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ABSTRACT

Load forecasting is a process of predicting the future load demands.  It is important for power system 
planners and demand controllers in ensuring that there would be enough generation to cope with 
the increasing demand. Accurate model for load forecasting can lead to a better budget planning, 
maintenance scheduling and fuel management.  This paper presents an attempt to forecast the maximum 
demand of electricity by finding an appropriate time series model. The methods considered in this study 
include the Naïve method, Exponential smoothing, Seasonal Holt-Winters, ARMA, ARAR algorithm, and 
Regression with ARMA Errors. The performance of these different methods was evaluated by using the 
forecasting accuracy criteria namely, the Mean Absolute Error (MAE), Root Mean Square Error (RMSE) and 
Mean Absolute Relative Percentage Error (MARPE). Based on these three criteria the pure autoregressive 
model with an order 2, or AR (2) under ARMA family emerged as the best model for forecasting electricity 
demand.  

Keywords: Load forecasting, ARMA model, parameter estimation, AICC statistic, validation tests.

ABSTRAK

Peramalan tenaga elektrik adalah proses ramalan permintaan tenaga elektrik untuk masa hadapan.  Ianya 
penting bagi para  perancang sistem kuasa dan pihak pemantau permintaan  memastikan penghasilan 
tenaga elektrik yang mencukupi  untuk menampung pertambahan permintaan. Model yang tepat 
untuk ramalan tenaga elektrik boleh menentukan perancangan bajet yang lebih baik, penyelenggaraan 
berjadual dan pengurusan bahan bakar. Kertas kerja ini membentangkan satu usaha untuk meramalkan 
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permintaan elektrik maksimum dengan mencari satu model siri masa yang sesuai. Kaedah-kaedah yang 
dipertimbangkan dalam kajian ini termasuklah kaedah Naïve, ‘Exponential smoothing’, ‘Seasonal Holt-
Winters’, ARMA, algoritma ARAR, dan Regresi bersama ralat ARMA.  Prestasi kaedah-kaedah yang berbeza 
ini dinilai dengan menggunakan kriteria ketepatan peramalan terutamanya Ralat bagi Min Mutlak (MAE), 
Ralat bagi Punca Kuasa Dua Min (RMSE) dan Ralat bagi Peratus Min Relatif Mutlak (MARPE). Berdasarkan 
kepada tiga kriteria tersebut model autoregresif peringkat ke-2, atau AR (2) dalam keluarga ARMA muncul 
sebagai model yang  terbaik bagi ramalan permintaan elektrik.  

Kata kunci: Peramalan tenaga elektrik, model ARMA, penganggaran parameter, statistik AICC, ujian 
pengesahan.

INTRODUCTION

Malaysia’s National electricity utility company 
(TNB) is the largest in the industry, serving over 
six million customers throughout Malaysia. 
TNB’s core activities are in the generation, 
transmission and distribution of electricity. The 
Transmission Division is responsible for the whole 
spectrum of transmission activities ranging from 
system planning, evaluating, implementing and 
maintaining the transmission assets. One of the 
requirements of the system planning is load 
forecasting. 
 Load forecasting is a process of predicting the 
future load demands. It is important for electricity 
power system planners and demand controllers 
in ensuring that there would be enough supply 
of electricity to cope with an increasing demand. 
Load forecasting can also determine which 
generators need to be dispatched, or kept 
as a backup or on spinning reserve status 
(Izham Zainal Abidin 2005). Thus, accurate load 
forecasting can lead to an overall reduction 
of cost, better budget planning, maintenance 
scheduling and fuel management. 
 Load forecasts can be divided into three 
categories: short-term (STLF), medium- term 
(MTLF), and long-term forecasts (LTLF). STLF, 
which is usually from one hour to one week, 
is concerned with forecast of hourly and daily 
peak system load, and daily or weekly system 
energy. It is needed for control and scheduling 
of power system, and also as inputs to load 
flow study or contingency analysis. Some of 
the techniques used for STLF are multiple 
linear regression, stochastic time series and 
artificial intelligence based approach. MTLF 
relates to a time frame from a week to a year 
and LTLF relates to more than a year. MTLF and 
LTLF are required for maintenance scheduling, 
fuel and hydro planning, and generation and 
transmission expansion planning. The common 

techniques used for MTLF and LTLF are time 
trend extrapolation and econometric multiple 
regression (Feinberg & Genethlion 2005; Lee & 
Park 1992; Weerakorn Ongsakul 2006).
 However, time series modeling is one of the 
popular methods used by many researchers 
for load forecasting. Cho et al. (1995) proposed 
ARIMA model and transfer function model for 
customer load forecasting during one week by 
considering weather-load relationship. Results 
showed that ARIMA Transfer Function Models 
could achieve better accuracy of load forecast 
than the traditional ARIMA model. Nirma 
Amjady (2001) proposed a modified ARIMA, 
which combined the operators’ estimation as 
the initial forecasting with the temperature and 
load data in a multi-variable regression process. 
The forecasting accuracy of the modified ARIMA 
was found to be better than ARIMA. Carter & 
Zellner (2003) found out that the non-linear 
least squares estimation of the ARAR estimation 
of the parameters required less iteration than 
ARMA estimates. Gould et al. (2005) discussed 
the weakness of Holt-Winters (HW) exponential 
smoothing approach in forecasting the hourly 
electricity demand. They claimed that HW failed 
to pick up the similarities from day-to-day at a 
particular time and proposed a new approach 
for forecasting time series with Multiple Seasonal 
Pattern (MS). The MS model, which employed 
single source of error models, provided more 
accurate forecasts than the HW models because 
of its flexibilities. The MS model allowed for each 
day to have its own hourly pattern or to have 
some days with the same pattern. 
 In this paper, an attempt was made to forecast 
the maximum demand of electricity by finding 
an appropriate time series model. The time 
series models considered in this study include 
Naïve, Seasonal Holt-Winters, ARMA, ARAR 
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algorithm and Regression with ARMA Errors. 
The performance of these different models was 
evaluated using the forecasting accuracy criteria 
namely, the Mean Absolute Error (MAE), Root 
Mean Square Error (RMSE) and Mean Absolute 
Relative Percentage Error (MARPE). 

Time series modeling

A time series is a set of observations x
i
, each one 

being recorded at a specific time t and denoted 
by {X

t
}. It can be represented as a realization of 

the process based on the general model called 
Classical Decomposition Model, and specified 
as follows:

 
X m s Y

t t t t
= + +

 (1)

 t = 1, 2, …, n, where m
t
 is a trend component, 

s
t
 is a seasonal component and Y

t
 is a random 

noise component which is stationary (Brockwell 
& Davis 2002). 
 The goal for a time series modeling is to predict 
data series that are typically not deterministic but 
contain a random component. The deterministic 
components, m

t
 and s

t
 need to be estimated 

and eliminated as to make the residue or noise 
component Y

t
 to be stationary time series. The 

time series {X
t
} is said to be stationary if the 

mean and the auto-covariance function of {X
t
} 

are independent of time. A non-stationary time 
series needs to be transformed to a stationary 
time series. Then only a satisfactory probabilistic 
model can be determined for the process Y

t
 to 

analyze its properties and to use it for prediction 
purposes. 

ARIMA processes

ARIMA (auto-regressive integrated moving 
average) processes are a major part of time 
series modeling and used for a wide range of 
non-stationary series. Each ARIMA process has 
three parts; the autoregressive part (or AR), the 
integrated (or I) part, and the moving average (or 
MA) part. The models are denoted by ARIMA (p, 
d, q). ARMA (auto- regressive moving average) 
models denoted by ARMA (p, q) come from an 
important parametric family of linear time series 
models, which provide a general framework 
for studying stationary processes. Method of 
differencing is introduced to transform the non-
stationary ARIMA into stationary series ARMA 
and parameter d stands for the degree of first 

differencing involved.  In other words, when 
d = 0, the model represents a stationary process 
(Box et al., 1994 & Makridakis et al., 1998).
 A stationary ARMA (p, q) model is defined as 
a sequence of random variables {X

t
}, given by 

 
X X X Z Z Z

t t p t p t t q t q
− − − = + + +− − − −φ φ θ θ

1 1 1 1
... ...

 
X X X Z Z Z

t t p t p t t q t q
− − − = + + +− − − −φ φ θ θ

1 1 1 1
... ...

 (2)

 where {Z
t
} is a sequence of uncorrelated 

random variables with zero mean and constant 
variance denoted as {Z

t
}∼WN(0,σ2) and the 

polynomials (1–φ
1
z –...– φ

p
zp) and (1+φ

1
z +...+ φ

q
zq) 

have no common factors. 
 The process {X

t
} is said to be an ARMA (p, q) 

process with mean µ if {X
t
–μ} is an ARMA (p, q) 

process and conveniently written in the more 
concise form of 

 
φ θ( ) ( ) ,B X B Z

t t
=

 (3)

 where 
 φ(.) and θ(.) are the pth  and qth degree   
 polynomials,  

 

φ φ φ

θ θ θ

( ) ... ,

( ) ... ,

z z z

z z z

p
p

q
q

= − − −

= + + +

1

1

1

1  

 B is the backward shift operator (BjX
t 
= X

t–j
, 

BjZ
t
 = Z

t–j 
, j=0, ± 1,...).

 The time series {X
t
} is said to be an auto-

regressive process of order p (or AR (p)) if 
φ(z) = 1 and a moving average process of order q 
(or MA (q)) if θ(z) = 1 (Brockwell  & Davis 2002). 

METHODOLOGY 

This section describes the procedures of 
establishing an appropriate time series model 
for load forecasting. The procedures include data 
plotting, data transformation, model selection, 
parameter estimation, validation tests, and 
forecasting.   Analysis is done using Interactive 
Time Series Modeling (ITSM).   ITSM is a totally 
windows-based computer package for univariate 
and multivariate time series modeling and 
forecasting. 

The data set

The load data used in this research was a Power 
Load Profile for a utility company.   The data 
represented the monthly mean maximum 
demand measured in Megawatts (MW) in 52 
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months from September 2000 to December 
2004.  The time series plot of the monthly mean 
maximum demand is given in Figure 1.  It appears 
from the graph that the maximum demand has 
an upward linear trend.  The variance of the series 
is stable and thus no logarithmic or any other 
transformation is needed. There is a seasonal 
pattern with a few troughs occurring between 
November to February each year.  This may be 
due to various holidays such as school holidays, 
Hari Raya and Chinese New Year.  These patterns 
reveal that the series is not stationary and hence 
need to be transformed before attempting to fit 
a stationary model.

ARMA model

Transformations are applied to produce data 
that can be successfully modeled as stationary 

time series. The series clearly shows a seasonality 
of period 12 as it is derived from a monthly 
data with an annual seasonal pattern.  The data 
was differenced at lag 12 and 1 to obtain an 
approximate stationary series.  Figure 2 shows 
the differenced series derived from the monthly 
mean maximum demand has no apparent 
deviations from stationarity. 
 These differenced series were ‘mean-corrected’ 
by subtraction of the sample mean, so that it is 
appropriate to fit a zero-mean ARMA model to the 
adjusted data. The selection of the appropriate 
parameters of ARMA (p, q) model depends on a 
variety of tools, which include the sample ACF 
(autocorrelation function), the sample PACF 
(partial autocorrelation function) and the AICC 
statistic (Brockwell & Davis 2002). 

Series
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Figure 1.  The Maximum Demand from September 2000 to December 2004
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Figure 2. The Time Series of the Residuals after Differencing at lag 1 and 12
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Figure 3. The Sample ACF and PACF of the Differenced Series

 The graphs of the sample ACF and PACF 
shown in Figure 3 suggest an appropriate ARMA 
model for the data. The ACF will represent a pure 
MA (q) model and the PACF will represent a pure 
AR (p) model. Since the ACF vanishes for lags 
greater than 1 and the PACF  vanishes for lags 
greater than 2, MA (1) and AR (2) are possible 
models. However, other models such as AR (1) 
and a combined model of ARMA (2, 1) might also 
be considered as the potential models. 
 Even if the sample ACF or PACF does suggest 
an appropriate ARMA model for the data, it 
is still advisable to explore other models. The 
AICC criterion provides a rational criterion for 
choosing between competing models and it is 
an asymptotically biased estimate of the fitted 
model relative to the true model.  AICC statistic 
is given by

 

AICC = –2 ln Likehood ( φ
∧

, 
∧
θ, ∧σ )    

2

( 2n(p + q +1)

n − (p + q) −2
+ 

 (4)

where  φ
∧

 = a class of AR parameters,

           
∧
θ = a class of MA parameters,

              ∧σ = estimated variance of white noise,
              n = number of observations,
              p = order of AR component,
              q = order of MA component.

‘Likelihood ( φ
∧

 ,
∧
θ , 

2∧σ  )’ is a measure of the 
plausibility of the observed series given the 

parameter values of φ
∧

 , 
∧
θ, 

2∧σ  (Brockwell & Davis 
2002; Makridakis et al.1998). Smallness of the 
AICC value is indicative of a good model and this 
can be achieved using the maximum likelihood 
estimation, which estimates the parameters 

iteratively. 
 Once a model is obtained, it is important to 
check for the appropriateness of the model. If the 
data were truly generated by the fitted ARMA (p, 
q) model with white noise sequence { Z

t 
}, then 

for large samples the properties of the residuals 
should reflect those of { Z

t 
} . Various validation 

tests are performed on the suggested models. 
These tests are the McLeod-Li Portmanteau Test, 
the Turning Point Test, the Difference Sign Test 
and the Rank Test. The residuals of the suggested 
models have to pass all the tests before it can 
be considered as the best model for forecasting 
(Brockwell & Davis 2002). 
 If there are instances where many models pass 
the validation tests, the most adequate model can 
still be assessed by looking into the forecasting 
accuracy criteria. The criteria chosen to measure 
the accuracy of the forecast in this study are Mean 
Absolute Error (MAE), Root Mean Square Error 
(RMSE) and Mean Absolute Relative Percentage 
Error (MARPE) which are given respectively by 
the following equations, 

MAE = 
∑

n

1
xi

−x

)

n
, RMSE = ∑

n

1
xi

−x

)

( (
2

 and    

MARPE = 
∑

n

1

xi
−x

)

xi ×100%  (5)

where xi and x) i are the actual observed values 
and the predicted values, respectively while n is 
the number of predicted values. 

Co m p a r i s o n  w i t h  o t h e r  f o r e c a s t i n g 
techniques  
Comparisons are made between the ARMA 
models with the other time series models such 
as Naïve, Holt-Winter’s Trend and Seasonal, ARAR 

2 n

n
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forecast and Regression with ARMA errors. These 
methods are briefly described as follows: 

Naïve 

Naïve forecasting neglects all past data except 
for the time period that occurred last. It may be 
adequate for dealing with many of the minimal 
consequence decisions of daily life and more 
effective at short-term applications. The next 
forecasted period Ft –1 , is based on the most 
recent observation Yt  , the relation between 
them is given by the following equation:

 Ft +1 = Yt 
 (6)

 If recent observations are given more weight 
in forecasting than the older observations, the 
method will be called as Simple Exponential 
Smoothing.  However this method works best for 
data, which have no trend, no seasonality, or other 
underlying pattern (Makridakis et al. 1998) 

Holt-Winter’s Trend and Seasonality Method 
(HW)

The HW method is an extension of Holt’s Linear 
Method that considers series with trend and 
seasonality. The method is based on three 
smoothing equations – one for the level, one 
for trend, and one for seasonality, which can 
be either additive or multiplicative seasonality. 
Multiplicative seasonality is considered in this 
paper since it is more commonly used. The basic 
equations are:

 Level:   Lt = α
Yt 

St –s
+ (1– α) L

t –1
mt –1

+( )  (7)

 Trend:  L
t –1

–( )mt = L
t 

+ (1– β )mt –1
β  (8)

 Seasonal:  t S = γ Yt 

L
t 

+ (1– γ ) t –sS  (9)

 Forecast:  F mt q t –s+qS+
t –q

= L
t 

( )  (10)

 where s is the length of seasonality , L
t
 is the 

level of the series, m
t
 is the trend , S

t
 is the seasonal 

component, and F
t+q

 is the forecast for q periods 
ahead (Makridakis et al.1998). 

ARAR forecast 

ARAR model is suitable for forecasting the 
series {Y

t
} whereby a memory-shortening 

transformation sequence has been applied. The 

memory-shortened series is

        S
t
 = Y

t
 + ψ

1
 Y

t–1
 + ... ψ

k
 Y

t–k
 (11)

 where 1,  ψ
11

 , ... ψ
k
 are the coefficients of the 

chosen filter and t = 1, …, T.  Let S denotes the 
sample mean of S

1
, ... , S

T
 . Thus, the fitted model 

is given by 

      

X
t
 = φ

1 
 X

t–1
 + φ

l 1
 X

t– l1
 + φl

2
 X

t
 
– l2

 
         + φl

3
 Xt – l

3
 + 

 
Z

t  (12)

 where X
t
 = S

t
 – S  , {Z

t
} ∼ WN (0, σ2), and for 

given lags l
1
, l

2
, and t , the coefficients φ

j
 and σ2 are 

from Yule-Walker estimation (Brockwell & Davis 
2002). 

Regression model with ARMA errors

Regression model with ARMA errors is a 
combination of a multiple regression model 
with an ARMA model. The general model takes 
the form

 Y = Xβ + W , (13)

 using matrix notation, where Y = (Y
1 

, Y
2 t

, …Y
n
 )’ 

is the response vector observed at time t = 1, 
2, …, n, X is the design matrix consisting of the 
n explanatory vatriables with columns being 
1, t, t2,…,tk and β = (β

1 t
, β

2 
,…, β

n
)’ is the vector 

of regression coefficients and W = (W
1 

, W
2 

, …, 
W

n
)’ are observations from a causal zero mean 

ARMA (p, q) process (Brockwell & Davis 2002). First 
ordinary least estimates are computed for β and 
then the estimated residuals ARMA (p, q) model 
is fitted by the maximum likelihood method. 
 Finally, for the fitted ARMA (p, q) model, 
generalized least squares are computed for 
the regression coefficients and the process is 
repeated until the estimates have stabilized. 

RESULTS & DISCUSSION

ARMA Model

The estimated ARMA models for forecasting 
the maximum demand of electricity with their 
corresponding AICC values are given in Table 1. 
Clearly AR (2) has the minimum AICC value and 
can be considered as the most appropriate model 
if compared among the other models under 
ARMA. The equation for the model is given by

X
t
= - 0.9381X

t-1 
- 0.4508X

t-2 
+ Z

t
                (14)

where  Z
t
 ∼ WN( 0, 61556.9 ).
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Table 1.  Estimated Models Based on the Maximum Likelihood

Model Equation AICC

AR(1) X
t
 = - 0.6427 X

t-1
 + Z

t
555.08

AR(2) X
t
 = - 0.9381 X

t-1
 - 0.4508 X

t-2
 + Z

t 
548.44

MA(1) X
t
 = Z

t
 - 0.7520 Z

t-1
552.25

ARMA(2,1) X
t
 = - 0.8565 X

t-1
 - 0.4005 X

t-2
 + Z

t
 - 0.1066 Z

t-1
550.78

Ljung - Box statistic = 13.020 Chi-Square ( 20 ), p-value = 0.87652  

McLeod - Li statistic = 18.835 Chi-Square ( 22 ), p-value = 0.65549  

# Turning points = 24.000~AN(24.667,sd = 2.5712), p-value = 0.79542 

 

# Diff sign points = 17.000~AN(19.000,sd = 1.8257), p-value =   0.27332 

 

Rank test statistic = 0.32100E+03~AN(0.37050E+03,sd = 41.333), p-value = 0.23108  

Jarque-Bera test statistic (for normality) = 2.0607 Chi-Square (2), p-value = 0.35688  

Table 2.  Validation Tests on AR (2) Model

 Validation tests were performed on the AR (2) 
model that had the minimum AICC value and the 
result of the tests are shown in Table 2.   AR (2) 
model passes all the tests with p-values greater 
than 5% indicating that there is insufficient 
evidence to reject the null hypothesis that the 
residuals are white noise.   

 The graphs of the ACF and PACF ( see Figure 4) 
of the residuals also has no more spikes beyond 
the 95% confidence limits indicating further that 
AR (2) is indeed an appropriate model.
 Based on Equation (14), the forecasted values 
from January 2005 (Month 53) to May 2005 
(Month 57) and the 95% prediction bounds are 
computed and presented in Table 3.    

Figure 4. The ACF and PACF of sample residuals
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Table 3.  Forecasting maximum demand in MW for 5 months

AR(2) 95% Prediction Bounds 

Month Actual Forecast Lower Upper

Jan 10817 10720 10234 11206

Feb 10976 10927 10439 11414

March 11591 11514 10971 12056

April 11483 11598 11001 12195

May 11410 11495 10880 12109

The percentage difference of each forecast 
value compared to the actual value is less than 
1%.   Figure 5 shows a plot of the forecasts for 5 
months as given by Table 3. 

Regression model with ARMA errors

The regression results with ARMA errors are as 
follows.  A linear regression fit, is given by 

         (15)

 where, Y
t
  represents the maximum demand 

of electricity and W
t
  are the residuals.  The 

autocorrelation function (ACF) and partial 
autocorrelation function (PACF) of the residuals 
obtained after the regression fit are shown in 
Figure 6 from which it is clear that the residuals 
are correlated to a large extent.
 Hence to the residuals {W

t
} , a stationary ARMA 

process was fitted based on the AICC criterion 
and the parameters were estimated by the 
maximum likelihood method.  The fitted ARMA 
process was ARMA (4, 1) given by the following 
equation, 

Figure 5.  Forecast of 5 months based on AR (2)

 

W
t
 = 0.8733 W

t-1
 + 0 .01334 W

t - 2
  

      - 0.1234 W
t - 3

 - 0.2889 W
t - 4 

      + Z
t
 - 0.7961Z

t - 1
            (16)  

where {Z
t
} ,  ∼ WN(0, 60451.1).

 The values of AICC and AICC (corrected for 
regression) were 735.9 and 741.4 respectively.  
With these ARMA (4, 1) errors in Equation (16), a 
generalized least squares fit was obtained and it 
is given by

 Y 
t 
 = 8432.5476 + 49.581074t + W

t
.         (17)

 Based on the model given by Equation (17), a 
plot of the data and five forecasted values from 
January 2005 (Month 53) to May 2005 (Month 
57) are shown in Figure 7. 
 Both models of AR (2) and Regression with 
ARMA errors are compared with other time 
series models.  Post Sample Accuracy Criteria 
of each time series model are summarized in 
Table 4.  From Table 4, AR (2) records the lowest 
MARPE and thus is a better model for forecasting 
the maximum demand of electricity in a utility 
company.
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 ACF Sample      PACF Sample

Figure 6.  ACF and PACF of sample residuals

Figure 7.  Plot of 5 forecasted values based on Regression Model

Table 4. Post Sample Accuracy Criteria

Time Series Model MAE RMSE MARPE

AR (2) 83.5 92.12 0.736

Naïve 108.63 124.5 0.954

ARMA (2,1) 83.75 94.7 0.737

Holt-Winter’s Trend and 
Seasonal

148.63 162 1.309

ARAR Forecast 96 110.4 0.844

Regression of Order 1 101.1 146.11 0.88
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CONCLUSION

This paper presents an attempt to forecast the 
maximum demand of electricity by finding 
an appropriate time series model.  Various 
classes of time series models, namely ARIMA, 
Naïve, Seasonal Holt-Winters, ARAR forecast 
and Regression with ARMA errors have been 
considered. Results indicated that AR (2), which 
was the mean corrected series differenced at 
lag 12 and 1, emerged as the best model for 
forecasting the maximum demand of electricity. 
It is suggested that models incorporating other 
variables like an hourly or a daily maximum 
demand or any intervening events may be useful 

in forecasting the electricity and this will be 
looked into for future research. 
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