturation (IS) approach. Hendry (1999) created the indicator 
saturation (IS) technique to evaluate parameter constancy. This strategy was later extended to the multiplicative 
indicator saturation (MIS) strategy, the trend indicator saturation (TIS) strategy, the step indicator saturation (SIS) 
strategy, and the impulse indicator saturation (IIS) strategy. Castle et al. (2012) identified the capability of the IIS by 
recognizing a similar number of breaks and timing in Bai and Perron (1998) approach. Additionally, Castle et al. (2012) 
demonstrated that IIS could identify several outliers and structural breaks, mainly when the breaks are at the start and 
end of the sample and can also adjust for non-normality. Later, Doornik et al. (2013) introduced step-indicator 
saturation (SIS), which predicts level shifts based on step interventions, to provide an expanded version of the IIS. 
Following that, Castle et al. (2015) discovered that SIS displays a higher power when location change happens than IIS. 
Ericsson et al. (2012) combined IIS and SIS to create the super-saturation indicator technique (SSI) to address the 
effects of outliers and breaks. Pretis et al. (2018) created indicator saturation in general-to-specific (gets) package 
which gives a methodological technique for building econometric models where the researcher starts with a 
comprehensive model and then narrows it down through hypothesis testing (Brooks 2019). Researchers such as Ghouse 
et al. (2022) and Tuan Anh et al. (2020) are currently using this technique.  

Finally, the literature does not only consider these two tests to manage breaks and outliers; other scholars have 
also used other break tests. For instance, to study the fluctuations in stock market values, Wu and Ow (2021) created a 
novel sentiment classifier approach in machine learning algorithms. Tran (2022) used Hodrick-Prescott (HP) and 
Christiano-Fitzgerald (CF) filters to analyze turning points based on the bull and bear markets for stocks. Sahoo (2021) 
used a test known as Narayan and Popp (NP), which only considers structural breaks. Jiang et al. (2023) used BP and 
iterative cumulative sum of squares (ICSS) to spot breaks in cryptocurrency. Gałecki (2020) used the Perron test, 
Andrews and Zivot test, and BP tests to validate the presence of structural breaks. Finally, Pretis et al. (2018), the 
creators of the GETS package, provided a brief comparison of the software packages that implement the IS method and 
examined existing break detection algorithms like the BP test. They discovered that the model selection technique for 
change detection in the IS approach is the main difference. But until now, neither of these two tests has been 
empirically compared or taken into account cryptocurrency data, which this paper does. However, several researchers 
used these two tests separately in different financial data as multiple mean level changes, setting them apart from other 
tests. Furthermore, the IS test is effective at identifying breaks and outliers in the BTC and ETH simultaneously. 
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potential break dates to loosen the requirement that the candidate break date be known. Perron (1989) assumed that a 
break could happen based on significant economic events that are determined exogenously. These writers assumed that 
there was no breakpoint at the beginning or end of the period because they believed that the likelihood of a breakpoint 
arising at the terminal point was extremely low. Most studies that use these approaches assume that 15% of the time, 
there is no break at the beginning or end. Later its allowed for multiple breaks, particularly the Bai and Perron tests see 
Bai and Perron (1998, 2003). The consideration of linear regression with multiple (𝑚𝑚) breakpoints and 𝑚𝑚+ 1 regimes 
was Bai and Perron's (1998) key contribution to the methodology. To study the case with 𝑚𝑚 breaks with uncertain break 
dates, Ohara (1999) also employed a strategy based on sequential t-tests of Zivot and Andrews (1992). Also, Papell and 
Prodan (2003) proposed a test based on restricted structural change that expressly permits two offsetting structural 
changes.  

Therefore, BP procedure is helpful for formal identification of structural breakpoints by some researchers see 
Enders and Holt (2012), Muthuramu and Uma Maheswari (2019), Tule et al. (2019), Yasir and Önder (2021). Many 
other studies have recently concentrated on  Indicator Saturation (IS) approach. Hendry (1999) created the indicator 
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strategy, and the impulse indicator saturation (IIS) strategy. Castle et al. (2012) identified the capability of the IIS by 
recognizing a similar number of breaks and timing in Bai and Perron (1998) approach. Additionally, Castle et al. (2012) 
demonstrated that IIS could identify several outliers and structural breaks, mainly when the breaks are at the start and 
end of the sample and can also adjust for non-normality. Later, Doornik et al. (2013) introduced step-indicator 
saturation (SIS), which predicts level shifts based on step interventions, to provide an expanded version of the IIS. 
Following that, Castle et al. (2015) discovered that SIS displays a higher power when location change happens than IIS. 
Ericsson et al. (2012) combined IIS and SIS to create the super-saturation indicator technique (SSI) to address the 
effects of outliers and breaks. Pretis et al. (2018) created indicator saturation in general-to-specific (gets) package 
which gives a methodological technique for building econometric models where the researcher starts with a 
comprehensive model and then narrows it down through hypothesis testing (Brooks 2019). Researchers such as Ghouse 
et al. (2022) and Tuan Anh et al. (2020) are currently using this technique.  

Finally, the literature does not only consider these two tests to manage breaks and outliers; other scholars have 
also used other break tests. For instance, to study the fluctuations in stock market values, Wu and Ow (2021) created a 
novel sentiment classifier approach in machine learning algorithms. Tran (2022) used Hodrick-Prescott (HP) and 
Christiano-Fitzgerald (CF) filters to analyze turning points based on the bull and bear markets for stocks. Sahoo (2021) 
used a test known as Narayan and Popp (NP), which only considers structural breaks. Jiang et al. (2023) used BP and 
iterative cumulative sum of squares (ICSS) to spot breaks in cryptocurrency. Gałecki (2020) used the Perron test, 
Andrews and Zivot test, and BP tests to validate the presence of structural breaks. Finally, Pretis et al. (2018), the 
creators of the GETS package, provided a brief comparison of the software packages that implement the IS method and 
examined existing break detection algorithms like the BP test. They discovered that the model selection technique for 
change detection in the IS approach is the main difference. But until now, neither of these two tests has been 
empirically compared or taken into account cryptocurrency data, which this paper does. However, several researchers 
used these two tests separately in different financial data as multiple mean level changes, setting them apart from other 
tests. Furthermore, the IS test is effective at identifying breaks and outliers in the BTC and ETH simultaneously. 
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potential break dates to loosen the requirement that the candidate break date be known. Perron (1989) assumed that a 
break could happen based on significant economic events that are determined exogenously. These writers assumed that 
there was no breakpoint at the beginning or end of the period because they believed that the likelihood of a breakpoint 
arising at the terminal point was extremely low. Most studies that use these approaches assume that 15% of the time, 
there is no break at the beginning or end. Later its allowed for multiple breaks, particularly the Bai and Perron tests see 
Bai and Perron (1998, 2003). The consideration of linear regression with multiple (𝑚𝑚) breakpoints and 𝑚𝑚+ 1 regimes 
was Bai and Perron's (1998) key contribution to the methodology. To study the case with 𝑚𝑚 breaks with uncertain break 
dates, Ohara (1999) also employed a strategy based on sequential t-tests of Zivot and Andrews (1992). Also, Papell and 
Prodan (2003) proposed a test based on restricted structural change that expressly permits two offsetting structural 
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Therefore, BP procedure is helpful for formal identification of structural breakpoints by some researchers see 
Enders and Holt (2012), Muthuramu and Uma Maheswari (2019), Tule et al. (2019), Yasir and Önder (2021). Many 
other studies have recently concentrated on  Indicator Saturation (IS) approach. Hendry (1999) created the indicator 
saturation (IS) technique to evaluate parameter constancy. This strategy was later extended to the multiplicative 
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strategy, and the impulse indicator saturation (IIS) strategy. Castle et al. (2012) identified the capability of the IIS by 
recognizing a similar number of breaks and timing in Bai and Perron (1998) approach. Additionally, Castle et al. (2012) 
demonstrated that IIS could identify several outliers and structural breaks, mainly when the breaks are at the start and 
end of the sample and can also adjust for non-normality. Later, Doornik et al. (2013) introduced step-indicator 
saturation (SIS), which predicts level shifts based on step interventions, to provide an expanded version of the IIS. 
Following that, Castle et al. (2015) discovered that SIS displays a higher power when location change happens than IIS. 
Ericsson et al. (2012) combined IIS and SIS to create the super-saturation indicator technique (SSI) to address the 
effects of outliers and breaks. Pretis et al. (2018) created indicator saturation in general-to-specific (gets) package 
which gives a methodological technique for building econometric models where the researcher starts with a 
comprehensive model and then narrows it down through hypothesis testing (Brooks 2019). Researchers such as Ghouse 
et al. (2022) and Tuan Anh et al. (2020) are currently using this technique.  

Finally, the literature does not only consider these two tests to manage breaks and outliers; other scholars have 
also used other break tests. For instance, to study the fluctuations in stock market values, Wu and Ow (2021) created a 
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Andrews and Zivot test, and BP tests to validate the presence of structural breaks. Finally, Pretis et al. (2018), the 
creators of the GETS package, provided a brief comparison of the software packages that implement the IS method and 
examined existing break detection algorithms like the BP test. They discovered that the model selection technique for 
change detection in the IS approach is the main difference. But until now, neither of these two tests has been 
empirically compared or taken into account cryptocurrency data, which this paper does. However, several researchers 
used these two tests separately in different financial data as multiple mean level changes, setting them apart from other 
tests. Furthermore, the IS test is effective at identifying breaks and outliers in the BTC and ETH simultaneously. 
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𝑌𝑌 = 𝑋𝑋𝑋𝑋 + �̅�𝑍𝛿𝛿 + 𝑈𝑈  (2) 
 

Here, 𝑌𝑌 and 𝑋𝑋 each include (𝑦𝑦,, 𝑦𝑦-, 𝑦𝑦;,𝑦𝑦1), while �̅�𝑍 contains (𝑧𝑧,, 𝑧𝑧-, 𝑧𝑧;, 𝑧𝑧1). where 𝑋𝑋 denotes a matrix whose 
coefficients, from 𝛿𝛿, to 𝛿𝛿/=,, are constant across all partitions and U are 𝑖𝑖𝑖𝑖𝑖𝑖(0, 𝜎𝜎-). This method uses Ordinary Least 
Square (OLS) to calculate the parameters, and the following function can be used to reduce the sum of squared errors: 

 
(𝑌𝑌 − 𝑋𝑋𝑋𝑋 − �̅�𝑍𝛿𝛿)′(𝑌𝑌 − 𝑋𝑋𝑋𝑋 − �̅�𝑍𝛿𝛿) = ∑ ∑ [𝑦𝑦1 − 𝑥𝑥1N𝑋𝑋 − 𝑧𝑧1N𝛿𝛿O]-
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that [𝑇𝑇\,, 𝑇𝑇\-, …𝑇𝑇\/] = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖𝑛𝑛QU,Qa,…,Qb𝑆𝑆Q(𝑇𝑇,, 𝑇𝑇-, … , 𝑇𝑇/). Bai and Perron (1998, 2003) proposed a sup-F type test to the 
null of 𝑎𝑎 = 0 breaks and alternative of arbitrary number of changes 𝑎𝑎 = 𝑘𝑘 to test for the maximum number of break 
dates. The fraction QR

Q
= 𝜆𝜆O is used to indirectly search for the break dates where 𝑖𝑖 = 1, 2, . . . , 𝑘𝑘: 

 
𝐹𝐹Q(𝜆𝜆,, 𝜆𝜆-, 𝜆𝜆;,…𝜆𝜆f; 𝑞𝑞) = hQi(f=,)jik

fj
l mNnoN(o(pqrspq)TUomt

uuov
	                 (4) 

 
Where 𝑅𝑅 is the matrix of [𝛿𝛿W𝑅𝑅] = [𝛿𝛿W, − 𝛿𝛿W-, 𝛿𝛿W- − 𝛿𝛿W;… , 𝛿𝛿Wf − 𝛿𝛿Wf=,], 𝑀𝑀y = 𝐼𝐼 − 𝑋𝑋(𝑋𝑋N𝑋𝑋)i,𝑋𝑋′ and 𝑆𝑆𝑆𝑆𝑅𝑅f is the sum of 

squares of the residuals under the alternative hypothesis. However, the following definition of the sup-F statistics 
follows: 
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To enable endogenous break estimation, the double-maximum test, also known as the Dmax test, was suggested by 
Bai and Perron (1998, 2003). It later upgraded to two variants, the UDmax and WDmax, and can be written as follows: 
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𝑐𝑐(𝑞𝑞, 𝛼𝛼,𝑎𝑎) is the asymptotic critical for the test 𝑠𝑠𝑠𝑠𝑝𝑝(|U,|a,…,|v)∈~�𝐹𝐹Q(𝜆𝜆,, 𝜆𝜆-,… , 𝜆𝜆f; 𝑞𝑞). Some fixed weights connected to 
breaks are contained in the specifications (𝑎𝑎,, 𝑎𝑎-,… , 𝑎𝑎r). 

An F-type test with the null of 𝐻𝐻à:𝑎𝑎 = 𝑙𝑙 and the alternative of 𝐻𝐻,:𝑎𝑎 = 𝑙𝑙 + 1 was suggested by Bai and Perron 
(1998, 2003) to test for the number of break dates and isolate them. Therefore, this test is performed 𝑙𝑙 + 1 times to 
determine the number of breaks until the null hypothesis cannot be rejected. The following is a definition of the F test 
statistics: 

 

𝐹𝐹Q(𝑙𝑙 + 1, 𝑙𝑙) =
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variance. This method is extended by Bai and Perron (1998, 2003) to F tests for 0	𝑣𝑣𝑠𝑠. 𝑙𝑙 breaks and 𝑙𝑙	𝑣𝑣𝑠𝑠. 𝑙𝑙	 + 	1 breaks, 
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proposed by Castle et al. (2015). Impulse indicator saturation (IIS) generates a full set of indicator variables. For each 
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as many indicators as there are observations, each with a unique observation corresponding to the value 1. That means 
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mathematically as below: 
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as many indicators as there are observations, each with a unique observation corresponding to the value 1. That means 
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(1998, 2003) to test for the number of break dates and isolate them. Therefore, this test is performed 𝑙𝑙 + 1 times to 
determine the number of breaks until the null hypothesis cannot be rejected. The following is a definition of the F test 
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as many indicators as there are observations, each with a unique observation corresponding to the value 1. That means 
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that [𝑇𝑇\,, 𝑇𝑇\-, …𝑇𝑇\/] = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖𝑛𝑛QU,Qa,…,Qb𝑆𝑆Q(𝑇𝑇,, 𝑇𝑇-, … , 𝑇𝑇/). Bai and Perron (1998, 2003) proposed a sup-F type test to the 
null of 𝑎𝑎 = 0 breaks and alternative of arbitrary number of changes 𝑎𝑎 = 𝑘𝑘 to test for the maximum number of break 
dates. The fraction QR
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Where 𝑅𝑅 is the matrix of [𝛿𝛿W𝑅𝑅] = [𝛿𝛿W, − 𝛿𝛿W-, 𝛿𝛿W- − 𝛿𝛿W;… , 𝛿𝛿Wf − 𝛿𝛿Wf=,], 𝑀𝑀y = 𝐼𝐼 − 𝑋𝑋(𝑋𝑋N𝑋𝑋)i,𝑋𝑋′ and 𝑆𝑆𝑆𝑆𝑅𝑅f is the sum of 
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To enable endogenous break estimation, the double-maximum test, also known as the Dmax test, was suggested by 
Bai and Perron (1998, 2003). It later upgraded to two variants, the UDmax and WDmax, and can be written as follows: 
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An F-type test with the null of 𝐻𝐻à:𝑎𝑎 = 𝑙𝑙 and the alternative of 𝐻𝐻,:𝑎𝑎 = 𝑙𝑙 + 1 was suggested by Bai and Perron 
(1998, 2003) to test for the number of break dates and isolate them. Therefore, this test is performed 𝑙𝑙 + 1 times to 
determine the number of breaks until the null hypothesis cannot be rejected. The following is a definition of the F test 
statistics: 
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that IIS creates T additional variables when there are T observations (Castle & Hendry 2019). So, IIS can be stated 
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Bai and Perron (1998, 2003). It later upgraded to two variants, the UDmax and WDmax, and can be written as follows: 
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determine the number of breaks until the null hypothesis cannot be rejected. The following is a definition of the F test 
statistics: 
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statistics: 

 

𝐹𝐹Q(𝑙𝑙 + 1, 𝑙𝑙) =
{uå(Q\U,Q\a,…Q\b)i/OçUéRéèêëíêì∈îR,ïuå(Q\U,Q\a,…,Q\RTU,ñ,Q\R,Q\RóU,…,Q\è)}

ôöa
                 (8) 

 
Where ΛO, 𝜂𝜂 = {𝜏𝜏; 𝑇𝑇Oi, + (𝑇𝑇O − 𝑇𝑇Oi,)𝜂𝜂 ≤ 𝜏𝜏 ≤ 𝑇𝑇O − (𝑇𝑇O − 𝑇𝑇Oi,)𝜂𝜂}, and 𝜎𝜎ü- is an accurate estimate of the residual 

variance. This method is extended by Bai and Perron (1998, 2003) to F tests for 0	𝑣𝑣𝑠𝑠. 𝑙𝑙 breaks and 𝑙𝑙	𝑣𝑣𝑠𝑠. 𝑙𝑙	 + 	1 breaks, 
respectively, with arbitrary but fixed 𝑙𝑙. 

 
INDICATOR SATURATION APPROACH 

 
We use two types of indicator saturation (IS) approach. The impulse indicator saturation (IIS) for outliers detection 
introduced by Hendry (1999) and Santos et al. (2008). Then, the step indicator saturation (SIS) for location shifts 
proposed by Castle et al. (2015). Impulse indicator saturation (IIS) generates a full set of indicator variables. For each 
indicator, a single observation yields a value of 1, whereas all other observations yield a value of 0. There are produced 
as many indicators as there are observations, each with a unique observation corresponding to the value 1. That means 
that IIS creates T additional variables when there are T observations (Castle & Hendry 2019). So, IIS can be stated 
mathematically as below: 
 

IIS     {1{¢S£}}  where  {1{¢S£}} = §1, 																																					when	j = t	
0, 											Otherwise		for	j = 1, … , 	T    (9) 

 

 and 

 
 

4 
 

𝑌𝑌 = 𝑋𝑋𝑋𝑋 + �̅�𝑍𝛿𝛿 + 𝑈𝑈  (2) 
 

Here, 𝑌𝑌 and 𝑋𝑋 each include (𝑦𝑦,, 𝑦𝑦-, 𝑦𝑦;,𝑦𝑦1), while �̅�𝑍 contains (𝑧𝑧,, 𝑧𝑧-, 𝑧𝑧;, 𝑧𝑧1). where 𝑋𝑋 denotes a matrix whose 
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(𝑌𝑌 − 𝑋𝑋𝑋𝑋 − �̅�𝑍𝛿𝛿)′(𝑌𝑌 − 𝑋𝑋𝑋𝑋 − �̅�𝑍𝛿𝛿) = ∑ ∑ [𝑦𝑦1 − 𝑥𝑥1N𝑋𝑋 − 𝑧𝑧1N𝛿𝛿O]-

QR
1SQRTU=,

/=,
1S,           (3) 

 
The global sum of squares 𝑆𝑆Q(𝑇𝑇,, 𝑇𝑇-,… , 𝑇𝑇/) for the breaks dates is determined by first calculating the sum of 

squares of residuals for each regime and letting 𝑋𝑋WX𝑇𝑇YZ and 𝛿𝛿WX𝑇𝑇YZ  be the estimates of m regimes. The break dates such 
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(1998, 2003) to test for the number of break dates and isolate them. Therefore, this test is performed 𝑙𝑙 + 1 times to 
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determine the number of breaks until the null hypothesis cannot be rejected. The following is a definition of the F test 
statistics: 

 

𝐹𝐹Q(𝑙𝑙 + 1, 𝑙𝑙) =
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Where ΛO, 𝜂𝜂 = {𝜏𝜏; 𝑇𝑇Oi, + (𝑇𝑇O − 𝑇𝑇Oi,)𝜂𝜂 ≤ 𝜏𝜏 ≤ 𝑇𝑇O − (𝑇𝑇O − 𝑇𝑇Oi,)𝜂𝜂}, and 𝜎𝜎ü- is an accurate estimate of the residual 

variance. This method is extended by Bai and Perron (1998, 2003) to F tests for 0	𝑣𝑣𝑠𝑠. 𝑙𝑙 breaks and 𝑙𝑙	𝑣𝑣𝑠𝑠. 𝑙𝑙	 + 	1 breaks, 
respectively, with arbitrary but fixed 𝑙𝑙. 

 
INDICATOR SATURATION APPROACH 

 
We use two types of indicator saturation (IS) approach. The impulse indicator saturation (IIS) for outliers detection 
introduced by Hendry (1999) and Santos et al. (2008). Then, the step indicator saturation (SIS) for location shifts 
proposed by Castle et al. (2015). Impulse indicator saturation (IIS) generates a full set of indicator variables. For each 
indicator, a single observation yields a value of 1, whereas all other observations yield a value of 0. There are produced 
as many indicators as there are observations, each with a unique observation corresponding to the value 1. That means 
that IIS creates T additional variables when there are T observations (Castle & Hendry 2019). So, IIS can be stated 
mathematically as below: 
 

IIS     {1{¢S£}}  where  {1{¢S£}} = §1, 																																					when	j = t	
0, 											Otherwise		for	j = 1, … , 	T    (9) 
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In addition, IIS for an outlier can be illustrated by creating an outlier of size λ at observation k by: 
 

 y£ = µ + λI{¢S£} + ε£,	 where	ε£~N(0, σ	π- ) and λ ≠ 0   (10) 
 

In GETS modeling, this strategy would not use all indicators as regressors. If every indicator is considered, the 
model will have more regressors than there are observations, T (Castle et al. 2021). Santos et al. (2008) considered a 
linear regression with just an intercept; then, add the first T/2 impulse indicators to it to comprehend the "split-half" 
method. The first half will produce selected indicators for any observations that differ from those estimates by at least 
the set threshold of significance. Once any significant indicators have been located, their locations are noted. The first 
T/2 indicators are then swapped out for the second T/2, and the process is then repeated. To choose the final significant 
indicators, the two sets of sub-sample significant indicators are included to the model. Let y£, an observed random 
variable, have an independent normal distribution as y£~N[µ,σπ-], with t = 1, 2, . . . , T, where µ and σπ- are the relevant 
parameters. However, a researcher is unsure of where outliers (if any) may be hiding. Moreover, for split half approach 
consider starting by just adding the intercept and the other half of the indicators (for example, 1{£S¢} for j = 1, . . . , T	/2, 
assuming T is even). Determining the GUM of the first step, then 

 
IIS y£ = µ + ∑ δ¢1{£S¢}

Ω/-
¢S, + ε£         (11) 

 
Thus, the above equation also incorporates T/2 parameters for T/2 impulse indicators for the first T/2 

observations, in addition to the mean and variance. Step-indicator saturation (SIS), is a block of consecutive impulses 
with the same signs and magnitudes constitutes a step shift. Although IIS can be used to detect these, the retained 
indicators might be aggregated into a single dummy variable that took the average value of the shift for the break period 
and 0 elsewhere (Castle & Hendry 2019). A saturating set of T − 1 step-shift indicators that change from 1 to 0 at a 
different observation at each step can be created. These indicators take the value 1 from the start of the sample up to a 
specific observation and then take the value 0 after that. Step indicators are the accumulation of impulse indicators up 
to each subsequent observation. The only step following step 'T' would be the intercept. The group of potential 
predictors includes the T − 1 stages. So, SIS can be stated mathematically as below: 

 

SIS     {1{£Å¢}}, where  {1{£Å¢}} = §1, 								for	observations	up	to	j	0, 																															Otherwise		 	and j = 1,… , 	T             (12) 

 
In addition, SIS for a Location shift can be illustrated by creating a location shift of size λ at observation k by: 

 
y£ = µ + λI{¢ƒ£} + ε£,	 where	ε£~N(0, σ	π- ) and λ ≠ 0      (13) 
 

Castle and Hendry (2019) demonstrated 'half-sample' SIS instead of using the first and second halves altogether. 
However, The IIS/SIS first adds an impulsive dummy for each observation, divides the dummies into blocks, and then 
performs a regression on each block of dummies against the data while keeping the significant dummies. The process 
continues with the following block, and so on, until each period is finished. Only the significant dummies are left after 
combining and regressing all the kept dummies in each block again (Mariscal & Powell 2013). When employing IIS 
and SIS to create a simple model of the mean of y£, the appropriate general unrestrictive models (GUMs) are as follows 
(Pretis et al. 2018): 

 
IIS  y£ = µ + ∑ δ¢1{£S¢}ë

¢S, + ε£                    (14) 
 
SIS y£ = µ + ∑ δ¢1{£ƒ¢}ë

¢S- + ε£                    (15) 
 
TIS y£ = µ + ∑ δ¢1{£≈¢}(t − j)ë

¢S, + ε£                  (16) 
 

The GUM supplies the initial information set and serves as the starting point for the model reduction process. The 
GUM provides enough details on the modelled process, and statistically accurate (Castle & Shephard 2009). 

 
DATA SET 

 
Our data comprises the weekly and monthly close prices of two cryptocurrencies: Bitcoin (BTC) and Ethereum (ETH), 
which we get from Yahoo Finance https://finance.yahoo.com/. While the data period for Ethereum begins on November 
6, 2017, and for Bitcoin begins on January 1, 2015, both data periods finish on May 1, 2023. The series has 100 (BTC) 
and 65 (ETH) monthly observations and for a total of 435 (BTC) and 287 (ETH) weekly observations. From Table 1, 
both Bitcoin and Ethereum cryptocurrencies are further introduced. 
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112Detecting Structural Breaks in Cryptocurrency Market

Symbol Frequency
BTC USD 100 months, 435 weeks 
Market Cap 527.7B
Circulating Supply 19.39M
ETH USD 65 months, 287 weeks
Market Cap 229.14B
Circulating Supply 120.24M

TABLE 1. Data summary

DATA ANALYSIS FRAMEWORK

The data analysis begins by examining descriptive 
statistics. After that, we applied a constant to the data to 
evaluate the empirical fluctuation test using Ploberger and 
Krämer (1992) OLS-based CUSUM technique, which is 
based on the cumulative sums of typical OLS residuals, 
to check for structural changes in the model.
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à(𝑡𝑡) is the standard Brownian bridge 𝑊𝑊à(𝑡𝑡) = 𝑊𝑊(𝑡𝑡) − 𝑡𝑡𝑊𝑊(1), where 𝑊𝑊(∙) stands for 
standard Brownian motion; in the case of a single-shift alternative, the process should peak near the breaking point. 
Then, using a regression model with a constant as a regressor, the BP and IS tests were applied to find several breaks 
and outliers in each series with different levels of significance. For the BP test, we used a trimming percentage of 15% 
across the series and allowed no more than five breaks, but there was no restriction for the IS approach. We employ 
Eviews software to execute both the IS and BP tests. 

 
RESULTS AND DISCUSSION 

 
The empirical performance of IS and BP approaches are discussed here. We first visualize the series plots and the 
descriptive statistics.  
  

                 
                 

FIGURE 1. Monthly and weekly original-price of BTC and ETH 
 

Figure 1 supports the existence of structural breaks/outliers. There is a significant increase between 2017 and 2018 
and again between 2020 and 2022. The Covid-19 dilemma and the Ukraine war is most likely to blame for these jumps. 

 
TABLE 2: Descriptive statistics  

Original-Series 
Series  Mean  Median  Maximum  Minimum  Std. Dev. 
BTCM 13868.38 8037.154 61318.96 217.4640 16114.66 
BTCW 13817.14 7824.231 65992.84 178.1030 16187.00 
ETHM 1178.144 669.9240 4631.479 107.0610 1170.865 
ETHW 1166.664 618.3290 4626.359 85.26210 1159.702 

 
In Table 2, for original price, BTC costs a minimum of $217.5, a maximum of $61319 monthly, a minimum of 

$178, and a maximum of $65992.8 weekly. ETH costs a minimum of $107, a maximum of $4631.5 monthly, a 
minimum of $85.3, and a maximum of $4626.4 weekly. The mean for BTC and ETH is almost five digits, which makes 
us doubt the presence of structural change. Table 3 and Figure 2 show clear evidence. 

 
TABLE 3. Existence of outliers in monthly data  

 BTCM BTCW ETHM ETHW 
𝐐𝐐𝟏𝟏 1046.443 1023.725 219.8485 219.7798 
𝐐𝐐𝟑𝟑 19850.95 20018.4 1822.022 1791.968 
𝐈𝐈𝐐𝐐𝐈𝐈 18804.54 18994.67 1602.174 1572.183 

Upper Bound 48058 48510 4225 4150 
Lower Bound -27160 -27468 -2183 -2138 

 
Table 3 demonstrates that BTC and ETH contain outliers and any value outside the boundaries should be regarded 

as an outlier.  
 

EMPIRICAL FLUCTUATION TEST 
 

The limiting process for 

 
 

6 
 

 
 

TABLE 1. Data summary  
Symbol Frequency 
BTC USD 100 months, 435 weeks  
Market Cap 527.7B 
Circulating Supply 19.39M 
ETH USD 65 months, 287 weeks 
Market Cap 229.14B 
Circulating Supply 120.24M 

 
DATA ANALYSIS FRAMEWORK 

 
The data analysis begins by examining descriptive statistics. After that, we applied a constant to the data to evaluate the 
empirical fluctuation test using Ploberger and Krämer (1992) OLS-based CUSUM technique, which is based on the 
cumulative sums of typical OLS residuals, to check for structural changes in the model. 
 

𝑊𝑊ç
à(𝑡𝑡) = ,

ôö√ç
∑ 𝑢𝑢üO
⌊ç1⌋
OS,   (0 ≤ 𝑡𝑡 ≤ 1)         (17) 

 
The limiting process for 𝑊𝑊ç

à(𝑡𝑡) is the standard Brownian bridge 𝑊𝑊à(𝑡𝑡) = 𝑊𝑊(𝑡𝑡) − 𝑡𝑡𝑊𝑊(1), where 𝑊𝑊(∙) stands for 
standard Brownian motion; in the case of a single-shift alternative, the process should peak near the breaking point. 
Then, using a regression model with a constant as a regressor, the BP and IS tests were applied to find several breaks 
and outliers in each series with different levels of significance. For the BP test, we used a trimming percentage of 15% 
across the series and allowed no more than five breaks, but there was no restriction for the IS approach. We employ 
Eviews software to execute both the IS and BP tests. 

 
RESULTS AND DISCUSSION 

 
The empirical performance of IS and BP approaches are discussed here. We first visualize the series plots and the 
descriptive statistics.  
  

                 
                 

FIGURE 1. Monthly and weekly original-price of BTC and ETH 
 

Figure 1 supports the existence of structural breaks/outliers. There is a significant increase between 2017 and 2018 
and again between 2020 and 2022. The Covid-19 dilemma and the Ukraine war is most likely to blame for these jumps. 

 
TABLE 2: Descriptive statistics  

Original-Series 
Series  Mean  Median  Maximum  Minimum  Std. Dev. 
BTCM 13868.38 8037.154 61318.96 217.4640 16114.66 
BTCW 13817.14 7824.231 65992.84 178.1030 16187.00 
ETHM 1178.144 669.9240 4631.479 107.0610 1170.865 
ETHW 1166.664 618.3290 4626.359 85.26210 1159.702 

 
In Table 2, for original price, BTC costs a minimum of $217.5, a maximum of $61319 monthly, a minimum of 

$178, and a maximum of $65992.8 weekly. ETH costs a minimum of $107, a maximum of $4631.5 monthly, a 
minimum of $85.3, and a maximum of $4626.4 weekly. The mean for BTC and ETH is almost five digits, which makes 
us doubt the presence of structural change. Table 3 and Figure 2 show clear evidence. 

 
TABLE 3. Existence of outliers in monthly data  

 BTCM BTCW ETHM ETHW 
𝐐𝐐𝟏𝟏 1046.443 1023.725 219.8485 219.7798 
𝐐𝐐𝟑𝟑 19850.95 20018.4 1822.022 1791.968 
𝐈𝐈𝐐𝐐𝐈𝐈 18804.54 18994.67 1602.174 1572.183 

Upper Bound 48058 48510 4225 4150 
Lower Bound -27160 -27468 -2183 -2138 

 
Table 3 demonstrates that BTC and ETH contain outliers and any value outside the boundaries should be regarded 

as an outlier.  
 

EMPIRICAL FLUCTUATION TEST 
 

 is the standard 
Brownian bridge 

 
 

6 
 

 
 

TABLE 1. Data summary  
Symbol Frequency 
BTC USD 100 months, 435 weeks  
Market Cap 527.7B 
Circulating Supply 19.39M 
ETH USD 65 months, 287 weeks 
Market Cap 229.14B 
Circulating Supply 120.24M 

 
DATA ANALYSIS FRAMEWORK 

 
The data analysis begins by examining descriptive statistics. After that, we applied a constant to the data to evaluate the 
empirical fluctuation test using Ploberger and Krämer (1992) OLS-based CUSUM technique, which is based on the 
cumulative sums of typical OLS residuals, to check for structural changes in the model. 
 

𝑊𝑊ç
à(𝑡𝑡) = ,

ôö√ç
∑ 𝑢𝑢üO
⌊ç1⌋
OS,   (0 ≤ 𝑡𝑡 ≤ 1)         (17) 

 
The limiting process for 𝑊𝑊ç

à(𝑡𝑡) is the standard Brownian bridge 𝑊𝑊à(𝑡𝑡) = 𝑊𝑊(𝑡𝑡) − 𝑡𝑡𝑊𝑊(1), where 𝑊𝑊(∙) stands for 
standard Brownian motion; in the case of a single-shift alternative, the process should peak near the breaking point. 
Then, using a regression model with a constant as a regressor, the BP and IS tests were applied to find several breaks 
and outliers in each series with different levels of significance. For the BP test, we used a trimming percentage of 15% 
across the series and allowed no more than five breaks, but there was no restriction for the IS approach. We employ 
Eviews software to execute both the IS and BP tests. 

 
RESULTS AND DISCUSSION 

 
The empirical performance of IS and BP approaches are discussed here. We first visualize the series plots and the 
descriptive statistics.  
  

                 
                 

FIGURE 1. Monthly and weekly original-price of BTC and ETH 
 

Figure 1 supports the existence of structural breaks/outliers. There is a significant increase between 2017 and 2018 
and again between 2020 and 2022. The Covid-19 dilemma and the Ukraine war is most likely to blame for these jumps. 

 
TABLE 2: Descriptive statistics  

Original-Series 
Series  Mean  Median  Maximum  Minimum  Std. Dev. 
BTCM 13868.38 8037.154 61318.96 217.4640 16114.66 
BTCW 13817.14 7824.231 65992.84 178.1030 16187.00 
ETHM 1178.144 669.9240 4631.479 107.0610 1170.865 
ETHW 1166.664 618.3290 4626.359 85.26210 1159.702 

 
In Table 2, for original price, BTC costs a minimum of $217.5, a maximum of $61319 monthly, a minimum of 

$178, and a maximum of $65992.8 weekly. ETH costs a minimum of $107, a maximum of $4631.5 monthly, a 
minimum of $85.3, and a maximum of $4626.4 weekly. The mean for BTC and ETH is almost five digits, which makes 
us doubt the presence of structural change. Table 3 and Figure 2 show clear evidence. 

 
TABLE 3. Existence of outliers in monthly data  

 BTCM BTCW ETHM ETHW 
𝐐𝐐𝟏𝟏 1046.443 1023.725 219.8485 219.7798 
𝐐𝐐𝟑𝟑 19850.95 20018.4 1822.022 1791.968 
𝐈𝐈𝐐𝐐𝐈𝐈 18804.54 18994.67 1602.174 1572.183 

Upper Bound 48058 48510 4225 4150 
Lower Bound -27160 -27468 -2183 -2138 

 
Table 3 demonstrates that BTC and ETH contain outliers and any value outside the boundaries should be regarded 

as an outlier.  
 

EMPIRICAL FLUCTUATION TEST 
 

 where 

 
 

6 
 

 
 

TABLE 1. Data summary  
Symbol Frequency 
BTC USD 100 months, 435 weeks  
Market Cap 527.7B 
Circulating Supply 19.39M 
ETH USD 65 months, 287 weeks 
Market Cap 229.14B 
Circulating Supply 120.24M 

 
DATA ANALYSIS FRAMEWORK 

 
The data analysis begins by examining descriptive statistics. After that, we applied a constant to the data to evaluate the 
empirical fluctuation test using Ploberger and Krämer (1992) OLS-based CUSUM technique, which is based on the 
cumulative sums of typical OLS residuals, to check for structural changes in the model. 
 

𝑊𝑊ç
à(𝑡𝑡) = ,

ôö√ç
∑ 𝑢𝑢üO
⌊ç1⌋
OS,   (0 ≤ 𝑡𝑡 ≤ 1)         (17) 

 
The limiting process for 𝑊𝑊ç

à(𝑡𝑡) is the standard Brownian bridge 𝑊𝑊à(𝑡𝑡) = 𝑊𝑊(𝑡𝑡) − 𝑡𝑡𝑊𝑊(1), where 𝑊𝑊(∙) stands for 
standard Brownian motion; in the case of a single-shift alternative, the process should peak near the breaking point. 
Then, using a regression model with a constant as a regressor, the BP and IS tests were applied to find several breaks 
and outliers in each series with different levels of significance. For the BP test, we used a trimming percentage of 15% 
across the series and allowed no more than five breaks, but there was no restriction for the IS approach. We employ 
Eviews software to execute both the IS and BP tests. 

 
RESULTS AND DISCUSSION 

 
The empirical performance of IS and BP approaches are discussed here. We first visualize the series plots and the 
descriptive statistics.  
  

                 
                 

FIGURE 1. Monthly and weekly original-price of BTC and ETH 
 

Figure 1 supports the existence of structural breaks/outliers. There is a significant increase between 2017 and 2018 
and again between 2020 and 2022. The Covid-19 dilemma and the Ukraine war is most likely to blame for these jumps. 

 
TABLE 2: Descriptive statistics  

Original-Series 
Series  Mean  Median  Maximum  Minimum  Std. Dev. 
BTCM 13868.38 8037.154 61318.96 217.4640 16114.66 
BTCW 13817.14 7824.231 65992.84 178.1030 16187.00 
ETHM 1178.144 669.9240 4631.479 107.0610 1170.865 
ETHW 1166.664 618.3290 4626.359 85.26210 1159.702 

 
In Table 2, for original price, BTC costs a minimum of $217.5, a maximum of $61319 monthly, a minimum of 

$178, and a maximum of $65992.8 weekly. ETH costs a minimum of $107, a maximum of $4631.5 monthly, a 
minimum of $85.3, and a maximum of $4626.4 weekly. The mean for BTC and ETH is almost five digits, which makes 
us doubt the presence of structural change. Table 3 and Figure 2 show clear evidence. 

 
TABLE 3. Existence of outliers in monthly data  

 BTCM BTCW ETHM ETHW 
𝐐𝐐𝟏𝟏 1046.443 1023.725 219.8485 219.7798 
𝐐𝐐𝟑𝟑 19850.95 20018.4 1822.022 1791.968 
𝐈𝐈𝐐𝐐𝐈𝐈 18804.54 18994.67 1602.174 1572.183 

Upper Bound 48058 48510 4225 4150 
Lower Bound -27160 -27468 -2183 -2138 

 
Table 3 demonstrates that BTC and ETH contain outliers and any value outside the boundaries should be regarded 

as an outlier.  
 

EMPIRICAL FLUCTUATION TEST 
 

 
stands for standard Brownian motion; in the case of a 
single-shift alternative, the process should peak near the 

FIGURE 1. Monthly and weekly original-price of BTC and ETH

breaking point. Then, using a regression model with a 
constant as a regressor, the BP and IS tests were applied 
to find several breaks and outliers in each series with 
different levels of significance. For the BP test, we used a 
trimming percentage of 15% across the series and allowed 
no more than five breaks, but there was no restriction for 
the IS approach. We employ Eviews software to execute 
both the IS and BP tests.

RESULTS AND DISCUSSION

The empirical performance of IS and BP approaches are 
discussed here. We first visualize the series plots and the 
descriptive statistics. 

(17)
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Figure 1 supports the existence of structural breaks/
outliers. There is a significant increase between 2017 and 
2018 and again between 2020 and 2022. The Covid-19 

dilemma and the Ukraine war is most likely to blame for 
these jumps.

TABLE 2: Descriptive statistics 

Original-Series
Series Mean Median Maximum Minimum Std. Dev.
BTCM 13868.38 8037.154 61318.96 217.4640 16114.66
BTCW 13817.14 7824.231 65992.84 178.1030 16187.00
ETHM 1178.144 669.9240 4631.479 107.0610 1170.865
ETHW 1166.664 618.3290 4626.359 85.26210 1159.702

In Table 2, for original price, BTC costs a minimum 
of $217.5, a maximum of $61319 monthly, a minimum 
of $178, and a maximum of $65992.8 weekly. ETH costs 
a minimum of $107, a maximum of $4631.5 monthly, a 

TABLE 3. Existence of outliers in monthly data 

minimum of $85.3, and a maximum of $4626.4 weekly. 
The mean for BTC and ETH is almost five digits, which 
makes us doubt the presence of structural change. Table 3 
and Figure 2 show clear evidence.

BTCM BTCW ETHM ETHW
Q1 1046.443 1023.725 219.8485 219.7798
Q3 19850.95 20018.4 1822.022 1791.968

IQR 18804.54 18994.67 1602.174 1572.183
Upper Bound 48058 48510 4225 4150
Lower Bound -27160 -27468 -2183 -2138

Table 3 demonstrates that BTC and ETH contain 
outliers and any value outside the boundaries should be 
regarded as an outlier. 

FIGURE 2: OLS-based CUSUM process for the BTC and ETH

EMPIRICAL FLUCTUATION TEST

Figure 2 shows fitted fluctuation process and its 
boundaries at a 5% significance level. The process 
has a peak around 2020 in both series that exceeds the 
boundaries, indicating a distinct structural shift at that 
time.

BAI AND PERRON TEST

The BP test is used to detect multiple breaks in each 
series using a regression model that includes a constant as 
a regressor and we allowed different significance levels. 
The following two tables present the performance of the 
BP test including the number of breaks discovered and 
their dates at various levels of significance.
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TABLE 4. BP in original-series

Original-Series (BP)
Series α Sequential Repartition 
BTCM 0.01 2017M10,2020M12 2017M10,2020M12

0.025 2017M10,2020M12 2017M10,2020M12
0.05 2017M10,2020M12 2017M10,2020M12
0.10 2017M10,2020M12 2017M10,2020M12

BTCW 0.01 10/05/2017,12/10/2020 10/05/2017,12/17/2020
0.025 10/05/2017,12/10/2020 10/05/2017,12/17/2020
0.05 10/05/2017,12/10/2020 10/05/2017,12/17/2020
0.10 10/05/2017,12/10/2020 10/05/2017,12/17/2020

ETHM 0.01 2021M02,2022M05 2021M03,2022M05
0.025 2021M02,2022M05 2021M03,2022M05
0.05 2021M02,2022M05 2021M03,2022M05
0.10 2021M02,2022M05 2021M03,2022M05

ETHW 0.01 9/03/2018,1/18/2021,5/09/2022 9/03/2018,2/01/2021,5/09/2022
0.025 9/03/2018,1/18/2021,5/09/2022 9/03/2018,2/01/2021,5/09/2022
0.05 9/03/2018,1/18/2021,5/09/2022 9/03/2018,2/01/2021,5/09/2022
0.10 9/03/2018,1/18/2021,5/09/2022 9/03/2018,2/01/2021,5/09/2022

After applying the BP test to the original prices, the 
results in Tables 4 and 5 revealed that: first, if we vary 
the significance levels but not the frequency, the F-stat 
value for each break remains constant. Second, the 
critical value of F statistics for each break remains the 
same if the frequency changes, but the values will vary if 
the significance level changes. Third, if the significance 
levels change, the BP test does not detect more breaks. 
Additionally, after applying the BP test on the log prices, 

TABLE 5. BP in log-series

we found the following: first, the number of breaks 
discovered by the BP test has increased. Second, the BP 
test consistently identified the same number of breaks 
across alpha levels and frequencies. Third, the BP test 
produced similar results in sequential and repartition 
approaches. Lastly, the BP test does not give an indication, 
such as a positive sign for an upward shock or a negative 
sign for a downward shock. 

Log-Series (BP)
Series α Sequential Repartition 

LBTCM 0.01 2016M04,2017M07,2020M11 2016M04, 2017M07, 2020M11
0.025 2016M04,2017M07,2020M11 2016M04, 2017M07, 2020M11
0.05 2016M04,2017M07,2019M05,2020M11,2022M02 2 0 1 6 M 0 4 , 2 0 1 7 M 0 7 , 2 0 1 9 M 0 5 , 2 0 2 0 M 11 , 

2022M02
0.10 2016M04,2017M07,2019M05,2020M11,2022M02 2 0 1 6 M 0 4 , 2 0 1 7 M 0 7 , 2 0 1 9 M 0 5 , 2 0 2 0 M 11 , 

2022M02
LBTCW 0.01 4/28/2016,7/27/2017,5/09/2019,11/05/2020, 

2/03/2022
4/28/2016,7/27/2017,5/09/2019,11/05/2020, 
2/03/2022

0.025 4/28/2016,7/27/2017,5/09/2019,11/05/2020, 
2/03/2022

4/28/2016,7/27/2017,5/09/2019,11/05/2020, 
2/03/2022

0.05 4/28/2016,7/27/2017,5/09/2019,11/05/2020, 
2/03/2022

4/28/2016,7/27/2017,5/09/2019,11/05/2020, 
2/03/2022

0.10 4/28/2016,7/27/2017,5/09/2019,11/05/2020, 
2/03/2022

4/28/2016,7/27/2017,5/09/2019,11/05/2020, 
2/03/2022

LETHM 0.01 2018M09, 2020M04, 2020M05, 2021M01 2018M09, 2020M04, 2020M05, 2021M01
0.025 2018M09, 2020M04, 2020M05, 2021M01 2018M09, 2020M04, 2020M05, 2021M01
0.05 2018M09, 2020M04, 2020M05, 2021M01 2018M09, 2020M04, 2020M05, 2021M01
0.10 2018M09, 2020M04, 2020M05, 2021M01 2018M09, 2020M04, 2020M05, 2021M01

continue ...
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LETHW 0.01 9/03/2018,2/03/2020, 12/28/2020, 5/23/2022 9/03/2018, 2/03/2020,12/28/2020,5/23/2022
0.025 9/03/2018,2/03/2020, 12/28/2020, 5/23/2022 9/03/2018,2/03/2020, 12/28/2020,5/23/2022
0.05 9/03/2018,2/03/2020, 12/28/2020, 5/23/2022 9/03/2018, 2/03/2020, 12/28/2020,5/23/2022
0.10 9/03/2018,2/03/2020, 12/28/2020, 5/23/2022 9/03/2018, 2/03/2020, 12/28/2020,5/23/2022

... continued

INDICATOR SATURATION APPROACH

The IS approach is then employed in each series using a 
regression model that includes a constant as a regressor 
in the same data with different significance levels. The 
results of the SIS test are presented in table 6 and 7 
including series, blocks utilized, the SIC selection criteria, 
breaks and their dates. For original and log monthly data, 

TABLE 6. SIS in original-series

SIS identified the same date of breaks where breaks with 
a one-month difference are considered the same. For 
Bitcoin, SIS similarly identified 2017M02 8 times and 
2020M11 9 times across alpha levels in all settings. BTC 
and ETH share three breaks 2021M01, 2021M09, and 
2022M05. For original and log weekly data, SIS similarly 
detected 9 weeks for BTC and 7 weeks for ETH across 
all settings.

Series α Original-Series (SIS)
BTCM 0.001 Obs:100,Blocks:4,SIS:3,SIC:9.98       

2017M02(+),2020M12(+),2022M05(-)
0.01 Obs:100,Blocks:4,SIS:6,SIC:9.67      

2017M02(+),2019M05(+),2020M11(+),2021M02(+),2021M05(-),2022M05(-)
0.025 Obs:100,Blocks:4,SIS:6,SIC:9.67      

2017M02(+),2019M05(+),2020M11(+),2021M02(+),2021M05(-),2022M05(-)
0.05 Obs:100,Blocks:4,SIS:6,SIC:9.67      

2017M02(+),2019M05(+),2020M11(+),2021M02(+),2021M05(-),2022M05(-)
0.10 Obs:100,Blocks:4,SIS:9,SIC:9.25      

2017M02(+),2017M10(+),2019M05(+),2020M11(+),2021M02(+),2021M05(-),2021M10(+),2021M12   
(-),2022M05(-)

BTCW 0.001 Obs:435,Blocks:15,SIS:9,SIC:9.52      
10/12/2017(+),5/03/2018(-),6/13/2019(+),7/30/2020(+),12/24/2020(+),2/18/2021(+),5/13/2021(-),9/09/2021(+), 
3/31/2022(-)

0.01 Obs:435,Blocks:15,SIS:11,SIC:9.35      
3/23/2017(+),10/19/2017(+),5/03/2018(-),6/13/2019(+),7/30/2020(+),12/24/2020(+),2/18/2021(+),5/13/2021 
(-),9/09/2021(+),12/09/2021(-),3/31/2022(-)

0.025 Obs:435,Blocks:5,SIS:14,SIC:8.97
3/23/2017(+),10/19/2017(+),5/03/2018(-),11/22/2018(-),6/13/2019(+),7/30/2020(+),12/24/2020(+),2/18/2021(+), 
5/13/2021(-),9/02/2021(+),9/09/2021(+),12/09/2021(-),5/05/2022(-),1/12/2023(+)

0.05 Obs:435,Blocks:5,SIS:15,SIC:8.92
3/23/2017(+),10/19/2017(+),5/03/2018(-),11/22/2018(-),6/13/2019(+),7/23/2020(+),11/05/2020(+),12/24/2020(+), 
2/18/2021(+),5/06/2021(-),9/02/2021(+),9/09/2021(+),12/09/2021(-),5/05/2022(-),1/12/2023(+)

0.10 Obs:435,Blocks:15,SIS:16,SIC:8.61
3/23/2017(+),10/19/2017(+),5/03/2018(-),11/22/2018(-),6/13/2019(+),7/23/2020(+),11/05/2020(+),12/24/2020(+), 
2/18/2021(+),5/13/2021(-),8/05/2021(+),9/30/2021(+),12/02/2021(-),3/31/2022(-),5/05/2022(-),1/12/2023(+)

ETHM 0.001 Obs:65,Blocks:3,SIS:3,SIC:15.07              
2021M01(+),2021M09(+),2022M05(-)

0.01 Obs:65,Blocks:3,SIS:3,SIC:15.07              
2021M01(+),2021M09(+),2022M05(-)

0.025 Obs:65,Blocks:3,SIS:3,SIC:15.07              
2021M01(+),2021M09(+),2022M05(-)

0.05 Obs:65,Blocks:3,SIS:4,SIC:14.83              
2021M01(+),2021M04(+),2021M09(+),2022M05(-)

0.10 Obs:65,Blocks:3,SIS:5,SIC:14.59              
2021M01(+),2021M04(+),2021M09(+),2022M01(-),2022M05(-)

continue ...
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ETHW 0.001 Obs:287,Blocks:10,SIS:8,SIC:14.35
12/17/2018(-),8/17/2020(+),12/28/2020(+),3/15/2021(+),8/02/2021(+),10/04/2021(+),1/03/2022(-),4/18/2022(-)

0.01 Obs:287,Blocks:10,SIS:8,SIC:14.35
12/17/2018(-),8/17/2020(+),12/28/2020(+),3/15/2021(+),8/02/2021(+),10/04/2021(+),1/03/2022(-),4/18/2022(-)

0.025 Obs:287,Blocks:10,SIS:8,SIC:14.35
12/17/2018(-),8/17/2020(+),12/28/2020(+),3/15/2021(+),8/02/2021(+),10/04/2021(+),1/03/2022(-),4/25/2022(-)

0.05 Obs:287,Blocks:10,SIS:12,SIC:13.94     
5/28/2018(-),12/17/2018(-),8/17/2020(+),12/28/2020(+),3/08/2021(+),4/26/2021(+),5/17/2021(-),8/02/2021(+), 
10/04/2021(+),1/03/2022(-),4/25/2022(-),1/09/2023(+)

0.10 Obs:287,Blocks:10,SIS:12,SIC:13.94          
5/28/2018(-),12/17/2018(-),8/17/2020(+),12/28/2020(+),3/08/2021(+),4/26/2021(+),5/17/2021(-),8/02/2021(+), 
10/04/2021(+),1/03/2022(-),4/25/2022(-),1/09/2023(+)

... continued

The IIS test is then utilized. Table 8 and 9 summarize 
IIS performance including series, blocks used, the SIC 
selection criteria, outliers, and their dates.In the original 
series for BTC IIS recognized most observations 

TABLE 7. SIS in log-series

from 2021M01 to 2022M04 as upward outliers across 
significance levels and from 2015 and 2016 as downward 
outliers in the log series. The series start date, however, 
caused IIS in ETH to function differently. 

Series α Log-Series (SIS)
LBTCM 0.001 Obs:100,Blocks:4,SIS:3,SIC:1.20           

2017M02 (+),2017M08 (+),2020M11(+)
0.01 Obs:100,Blocks:4,SIS:4,SIC:1.17           

2017M02(+),2017M08(+),2019M04(+),2020M11(+)
0.025 Obs:100,Blocks:4,SIS:5,SIC:0.90           

2016M05(+),2017M02(+),2017M08(+),2019M04(+),2020M11(+)
0.05 Obs:100,Blocks:4,SIS:5, SIC:0.90       

2016M05(+),2017M02(+),2017M08(+),2019M04(+),2020M11(+)
0.10 Obs:100,Blocks:4,SIS:6,SIC:0.78

2016M05(+),2017M02(+),2017M08(+),2018M11(-),2019M04(+),2020M11(+)
LBTCW 0.001 Obs:435, Blocks:15,SIS:11,SIC:0.34

7/23/2015(+),2/11/2016(+),9/08/2016(+),3/30/2017(+),10/12/2017(+),5/10/2018(-),11/22/2018(-), 
6/13/2019(+), 7/30/2020(+),2/18/2021(+),3/31/2022(-)

0.01 Obs:435,Blocks:15,SIS:13,SIC:-0.01
7/23/2015(+),2/11/2016(+),9/08/2016(+),3/30/2017(+),5/18/2017(+),10/19/2017(+),5/10/2018(-),11/22/2018 
(-), 6/13/2019(+),7/23/2020(+),12/17/2020(+),2/18/2021(+),3/31/2022(-)

0.025 Obs:435,Blocks:15, SIS:15,SIC:-0.01          
7/23/2015(+),2/11/2016(+),9/08/2016(+),3/30/2017(+),5/18/2017(+),10/12/2017(+),10/19/2017(+),5/10/2018 
(-), 11/22/2018(-),6/13/2019(+),7/23/2020(+),12/17/2020(+),2/18/2021(+),3/31/2022(-),10/20/2022(-)

0.05 Obs:435,Blocks:15,SIS:15,SIC:-0.01        
7/23/2015(+),2/11/2016(+),9/08/2016(+),3/30/2017(+),5/18/2017(+),10/12/2017(+),10/19/2017(+),5/10/2018 
(-), 11/22/2018(-),6/13/2019(+),7/23/2020(+),12/17/2020(+),2/18/2021(+),3/31/2022(-),10/20/2022 (-)

0.10 Obs:435,Blocks:15,SIS:15,SIC:-0.01      
7/23/2015(+),2/11/2016(+),9/08/2016(+),3/30/2017(+),5/18/2017(+),10/12/2017(+),10/19/2017(+),5/10/2018 
(-), 11/22/2018(-),6/13/2019(+),7/23/2020(+),12/17/2020(+),2/18/2021(+),3/31/2022(-),10/20/2022(-)

continue ...
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... continued
LETHM 0.001 Obs: 65,Blocks:3,SIS:1, SIC:1.72             

2021M01(+)
0.01 Obs:65,Blocks:3, SIS:3,SIC:0.96                 

2018M08(-),2020M07(+),2021M01(+)
0.025 Obs:65,Blocks:3,SIS:3,SIC:0.96                 

2018M08(-), 2020M07(+), 2021M01(+)
0.05 Obs:65,Blocks:3,SIS:5,SIC:0.60                 

2018M08(-),2020M07(+),2021M01(+),2021M09(+),2022M05(-)
0.10 Obs:65,Blocks:3,SIS:5,SIC:0.60                 

2018M08(-),2020M07(+),2021M01(+),2021M09(+),2022M05(-)
LETHW 0.001 Obs:287,Blocks:10,SIS:7,SIC:0.38

8/06/2018(-),1/27/2020(+),8/17/2020(+),1/04/2021(+),3/15/2021(+),10/04/2021(+),4/25/2022(-)
0.01 Obs:287,Blocks:10,SIS:7,SIC:0.38

8/06/2018(-),1/27/2020(+),8/17/2020(+),1/04/2021(+),3/15/2021(+),10/04/2021(+),4/25/2022(-)
0.025 Obs:287,Blocks:10,SIS:7,SIC:0.38

8/06/2018(-),1/27/2020(+),8/17/2020(+),1/04/2021(+),3/15/2021(+),10/04/2021(+),4/25/2022(-)
0.05 Obs:287,Blocks:10,SIS:7,SIC:0.38

8/06/2018(-),1/27/2020(+),8/17/2020(+),1/04/2021(+),3/15/2021(+),10/04/2021(+),4/25/2022(-)
0.10 Obs:287,Blocks:10,SIS:7,SIC:0.38

8/06/2018(-),1/27/2020(+),8/17/2020(+),1/04/2021(+),3/15/2021(+),10/04/2021(+),4/25/2022(-)

PERFORMANCE OF IIS TEST

A test for the general presence of outliers can be 
performed using the proportion or count of outliers found 
in regression models. Jiao and Pretis (2022) suggested 
two sets of tests for the overall presence of outliers under 
the null hypothesis of no outliers. Jiao-Pretis test tests 
if the proportion (or number) of outliers found using 
IIS differs from the proportion (or number) expected by 
the null hypothesis of no outliers. 
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TABLE 7. SIS in log-series 

Series  𝜶𝜶 Log-Series (SIS) 
LBTCM 

 
0.001 Obs:100,Blocks:4,SIS:3,SIC:1.20            

2017M02 (+),2017M08 (+),2020M11(+) 
0.01 Obs:100,Blocks:4,SIS:4,SIC:1.17            

2017M02(+),2017M08(+),2019M04(+),2020M11(+) 
0.025 Obs:100,Blocks:4,SIS:5,SIC:0.90            

2016M05(+),2017M02(+),2017M08(+),2019M04(+),2020M11(+) 
0.05 Obs:100,Blocks:4,SIS:5, SIC:0.90        

2016M05(+),2017M02(+),2017M08(+),2019M04(+),2020M11(+) 
0.10 Obs:100,Blocks:4,SIS:6,SIC:0.78 

2016M05(+),2017M02(+),2017M08(+),2018M11(-),2019M04(+),2020M11(+) 
LBTCW 

 
0.001 Obs:435, Blocks:15,SIS:11,SIC:0.34 

7/23/2015(+),2/11/2016(+),9/08/2016(+),3/30/2017(+),10/12/2017(+),5/10/2018(-),11/22/2018(-), 6/13/2019(+), 
7/30/2020(+),2/18/2021(+),3/31/2022(-) 

0.01 Obs:435,Blocks:15,SIS:13,SIC:-0.01 
7/23/2015(+),2/11/2016(+),9/08/2016(+),3/30/2017(+),5/18/2017(+),10/19/2017(+),5/10/2018(-),11/22/2018(-), 
6/13/2019(+),7/23/2020(+),12/17/2020(+),2/18/2021(+),3/31/2022(-) 

0.025 Obs:435,Blocks:15, SIS:15,SIC:-0.01           
7/23/2015(+),2/11/2016(+),9/08/2016(+),3/30/2017(+),5/18/2017(+),10/12/2017(+),10/19/2017(+),5/10/2018(-), 11/22/2018(-
),6/13/2019(+),7/23/2020(+),12/17/2020(+),2/18/2021(+),3/31/2022(-),10/20/2022(-) 

0.05 Obs:435,Blocks:15,SIS:15,SIC:-0.01         
7/23/2015(+),2/11/2016(+),9/08/2016(+),3/30/2017(+),5/18/2017(+),10/12/2017(+),10/19/2017(+),5/10/2018(-), 11/22/2018(-
),6/13/2019(+),7/23/2020(+),12/17/2020(+),2/18/2021(+),3/31/2022(-),10/20/2022 (-) 

0.10 Obs:435,Blocks:15,SIS:15,SIC:-0.01       
7/23/2015(+),2/11/2016(+),9/08/2016(+),3/30/2017(+),5/18/2017(+),10/12/2017(+),10/19/2017(+),5/10/2018(-), 11/22/2018(-
),6/13/2019(+),7/23/2020(+),12/17/2020(+),2/18/2021(+),3/31/2022(-),10/20/2022(-) 

LETHM 
 
0.001 Obs: 65,Blocks:3,SIS:1, SIC:1.72              

2021M01(+) 
0.01 Obs:65,Blocks:3, SIS:3,SIC:0.96                  

2018M08(-),2020M07(+),2021M01(+) 
0.025 Obs:65,Blocks:3,SIS:3,SIC:0.96                  

2018M08(-), 2020M07(+), 2021M01(+) 
0.05 Obs:65,Blocks:3,SIS:5,SIC:0.60                  

2018M08(-),2020M07(+),2021M01(+),2021M09(+),2022M05(-) 
0.10 Obs:65,Blocks:3,SIS:5,SIC:0.60                  

2018M08(-),2020M07(+),2021M01(+),2021M09(+),2022M05(-) 
LETHW 

 
0.001 Obs:287,Blocks:10,SIS:7,SIC:0.38 

8/06/2018(-),1/27/2020(+),8/17/2020(+),1/04/2021(+),3/15/2021(+),10/04/2021(+),4/25/2022(-) 
0.01 Obs:287,Blocks:10,SIS:7,SIC:0.38 

8/06/2018(-),1/27/2020(+),8/17/2020(+),1/04/2021(+),3/15/2021(+),10/04/2021(+),4/25/2022(-) 
0.025 Obs:287,Blocks:10,SIS:7,SIC:0.38 

8/06/2018(-),1/27/2020(+),8/17/2020(+),1/04/2021(+),3/15/2021(+),10/04/2021(+),4/25/2022(-) 
0.05 Obs:287,Blocks:10,SIS:7,SIC:0.38 

8/06/2018(-),1/27/2020(+),8/17/2020(+),1/04/2021(+),3/15/2021(+),10/04/2021(+),4/25/2022(-) 
0.10 Obs:287,Blocks:10,SIS:7,SIC:0.38 

8/06/2018(-),1/27/2020(+),8/17/2020(+),1/04/2021(+),3/15/2021(+),10/04/2021(+),4/25/2022(-) 
 

 

 

PERFORMANCE OF IIS TEST 
 
A test for the general presence of outliers can be performed using the proportion or count of outliers found in regression 
models. Jiao and Pretis (2022) suggested two sets of tests for the overall presence of outliers under the null hypothesis 
of no outliers. Jiao-Pretis test tests if the proportion (or number) of outliers found using IIS differs from the proportion 
(or number) expected by the null hypothesis of no outliers. 𝐻𝐻à: The proportion of outliers expected to be discovered 
under 𝐻𝐻à of no outliers is the same as the proportion of outliers spotted by IIS. Table 10 presents Jiao-Pretis Test p-
values and the number of outliers by IIS. Based on the p-values given in table 10, we can assess the efficiency of IIS. 
Of 40 cases of detected outliers, 31 cases rejected the null of Jiao-Pretis. In 31 cases, IIS recognized the presence of an 
outlier but failed to reject it in only 9 cases. Of the 9 cases, 7 were identified when IIS was applied to log series, mostly 
at 0.001 significance level, where IIS recognized observations in 2015 and 2016 as downward outliers. However, IIS 
78% discovered the presence of outliers. Rejecting the null hypothesis at a given significance level indicates the 
presence of outliers. However, non-rejection does not rule out that specific outliers denote actual outlying observations 
because the outlier magnitude is not considered when using this test (Jiao & Pretis 2022). 
 

TABLE 8. IIS in original-series 
Series  𝜶𝜶 Original-Series (IIS) 

 The proportion 
of outliers expected to be discovered under 
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TABLE 7. SIS in log-series 

Series  𝜶𝜶 Log-Series (SIS) 
LBTCM 

 
0.001 Obs:100,Blocks:4,SIS:3,SIC:1.20            

2017M02 (+),2017M08 (+),2020M11(+) 
0.01 Obs:100,Blocks:4,SIS:4,SIC:1.17            

2017M02(+),2017M08(+),2019M04(+),2020M11(+) 
0.025 Obs:100,Blocks:4,SIS:5,SIC:0.90            

2016M05(+),2017M02(+),2017M08(+),2019M04(+),2020M11(+) 
0.05 Obs:100,Blocks:4,SIS:5, SIC:0.90        

2016M05(+),2017M02(+),2017M08(+),2019M04(+),2020M11(+) 
0.10 Obs:100,Blocks:4,SIS:6,SIC:0.78 

2016M05(+),2017M02(+),2017M08(+),2018M11(-),2019M04(+),2020M11(+) 
LBTCW 

 
0.001 Obs:435, Blocks:15,SIS:11,SIC:0.34 

7/23/2015(+),2/11/2016(+),9/08/2016(+),3/30/2017(+),10/12/2017(+),5/10/2018(-),11/22/2018(-), 6/13/2019(+), 
7/30/2020(+),2/18/2021(+),3/31/2022(-) 

0.01 Obs:435,Blocks:15,SIS:13,SIC:-0.01 
7/23/2015(+),2/11/2016(+),9/08/2016(+),3/30/2017(+),5/18/2017(+),10/19/2017(+),5/10/2018(-),11/22/2018(-), 
6/13/2019(+),7/23/2020(+),12/17/2020(+),2/18/2021(+),3/31/2022(-) 

0.025 Obs:435,Blocks:15, SIS:15,SIC:-0.01           
7/23/2015(+),2/11/2016(+),9/08/2016(+),3/30/2017(+),5/18/2017(+),10/12/2017(+),10/19/2017(+),5/10/2018(-), 11/22/2018(-
),6/13/2019(+),7/23/2020(+),12/17/2020(+),2/18/2021(+),3/31/2022(-),10/20/2022(-) 

0.05 Obs:435,Blocks:15,SIS:15,SIC:-0.01         
7/23/2015(+),2/11/2016(+),9/08/2016(+),3/30/2017(+),5/18/2017(+),10/12/2017(+),10/19/2017(+),5/10/2018(-), 11/22/2018(-
),6/13/2019(+),7/23/2020(+),12/17/2020(+),2/18/2021(+),3/31/2022(-),10/20/2022 (-) 

0.10 Obs:435,Blocks:15,SIS:15,SIC:-0.01       
7/23/2015(+),2/11/2016(+),9/08/2016(+),3/30/2017(+),5/18/2017(+),10/12/2017(+),10/19/2017(+),5/10/2018(-), 11/22/2018(-
),6/13/2019(+),7/23/2020(+),12/17/2020(+),2/18/2021(+),3/31/2022(-),10/20/2022(-) 

LETHM 
 
0.001 Obs: 65,Blocks:3,SIS:1, SIC:1.72              

2021M01(+) 
0.01 Obs:65,Blocks:3, SIS:3,SIC:0.96                  

2018M08(-),2020M07(+),2021M01(+) 
0.025 Obs:65,Blocks:3,SIS:3,SIC:0.96                  

2018M08(-), 2020M07(+), 2021M01(+) 
0.05 Obs:65,Blocks:3,SIS:5,SIC:0.60                  

2018M08(-),2020M07(+),2021M01(+),2021M09(+),2022M05(-) 
0.10 Obs:65,Blocks:3,SIS:5,SIC:0.60                  

2018M08(-),2020M07(+),2021M01(+),2021M09(+),2022M05(-) 
LETHW 

 
0.001 Obs:287,Blocks:10,SIS:7,SIC:0.38 

8/06/2018(-),1/27/2020(+),8/17/2020(+),1/04/2021(+),3/15/2021(+),10/04/2021(+),4/25/2022(-) 
0.01 Obs:287,Blocks:10,SIS:7,SIC:0.38 

8/06/2018(-),1/27/2020(+),8/17/2020(+),1/04/2021(+),3/15/2021(+),10/04/2021(+),4/25/2022(-) 
0.025 Obs:287,Blocks:10,SIS:7,SIC:0.38 

8/06/2018(-),1/27/2020(+),8/17/2020(+),1/04/2021(+),3/15/2021(+),10/04/2021(+),4/25/2022(-) 
0.05 Obs:287,Blocks:10,SIS:7,SIC:0.38 

8/06/2018(-),1/27/2020(+),8/17/2020(+),1/04/2021(+),3/15/2021(+),10/04/2021(+),4/25/2022(-) 
0.10 Obs:287,Blocks:10,SIS:7,SIC:0.38 

8/06/2018(-),1/27/2020(+),8/17/2020(+),1/04/2021(+),3/15/2021(+),10/04/2021(+),4/25/2022(-) 
 

 

 

PERFORMANCE OF IIS TEST 
 
A test for the general presence of outliers can be performed using the proportion or count of outliers found in regression 
models. Jiao and Pretis (2022) suggested two sets of tests for the overall presence of outliers under the null hypothesis 
of no outliers. Jiao-Pretis test tests if the proportion (or number) of outliers found using IIS differs from the proportion 
(or number) expected by the null hypothesis of no outliers. 𝐻𝐻à: The proportion of outliers expected to be discovered 
under 𝐻𝐻à of no outliers is the same as the proportion of outliers spotted by IIS. Table 10 presents Jiao-Pretis Test p-
values and the number of outliers by IIS. Based on the p-values given in table 10, we can assess the efficiency of IIS. 
Of 40 cases of detected outliers, 31 cases rejected the null of Jiao-Pretis. In 31 cases, IIS recognized the presence of an 
outlier but failed to reject it in only 9 cases. Of the 9 cases, 7 were identified when IIS was applied to log series, mostly 
at 0.001 significance level, where IIS recognized observations in 2015 and 2016 as downward outliers. However, IIS 
78% discovered the presence of outliers. Rejecting the null hypothesis at a given significance level indicates the 
presence of outliers. However, non-rejection does not rule out that specific outliers denote actual outlying observations 
because the outlier magnitude is not considered when using this test (Jiao & Pretis 2022). 
 

TABLE 8. IIS in original-series 
Series  𝜶𝜶 Original-Series (IIS) 

 of no 
outliers is the same as the proportion of outliers spotted 
by IIS. Table 10 presents Jiao-Pretis Test p-values and the 
number of outliers by IIS. Based on the p-values given 

in table 10, we can assess the efficiency of IIS. Of 40 
cases of detected outliers, 31 cases rejected the null of 
Jiao-Pretis. In 31 cases, IIS recognized the presence of 
an outlier but failed to reject it in only 9 cases. Of the 9 
cases, 7 were identified when IIS was applied to log series, 
mostly at 0.001 significance level, where IIS recognized 
observations in 2015 and 2016 as downward outliers. 
However, IIS 78% discovered the presence of outliers. 
Rejecting the null hypothesis at a given significance level 
indicates the presence of outliers. However, non-rejection 
does not rule out that specific outliers denote actual 
outlying observations because the outlier magnitude is 
not considered when using this test (Jiao & Pretis 2022).

TABLE 8. IIS in original-series

Series α Original-Series (IIS)
BTCM 0.001 Obs:100, Blocks:4, IIS:25,SIC:22.10

2021(M4,5,6,7,8,9,10,11,12) , 2022 (M1,2,3,4,5,6,7,8,9,10,11,12), 2023 (M1,2,3,4) Note: All(+)
0.01 Obs:100,Blocks:4,IIS:4,SIC:22.04           2021M03,2021M04,2021M10,2021M11All(+)
0.025 Obs:100,Blocks:4, IIS:14,SIC:21.64         

2021(M3,4,5,6,7,8,9,10,11,12),2022(M1,2,3,4) All(+)
0.05 Obs:100, Blocks:4, IIS:16, SIC:21.59

2021(M3,4,5,6,7,8,9,10,11,12),2022 (M1,2,3,4,5),2023 (M04)All(+)
0.10 Obs:100, Blocks:4, IIS:18, SIC:21.34 

2021(M2,3,4,5,6,7,8,9,10,11,12),2022(M1,2,3,4,5),2023(M3,4)All(+)
continue ...
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BTCW 0.001 Obs:435, Blocks:15,IIS:29, SIC:22.21
9/02/2021,9/09/2021,9/16/2021,9/23/2021,9/30/2021,10/07/2021,10/14/2021,10/21/2021,10/28/2021, 11/04/2
021,11/11/2021,11/18/2021,11/25/2021,12/02/2021,12/09/2021,12/16/2021,12/23/2021,12/30/2021, 1/06/202,
1/13/2022,1/20/2022,1/27/2022,2/03/2022,2/10/2022,2/17/2022,2/24/2022,3/03/2022,3/10/2022,
3/17/2022All(+)

0.01 Obs:435,Blocks:15,IIS:19,SIC:22.08
2/11/2021,3/04/2021,3/11/2021,3/18/2021,3/25/2021,4/01/2021,4/08/2021,4/15/2021,4/22/2021,4/29/2021, 9/
30/2021,10/07/2021,10/14/2021,10/21/2021,10/28/2021,11/04/2021,11/11/2021,11/18/2021,11/25/2021All(+) 

0.025 Obs:435, Blocks:15,IIS:38, SIC:21.94
2/11/2021,2/18/2021,2/25/2021,3/04/2021,3/11/2021,3/18/2021,3/25/2021,4/01/2021,4/08/2021,4/15/2021, 4/
22/2021,4/29/2021,5/06/2021,8/05/2021,8/12/2021,8/19/2021,8/26/2021,9/02/2021,9/09/2021,9/16/2021, 9/30
/2021,10/07/2021,10/14/2021,10/21/2021,10/28/2021,11/04/2021,11/11/2021,11/18/2021,11/25/2021,
12/02/2021,12/09/2021,12/16/2021,12/23/2021,12/30/2021,1/06/2022,2/03/2022,2/10/2022,2/24/2022All(+)

0.05 Obs:435,Blocks:15,IIS:44,SIC:21.89
2/11/2021,2/18/2021,2/25/2021,3/04/2021,3/11/2021,3/18/2021,3/25/2021,4/01/2021,4/08/2021,4/15/2021,
4/22/2021,4/29/2021,5/06/2021,8/05/2021,8/12/2021,8/19/2021,8/26/2021,9/02/2021,9/09/2021,9/16/2021,
9/23/2021,9/30/2021,10/07/2021,10/14/2021,10/21/2021,10/28/2021,11/04/2021,11/11/2021,11/18/2021,
11/25/2021,12/02/2021,12/09/2021,12/16/2021,12/23/2021,12/30/2021,1/06/2022,1/13/2022,2/03/2022,
2/10/2022,2/24/2022,3/03/2022,3/10/2022, 3/17/2022,3/24/2022All(+)

0.10 Obs:435,Blocks:15,IIS:59,SIC:21.72
2/04/2021,2/11/2021,2/18/2021,2/25/2021,3/04/2021,3/11/2021,3/18/2021,3/25/2021,4/01/2021,4/08/2021,
4/15/2021,4/22/2021,4/29/2021,5/06/2021,5/13/2021,5/20/2021,5/27/2021,6/03/2021,6/10/2021,6/24/2021,
7/22/2021,7/29/2021,8/05/2021,8/12/2021,8/19/2021,8/26/2021,9/02/2021,9/09/2021,9/16/2021,9/23/2021,
9/30/2021,10/07/2021,10/14/2021,10/21/2021,10/28/2021,11/04/2021,11/11/2021,11/18/2021,11/25/2021,
12/02/2021,12/09/2021,12/16/2021,12/23/2021,12/30/2021,1/06/2022,1/13/2022,1/20/2022,1/27/2022,2/03/20
22,
2/10/2022,2/17/2022,2/24/2022,3/03/2022, 3/10/2022,3/17/2022,3/24/2022,3/31/2022,4/07/2022,4/14/2022Al
l(+)

ETHM 0.001 Obs:65,Blocks:3, IIS:0, SIC:17.02
0.01 Obs:65,Blocks:3, IIS:3, SIC:16.81    2021M10,2021M11,2021M12All(+)

0.025 Obs:65, Blocks:3, IIS:9, SIC:16.59
2021M08,2021M09,2021M10,2021M11,2021M12,2022M01,2022M02,2022M03,2022M04All(+)

0.05 Obs:65, Blocks:3, IIS:9, SIC:16.59
2021M08,2021M09,2021M10,2021M11,2021M12,2022M01,2022M02,2022M03,2022M04All(+)

0.10 Obs:65,Blocks:3,IIS:9,SIC:16.59
2021M08,2021M09,2021M10,2021M11,2021M12,2022M01,2022M02,2022M03,2022M04All(+)

ETHW 0.001 Obs:287,Blocks:10, IIS:29,SIC:16.88
9/27/2021,10/04/2021,10/11/2021,10/18/2021,10/25/2021,11/01/2021,11/08/2021,11/15/2021,11/22/2021,
11/29/2021,12/06/2021,12/13/2021,12/20/2021,12/27/2021,1/03/2022,1/10/2022,1/17/2022,1/24/2022,1/31/20
22,
2/07/2022, 2/14/2022,2/21/2022,2/28/2022,3/07/2022,3/14/2022,3/21/2022,3/28/2022,4/04/2022,4/11/2022Al
l(+)

0.01 Obs:287,Blocks:10,IIS:12,SIC:16.85     
10/11/2021,10/18/2021,10/25/2021,11/01/2021,11/08/2021,11/15/2021,11/22/2021,11/29/2021,12/06/2021,
12/13/2021, 12/20/2021,12/27/2021All(+)

0.025 Obs:287,Blocks:10,IIS:22,SIC:16.79
5/03/2021,8/30/2021,9/27/2021,10/04/2021,10/11/2021,10/18/2021,10/25/2021,11/01/2021,11/08/2021,11/15/
2021,11/22/2021,11/29/2021,12/06/2021,12/13/2021,12/20/2021,12/27/2021,1/03/2022,1/10/2022,1/31/2022,
3/21/2022, 3/28/2022, 4/04/2022 All(+)

0.05 Obs:287,Blocks:10, IIS:27,SIC:16.76          
5/03/2021,5/10/2021,8/30/2021,9/06/2021,9/27/2021,10/04/2021,10/11/2021,10/18/2021,10/25/2021,11/01/20
21, 11/08/2021,11/15/2021,11/22/2021,11/29/2021,12/06/2021,12/13/2021,12/20/2021,12/27/2021,1/03/2022,
1/10/2022, 1/31/2022,2/07/2022,3/14/2022,3/21/2022,3/28/2022,4/04/2022,4/11/2022All(+)

0.10 Obs:287,Blocks:10,IIS:40,SIC:16.66       
4/26/2021,5/03/2021,5/10/2021,8/02/2021,8/09/2021,8/16/2021,8/23/2021,8/30/2021,9/06/2021,9/13/2021,
9/20/2021,9/27/2021,10/04/2021,10/11/2021,10/18/2021,10/25/2021,11/01/2021,11/08/2021,11/15/2021,
11/22/2021,11/29/2021,12/06/2021,12/13/2021,12/20/2021,12/27/2021,1/03/2022,1/10/2022,1/17/2022,
1/24/2022,1/31/2022,2/07/2022,2/14/2022, 2/21/2022,2/28/2022,3/07/2022,3/14/2022,3/21/2022,3/28/2022, 
4/04/2022,4/11/2022 All(+)
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TABLE 9. IIS in log-Series

Series α Log-Series (IIS)
LBTCM 0.001 Obs: 100, Blocks: 4, IIS: 25, SIC: 3.70

2015 (M1,2,3,4,5,6,7,8,9,10,11,12), 2016(M1,2,3,4,5,6,7,8,9,10,11,12), 2017 (M1) All(-)
0.01 Obs: 100, Blocks: 4, IIS: 25, SIC: 3.70

2015 (M1,2,3,4,5,6,7,8,9,10,11,12), 2016(M1,2,3,4,5,6,7,8,9,10,11,12), 2017 (M1) All(-)
0.025 Obs: 100, Blocks: 4, IIS: 25, SIC: 3.70

2015 (M1,2,3,4,5,6,7,8,9,10,11,12), 2016(M1,2,3,4,5,6,7,8,9,10,11,12), 2017 (M1) All(-)
0.05 Obs: 100, Blocks: 4, IIS: 25, SIC: 3.70

2015 (M1,2,3,4,5,6,7,8,9,10,11,12), 2016(M1,2,3,4,5,6,7,8,9,10,11,12), 2017 (M1) All(-)
0.10 Obs:100, Blocks:4, IIS:25, SIC:3.70

2015 (M1,2,3,4,5,6,7,8,9,10,11,12), 2016(M1,2,3,4,5,6,7,8,9,10,11,12), 2017 (M1) All(-)
LBTCW 0.001 Obs:435, Blocks:15, IIS:0, SIC:3.90

0.01 Obs:435, Blocks:15, IIS:0, SIC:3.90
0.025 Obs:435, Blocks:15, IIS:0, SIC:3.90
0.05 Obs:435, Blocks:15, IIS:23, SIC:4.05

1/08/2015, 1/15/2015, 1/22/2015, 1/29/2015, 2/05/2015, 2/12/2015, 2/19/2015, 3/12/2015, 3/19/2015, 
3/26/2015, 4/02/2015, 4/09/2015, 4/16/2015, 4/23/2015, 4/30/2015, 5/07/2015, 5/14/2015, 5/21/2015, 
5/28/2015, 6/04/2015, 6/11/2015, 6/18/2015, 6/25/2015 All (-)

0.10 Obs: 435, Blocks: 15, IIS: 50, SIC: 4.13
1/01/2015, 1/08/2015, 1/15/2015, 1/22/2015, 1/29/2015, 2/05/2015, 2/12/2015, 2/19/2015, 2/26/2015, 
3/05/2015, 3/12/2015, 3/19/2015, 3/26/2015, 4/02/2015, 4/09/2015, 4/16/2015, 4/23/2015, 4/30/2015, 
5/07/2015, 5/14/2015, 5/21/2015, 5/28/2015, 6/04/2015, 6/11/2015, 6/18/2015, 6/25/2015, 7/02/2015, 
7/09/2015, 7/16/2015, 7/23/2015, 7/30/2015, 8/06/2015, 8/13/2015, 8/20/2015, 8/27/2015, 9/03/2015, 
9/10/2015, 9/17/2015, 9/24/2015, 10/01/2015, 10/08/2015, 10/15/2015, 10/22/2015, 11/05/2015, 11/12/2015, 
11/19/2015, 11/26/2015, 1/21/2016, 1/28/2016, 2/04/2016 All (-)

LETHM 0.001 Obs:65, Blocks:3, IIS:0, SIC:3.17
0.01 Obs:65, Blocks:3, IIS:0, SIC:3.17

0.025 Obs:65, Blocks:3, IIS:0, SIC:3.17
0.05 Obs:65, Blocks:3, IIS:0, SIC:3.17
0.10 Obs:65, Blocks:3, IIS:2, SIC:3.21

2021M10 (+), 2021M11 (+)
LETHW 0.001 Obs:287, Blocks:10, IIS:0, SIC:3.11

0.01 Obs:287, Blocks:10, IIS:0, SIC:3.11
0.025 Obs:287, Blocks:10, IIS:0, SIC:3.11
0.05 Obs:287, Blocks:10, IIS:0, SIC:3.11
0.10 Obs:287, Blocks:10, IIS:14, SIC:3.24

12/03/2018 (-), 12/10/2018 (-), 10/11/2021 (+), 10/18/2021 (+), 10/25/2021 (+), 11/01/2021 (+), 11/08/2021 
(+), 11/15/2021 (+), 11/22/2021 (+), 11/29/2021 (+), 12/06/2021 (+), 12/13/2021 (+), 12/20/2021 (+), 
12/27/2021 (+)

Multiple comparisons of IS and BP in all settings 
examined are shown and summarized in Table 11. Table 
11 reveals that SIS test identified more breaks than the BP 
test from all perspectives. IS technique has the capacity 
to identify breaks and outliers utilizing SIS and IIS, 
respectively. The IS is sensitive to significant levels as 
its result increases with alpha and frequency. In contrast, 
the BP approach provides similar breaks across alpha and 
frequency but is sensitive to the original and log series. 
Detected outliers by IIS happen at every point in the 
sample, but BP test cannot detect shifts at the beginning 
or end of the sample. In all, the 10% significant level has 
the greatest impact on increasing the detectability of each 

test. Even though their overall performance varies, both 
tests provide dates for breaks corresponding to actual 
events.

From Table 11, there are 1,049 changes overall that 
were picked up by the two tests at various alpha levels, 
945 of which were picked up by the IS approach. Of the 
945 SIS detected 305 breaks in total across all settings, of 
which 212 were positive breaks in both the original and 
log series, while the remaining 93 were negative breaks. 
Of the 945 IIS detected 640 outliers in all settings, 440 of 
them were positive outliers in both the original and log 
series and the remaining 200 were negative outliers.
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TABLE 10. Jiao-Pretis proportion test

Jiao-Pretis Proportion Test of IIS 
Series α Original-Series Log-Series
BTCM 0.001 Ouliers:25,P-value:0.000 Ouliers:25,P-value: 0.000

0.01 Ouliers:4,P-value:0.0004 Ouliers:25,P-value:0.000
0.025 Ouliers:14,P-value:0.000 Ouliers:25,P-value:0.000
0.05 Ouliers:16,P-value:0.000 Ouliers:25,P-value:0.000
0.10 Ouliers:18,P-value:0.000 Ouliers:25,P-value:0.000

LBTCW 0.001 Ouliers:29,P-value:0.000 Ouliers:0,P-value:0.494
0.01 Ouliers:19,P-value:0.000 Ouliers:0,P-value:0.01
0.025 Ouliers:38,P-value:0.000 Ouliers:0,P-value:0.000
0.05 Ouliers:44,P-value:0.000 Ouliers:23,P-value:0.68
0.10 Ouliers:59,P-value:0.000 Ouliers:50,P-value:0.084

LETHM 0.001 Ouliers:0,P-value:0.7916 Ouliers:0,P-value:0.792
0.01 Ouliers:3,P-value:0.0006 Ouliers:0,P-value:0.339
0.025 Ouliers:9,P-value:0.000 Ouliers:0,P-value:0.087
0.05 Ouliers:9,P-value:0.000 Ouliers:0,P-value:0.006
0.10 Ouliers:9,P-value:0.0851 Ouliers:2,P-value:0.002

LETHW 0.001 Ouliers:29,P-value:0.000 Ouliers:0,P-value:0.578
0.01 Ouliers:12,P-value:0.000 Ouliers:0,P-value:0.045
0.025 Ouliers:22,P-value:0.000 Ouliers:0,P-value:0.000
0.05 Ouliers:27,P-value:0.000 Ouliers:0,P-value:0.000
0.10 Ouliers:40,P-value:0.000 Ouliers:14,P-value:0.000

TABLE 11. Comparison of IS and BP test

Performance of BP and IS
Original-Series Log-Series

Alpha&Series
BP-BTCM 2 2 2 2 3 3 5 5
BP-BTCW 2 2 2 2 5 5 5 5
BP-ETHM 2 2 2 2 4 4 4 4
BP-ETHW 3 3 3 3 4 4 4 4
SIS-BTCM 3 6 6 6 9 3 4 5 5 6
SIS-BTCW 9 11 14 15 16 11 13 15 15 15
SIS-ETHM 3 3 3 4 5 1 3 3 5 5
SIS-ETHW 8 8 8 12 12 7 7 7 7 7
IIS-BTCM 25 4 14 16 18 25 25 25 25 25
IIS-BTCW 29 19 38 44 59 0 0 0 23 50
IIS-ETHM 0 3 9 9 9 0 0 0 0 2
IIS-ETHW 29 12 22 27 40 0 0 0 0 14

CONCLUSION 

The paper compared the performance of the BP and IS 
approaches in terms of detecting breaks and outliers in the 
prices of Bitcoin and Ethereum using multiple empirical 
comparisons. We considered different settings for the 
comparisons including two types of cryptocurrencies 
with different data frequencies, the log and original of 
each series, and 5 significant levels to compete the two 

approaches. The results show that, firstly, the BP test 
needs the user to determine the number of breaks; the 
maximum is five. However, the process will identify 
the breakpoint number in the data for the indicator 
saturation test. Secondly, the BP test will trim the data; 
thus, the test can fail in detecting any structural break 
at the beginning and end of the data. In contrast, the 
IS approach uses all the data to detect structural breaks 
and outliers. Thirdly, we observed that the IS approach 
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successfully identified more breaks and outliers than the 
BP test, which only covered fewer breaks. Fourthly, the 
result of the IS approach increases with an increase in 
alpha and frequency while that of the BP test remains 
constant. Changes in the prices of crypto currencies 
can be attributed to a variety of factors, including 
market sentiment, the rate of inflation, rising supply and 
demand, and technological improvements. In addition, 
the 2017 landmark year for BTC, the 2020 and 2021 
pandemic years, and the 2022 Ukraine war. Additionally, 
we demonstrated the effectiveness of IIS in identifying 
outliers using the Jao-Pretis outlier test. Hence, we 
showed the superiority of the IS approach based on the 
performance of the two tests, and we encourage using 
the IS approach to identify these features. The study is 
constrained by comparing only two tests and considering 
two types of cryptocurrency. Therefore, it is advised 
that future research attempt to generalize the findings 
of this study to other cryptocurrency types and consider 
other tests and higher frequency. Finally, empirical 
identification and analysis of data breaks and outliers 
are crucial for comprehending the dynamics of the 
cryptocurrency market.  Breaks and outliers in the data 
can help analysts better understand what drives market 
movements, spot unusual market activity, control risk, 
and make more wise investment decisions. Comparing 
their findings is essential for identifying these traits, for 
quality control in industries, for setting price targets, and 
for confirming trading signals to reduce potential losses.
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