
Jurnal Kejuruteraan 16 (2004) 67-78

Finite Element Model for Crack Propagation
Using Master-Workers Method

Ahmad Kamal Ariffin, Choy Hau Yan
and Mohd Jailani Mohd Nor

ABSTRACT

This paper describes an algorithm for parallel assembling of the stiffness
matrix in simulation of crack propagation in distributed memory environment
using master-workers method. In this algorithm, element stiffness matrix is
formed by groups in each processor related by the finite element mesh. Each
processor assembles a specific group of elements and no synchronization is
required to avoid two or more worker processors sending the calculation
result to master proces~or concurrently. This paper gives the speed-up rate
in the simulation of crack propagation. The results indicate excellent
performance and reduction of total computational time.

Keywords: Parallel processing, finite element method, adaptive crack propagation

ABSTRAK

Rencana ini menerangkan satu algoritma untuk pemasangan matriks
kekukuhan selari dalam simulasi perambatan retak dalam sekitaran memori
teragih menggunakan kaedah induk-pekerja. Dalam algoritma ini, matriks
kekukuhan unsur dibentuk dalam setiap pemproses dihubungkan olehjejaring.
Setiap pemproses memasang sekumpulan unsur dan penyegerakan tidak
diperlukan bagi mengelakkan dua atau lebih pekerja menghantar keputusan
pengiraan secara serentak kepada induk. Kertas kerja ini memberikan
kenaikan kadar-laju dalam simulasi perambatan retak. Keputusan
menunjukkan prestasi yang sangat baik dan menurunkan masa pengiraan.

Katakunci: Pemprosesan selari, kaedah unsur terhingga, perembatan retak suai

INTRODUCTION

Users of finite element programs attempt to obtain solutions to larger
problems. Many encounter major technical barriers; limitations in memory
or in CPU speed, or both. One of the remedies is parallelisation. The
computing time can be reduced to some extent by algorithmic changes and
the radical speed increase can be reached with multiprocessor computation.
The current trend in parallel processing is to connect complete computing
units (processor and memory) with a high-bandwidth communications network
(Watson & Noor 1996). The numerical analysis of structure is among those
that were most benefited by the arrival of these parallel computers (Rezende
& Paiva 1999).

Since most of the parallel computers have distributed memory, an
essential code modification is necessary for porting the sequential code to

68

parallel version (Nikishkov & Kawka 1998). Taxonomy of ar hite ture for
parallel programming used is Single Instruction Multiple Data SIMD. Each
processor executes exactly the same instruction, but u e i own
Different program can be written and operated in a ingle pro_ or
different processor. This method operates with the duty being di\ided into
small individual's division and solved by processor.

In this paper, an adaptive finite element mesh anal) I 0

simulate crack propagation for two-dimensional elastopla tic 0

computer code has been developed using FORTRAN programming I :: ge
for finite element analysis calculation process based on di
formulation.

FINITE ELEMENT EQUATION AND
P ARALLELIZATION STRATEGY

In crack propagation simulation, the geometry of the domain
each step of crack propagation at the vicinity of the crack (S) -a
The smaller the finite element mesh sizes, the more accurate
element approximate solution. Mesh refinement process will on -n e un ·1
specified size achieved. Reduction in the mesh size will lead 0 10 ::er
computational time.

An adaptive finite element mesh is applied to analyse two-dime ional
elastoplastic micro-fracture during crack propagation. An automati reme:hing
is calculated at each step of crack advance based on stress error e · tion
of the element shape. The crack is free to propagate without predetermined
path and direction. Crack tip opening angle (CTOA) is used as a riterion -or
crack growth, while the maximum principal stress is used as i dire-tion.

In general, the smaller the finite element mesh, the more aurae the
finite element approximate solution. However, reduct~on in the me ize
leads to more computational effort. Therefore it is more attra ti\e to

selectively refine the mesh in areas where the error in the approxiro te
solution is the highest. One example of the crack propagation simulation i
when a two-dimensional plate with a single crack is subjected to uniforml)
distributed loading on the top boundary segment of the domain m
Figure 1.

30mm

FIGURE 1. Two-dimensional plate with single crack

69

In the calculation, the three-noded triangle element mesh is automatically
changed into a six-noded element. The mesh refining processes will mesh
continuously until the optimum mesh arrangement with error permissible at
the element given is obtained. The number of element and number of node
are changed for each sequence. The size of element is different in whole
domain area. In the area of higher stress concentration, the size of element
is smaller then other place.

The finite element model in solving the crack propagation problem is
based on displacement formulation. Six-noded triangular elements are used
since it can fill most of the element at border. The step for modelling finite
element starts by dividing the domain to small finite element, Q .. Composition
of these elements will form 11 finite element domain model,

(1)

which the system coordinates that is used is shown in Figure 2.

y

o ,,=0

(a) Global (b) Local

FIGURE 2. Global and local coordinate system in triangular element

The displacement equation for each element can be written as follows:

[Ke]{~a.l={r.l (2)

where [K.1 is elemental stiffness matrix, {~a.l is incremental displacement
vector in boundary environment and {r.l is force vector not included in the
analysis. Equation for elemental stiffness matrix is given by,

(3)

where B is elemental strain-displacement matrix and D is elastoplastic
e •

material property matrix. The Gaussian technique is used to calculate the
integration (Chandrupatra & Belegundhu 1997) and finally the global stiffness
matrix becomes

(4)
e=1

70

The solution for linear equation system is based on incremental iteration
technique. According to the updated Lagrangian strategy, the values of
displacements and stresses are used with reference to previous calculations.
Incremental stress during the plasticity must fulfil the yield criterion and
plasticity flow. The calculation must be calculated until the stress state
returns to the stress yield surface when the plasticity level is achieved.

In the incremental iteration of the solution, the fust step takes the value
of the material elastic matrix, De Calculation results from the first step
become the input for the following step where characteristic of the material

Plastic elastic matrix, D are considered into the material matrix, D. Then,
ep

for each increment, the stresses, strains, coordinates and reactions were
updated according to the Lagrangian formulation.

DOMAIN DECOMPOSITION AND LOAD BALANCING

Domain decomposition is most commonly used in solving solution. The
solution space is divided up among the processors and each processor solves
its own piece. This method of solution often leads naturally to a set of
simultaneous equations that can be solved by parallel matrix solvers.
Therefore, the domain decomposition is a natural way to solving a finite
element problem (Wriggers & Boersma 1998).

Data decomposition is represented by a splitting of the finite element
mesh. The decomposition, or partitioning, can be dynamic and may change
during the computation, or it can be static. Krysl and Belyschko (1997) has
shown that dealing with non-linear problems, it would be advantageous to
use dynamic partitioning. The effort to compute the internal forces may
change dramatically during the computation.

In order to provide parallelism, Nikishkov and Kawka (1998) have
selected the domain decomposition method (DDM) as a tool for the division
into parallel tasks. According to the DDM, the finite element domain is
partitioned into subdomains, and a large part of calculation is performed at
the subdomain level without interprocessor data communication (Nikishkov
& Kawka 1998).

Load balancing is used to distribute computations fairly across processors
in order to obtain the highest possible execution speed. Load balancing can
be attempted statically before the execution of any process or dynamically
during the execution of the processes. Some systems may have communication
delays that vary under different circumstances, and it could be difficult to
incorporate variable communication delays in static load balancing. Therefore,
dynamic load balancing can be used for these circumstances. In dynamic
load balancing, tasks are allocated to processors during the execution of the
program. The master processor holds the collection of tasks to be performed.
Tasks are sent to the slave processors. When a slave completes one task, it
requests another task from the master process (Wilkinson & Allen 1999).
However, dynamic load balancing is a rather complicated and evolving
issue, for which no simple solutions exist. Therefore, static domain decom­
position is used in this work.

71

PARALLEL ALGORITHM WITH MASTER-WORKER COMMUNICATION

Parallelization for computer networks requires much larger messages to
ameliorate the effects of large latencies (Krysl & Belyschko 1997). Master­
workers model techniques configuration of a central 'master' program
communication with a number of 'workers' (Geist et. al. 1997). At the
beginning of calculation, the master processor receives all the input data
from user. Then all the data input are broadcasts from master processor to
all other processor (Jaques & Ross 1994). The system stiffness matrix is
partitioned into a number of equally sized smaller domain matrices, each of
which is allocated to a separate processor as in Figure 3. The domain
matrices are solved independently. As soon as the calculations completed,
domain matrices from each processor are then send to master processor for
assembly.

-- Data send from master to slave
• - - Data send from slave to master

FIGURE 3. Configuration of the master and the workers in a star

In the investigation done by Nikishkov in the parallel ITAS3D code
(Nikishkov & Kawka 1998), global vector operations are carried out in
parallel at the subdomain level only for time consuming routines in the for
subdomains. Global vectors are disassembled into subdomain vectors. After
subdomain calculations, subdomain vectors are assembled into domain
vectors, and modules with small consumption of computing time are run on
all the processors in a serial mode. Both vectors and subdomain vectors are
stored at each processor node. The disassembly operation is carried out at
each processor node without data communication. A possible disadvantage
is the serial part of the program worsens parallel efficiency with the
increasing number of processors (Nikishkov & Kawka 1998).

Initial mesh of the domain is given as a basic input data. The user only
needs to create an element for each boundary segment. After the first stage
of remeshing, the number of node and element becomes larger depending on
error estimation at each initial element. Mesh refining process will continue
to work until the permissible optimum mesh arrangement error obtained. In
the area with higher stress concentration, the size of element is smaller than
areas with low stress concentration.

Calculation result from the first stage is updated and stored in a file for
other calculation. Each step of crack propagation, a new boundary segment
is formed. The process will continue until all the calculation for elemental
stiffness matrix in each loop is performed by slave processors and global
stiffness matrix is formed in master processor. Figure 4 shows a flowchart
of parallelization adaptive crack propagation process.

72

Mesh generation and boundary
condition calculations

Calculations of Error and Stress Level

FIGURE 4. Flowcharts for the adaptive crack propagation proce .
using finite element method

PERFORMANCE MEASURES

Amdahl's law predicted very limited improvement in performance be ause
Amdahl claimed that the speed of a mUltiple-processor computer was limited
by its slowest (sequential) part (El-Rewini & Lewis 1998). For a parallel
algorithm, in addition to determining the number of computational tep. the
estimation of communication overhead is needed.

73

AMDAHL'S LAW

Assume there will be some parts that are only executed on one processor.
The ideal situation would be for all the available processors to operate
simultaneously. If the fraction of the computation that cannot be divided into
concurrent tasks is f, and no overhead incurs when the computation is
divided into concurrent parts, the computation time with n processors is
given by [frs' + (l-j)t/n], f is also the inherently sequential fraction of a
computation to be solved by n processors (Wilkins~n & Allen 1999).
Illustrated is the case with a single serial part at the beginning of the
computation, but the serial part could be distributed through the computation.
Hence, the speed-up factor is given by:

(5)

where S(n) is speed-up, f is fraction that cannot divided into concurrent
parts, ts is overall time calculation and n is number of processors.

The improvement is theoretically possible in the best case by ignoring
overhead and communication costs (EI-Rewini & Lewis 1998). For many
applications, as problem size increases, fraction of sequential operations
decreases. Therefore Amdahl's law plays less of a limiting factor. This
equation is known as Amdahl's law.

PARALLELIZATION FOR COMPUTER NETWORKS

For workstation cluster, the communication time will depend on many
factors including network structure and network connection. Parallel execution
time t is composed of two parts, computational time (t) and

para comp

communication time (t). T is the time to compute the arithmetic
comm camp

operations such as multiplication and addition operations of a sequential
algorithm. Analysis of the t is performed by assuming that all the comp

processors are the same and operating at the same speed, this tcomm will
depend upon the size of message.

t comm = tstartup + mt data + tidle (6)

If the number of iterations b, and the size of the message for
communication m, the formula for communication time is as follows,

t = b(t + mt + t.) comm startup data Idle '
(7)

where t is the startup time (message latency). T is time to send a
startup startup

message with no data. It includes time to pack the message at the source and
unpack the message at the destination. The term t data are assumed as
constants and measured in bits/? sec, t

idle
is the time for message latency and

time to wait for all the processors to complete the works. The performance
of parallel algorithms in distributed memory environment is measured by the
speed-up factor, efficiency and effectiveness defined respectively as

74

~ Sp
Total Speed-up: Sp = - ; Total efficiency: Cp =-;

Tp P

. Sp
effectIveness: Fp = T'

p p
(9)

where T, is the CPU time for the best serial algorithm, Tp is the CPL" time for
parallel algorithm using n processors, S is the total speed-up fa tor for the

p

parallel computation, and C
p

is the total efficiency for the parallel al",orithm.
The temporal performance is given as follows,

(10)

where the unit of L is work done per micro second. From equations (9) and
p

(10),

(11)

which shows that F measure both speed-up and efficiency. There -ore. a
p

parallel algorithm is said to be effective F hence,
p

PERFORMANCE RESULTS AND DISCUSSION

(12)

In this section, two sets of performance data are presented. The consoucted
Linux-cluster utilized for the simulation consists of four Pentium 3. 9"'3 ~lliz
CPUs with 512 MB memory. The Linux system has two nodes, four CPL" with
each node have two CPUs with shared memory. There are di rributed
memories between each node with a 100 Mbit 3Com fast Ethernet wit h Li
et al. 2002).

Another set for cluster of workstation consists of four Pentium ~ 1.6
GHz distributed memory CPUs with 20GB. Despite the method's multire olution
capability, large problem sizes necessitate the use of distributed memory
parallel supercomputers to solve the problem (Bao & Bielak 1998). Figures
5 and 6 show the speed-up and efficiency of the model.

The simulation results show that value for speed-up and efficiency for
Pentium 3 is higher that Pentium 4. It is because higher CP peed will
decrease the computational time and the ratio of computational to
communication times. Architecture for the cluster of workstation also
influences the result of calculation. The result also show that clu ter of
Pentium 3 is better than Pentium 4. For the cluster of Pentium 3. be ide
connection by network, there is also shared memory in the architecture.

There is no communications cost within processors in shared memory.
The communication cost decreased when the value of speed-up is increased.
The results present the numerical properties of the parallel solver on the
homogeneous architecture of PC with Linux operating systems, connected
with Local Area Network (LAN) and using message-passing libraries , MPI

3.00

2.50

0.. 2.00
~
..0 1.50 <U

<U
0..

'" 1.00

0.50

0.00

1.1 -

0.9

0.7
:>..
u
c
<U

05 j ·u
IE
~ 0.3

I
0.1 1

-0.1

-+-experiment (P3) __ Amdahl's law (P3)

__ experiment (P4) --*-Amdahl's law (P4)

2 3
No of Processor

FIGURE 5. Speed-up in the analysis of the model

-+-efficiency (P3)

-.- efficiency (P4)

1.5 2

__ Amdahl's law (P3)

--*-Amdahl's law (P4)j

2.5 3 3.5
No of Processor

FIGURE 6. Efficiency in the analysis of model

75

4

4

and PVM (Geist et al. 1994). The formula of communication cost for crack
propagation solution depends on number of processors and size of data (m)
as in Table 1.

From Tables 2 and 3, it is clear that with increasing number of
processors, time calculation decreased (Evans & Sahirni 1988). The
experiment results show that communication cost depends on number of
processors. When the number of processors increases, the communication
time increases and the computational time decreases. Both of the experiments
show the percentage of idle time is increased. It is because of message
latency, load balancing and time to wait for all processors to complete the
processes.

In the analysis of crack propagation using Pentium 3, it shows that a
gain of communication time is about 13.83 - 14.67 % (2-3 processors). The
communication time for Pentium 3 is 35.21 % from using from four processors.
This is because the idle time is too high when using from four processors
until 33.44% compared to using three processors which only 12.53%. When
using from four processors for calculation, it include connection using
shared memory and distributed memory. These architecture will increase the
latency of network and the speed-up become very low.

76

TABLE 1. Communication cost for the problem of crack propagation

P

2
3
4

M ex 1000)

218
164
142

Communication cost

TABLE 2. Execution, total time taken, computation, ratio of computational.
communication and idle times in seconds for the problem of

crack propagation using Pentium 3

p Total time Comp Ratio Comm Comml Idle

2 3917.35 3375.40 6.23 541.96 39.15
% 86.17 13.83 1.00
3 2637.10 2250.26 5.82 386.84 56.34
% 85.33 14.67 2.14 1- -3
4 2604.69 1687.70 1.84 916.99 46.92 "'0.9_
% 64.79 35.21 1.80 3.~

TABLE 3. Execution, total time taken, computation, ratio of computational.
communication and idle times in seconds for the problem of

crack propagation using Pentium 4

p Total time Comp Ratio Comm Comm l Idle

2 1901.99 1316.93 2.25 585.06 64.1941 -20.-6
% 69.24 30.76 3.38 2-.3"'
3 1751.49 877.96 1.01 873.53 68.61 .92
% 50.13 49.87 3.92 .:. - .96
4 1261.92 658.47 1.09 603.45 67.27 -36.1
% 52.18 48.22 5.33 ':'2.49

FIGURE 7. Simulation crack propagation using pentium 3

Generally, when the number of processors are increased, data-sending m
is decreased but communication between processors is increased. The

77

persentage of communication still increases. The ratio of computational and
communication times show that the computational time is larger than
communication time. Figure 7 shows sinlu4ttion results for crack propagation
for the model given using four Pentium 3 CPUs. Different colours of domain
show each domain calculated by each processors including the master
processor.

CONCLUSION

Several parallel computations on a system of homogeneous distributed
computers are addressed in the paper. The parallelization is performed on the
domain decomposition approach and finite element method. This paper
describes the parallel algorithm for adaptive mesh solution of 2D crack
propagation. The algorithms are independent of the underlying boundary
value problem and structure. To optimise the computational performance in
parallel by even distributed of the work among the processors, proper load
balancing is needed.

The experiments show that the domain decomposition strategy is
efficiently utilized and straight forward to be implement on a cluster of
workstations. As a conclusion from Tables 2 and 3, by sending a larger
number of messages, communication cost and the frequency of communication
activities are reflected in the communication time.

ACKNOWLEDGEMENT

The present work IS supported by research grant IRPA 03-02-02-0015-
SR0003/07 -03.

REFERENCES

Bao, H. & Bielak, O. 1998. Large-scale simulation of elastic wave propagation in
heterogeneous media on parallel computers. Compo Meth. Appl. Mech. Eng.
152: 85-102.

Chandrupatra, T.R. & Belegundhu, A.D. 1997. Introduction to finite elements in
engineering. Second edition. New Jersey: Prentice-Hall Inc.

EI-Rewini, H. & Lewis, T. G. 1998. Distributed and parallel computing. New
Jersey: Manning Publications Co.

Evans, D. J. & Sahirni, M. S. 1988. The alternating group explicit (age) iterative
method for solving parabolic equations i: 2-dimensional problems. Int. 1.
Computer Math. 24:311-34l.

Geist, AI., Beguelin, A., Dongarra, 1., Jiang, w., Manchek, R. & Sunderam, V. 1994.
PVM: parallel virtual machine, a users' guide and tutorial for networked
parallel computing. Cambridge: MIT Press.

Jaques, M.W.S. & Ross, C.T.F. 1994. Exploiting inherent parallelism in non-linear
finite element analysis. Computer & Structures 58: 801-807.

Krysl. P. & Belyschko. T. 1997. Object-oriented parallelization of explicit structural
dynamics PVM. Computer & Structures 66: 259-273.

Li, Y., Sze, S. M. & Chao, T. S. 2002. A practical implementation of parallel
dynamic load balancing or adaptive computing in VLSI device simulation.
Engineering with Computers. 18: 124-137.

Nikishkov, G. P. & Kawka, M. 1998. Porting an industrial sheet metal forming code
to a distributed memory parallel computer. Computer & Structures 67: 439-449.

78

Rezende, M. N. D. & Paiva, J. B. D. 1999. A parallel algorithm for stiffnes matrix
assembling in a shared memory environment. Computer & Structures - 6: 593-
602.

Syifaul, H. 2002. Permodelan prambatan retak bahan mulur dengan menl?gunakan
analisis unsur terhingga jejaring adaptif. M.Sc. thesis, Universiti Kebangsaan
Malaysia, Malaysia.

Watson, B.C. &d Noor, A.K. 1996. Large-scale contact/impact simulation and
sensitivity analysis on distributed-memory computers. Compo Me;h. Appl.
Mech. Eng. 141: 373-388.

Wilkinson, B. & Allen M. 1999, Parallel programming: techniques and applica:ions
using networked workstations and parallel computers. New Jersey: Prentlce
Hall.

Wriggers, P and Boersma, A. 1998. A parallel algebraic multigrid . oh er for
problems in solid mechanics discretisized by finite elements. Compuler &
Structures 69: 129-137.

Department of Mechanical and Materials Engineering
Faculty of Engineering
Universiti Kebangsaan Malaysia
43600 UKM Bangi, Selangor D.E.
Malaysia

