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ABSTRACT 

This paper describes an algorithm for parallel assembling of the stiffness 
matrix in simulation of crack propagation in distributed memory environment 
using master-workers method. In this algorithm, element stiffness matrix is 
formed by groups in each processor related by the finite element mesh. Each 
processor assembles a specific group of elements and no synchronization is 
required to avoid two or more worker processors sending the calculation 
result to master proces~or concurrently. This paper gives the speed-up rate 
in the simulation of crack propagation. The results indicate excellent 
performance and reduction of total computational time. 
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ABSTRAK 

Rencana ini menerangkan satu algoritma untuk pemasangan matriks 
kekukuhan selari dalam simulasi perambatan retak dalam sekitaran memori 
teragih menggunakan kaedah induk-pekerja. Dalam algoritma ini, matriks 
kekukuhan unsur dibentuk dalam setiap pemproses dihubungkan olehjejaring. 
Setiap pemproses memasang sekumpulan unsur dan penyegerakan tidak 
diperlukan bagi mengelakkan dua atau lebih pekerja menghantar keputusan 
pengiraan secara serentak kepada induk. Kertas kerja ini memberikan 
kenaikan kadar-laju dalam simulasi perambatan retak. Keputusan 
menunjukkan prestasi yang sangat baik dan menurunkan masa pengiraan. 

Katakunci: Pemprosesan selari, kaedah unsur terhingga, perembatan retak suai 

INTRODUCTION 

Users of finite element programs attempt to obtain solutions to larger 
problems. Many encounter major technical barriers; limitations in memory 
or in CPU speed, or both. One of the remedies is parallelisation. The 
computing time can be reduced to some extent by algorithmic changes and 
the radical speed increase can be reached with multiprocessor computation. 
The current trend in parallel processing is to connect complete computing 
units (processor and memory) with a high-bandwidth communications network 
(Watson & Noor 1996). The numerical analysis of structure is among those 
that were most benefited by the arrival of these parallel computers (Rezende 
& Paiva 1999). 

Since most of the parallel computers have distributed memory, an 
essential code modification is necessary for porting the sequential code to 
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parallel version (Nikishkov & Kawka 1998). Taxonomy of ar hite ture for 
parallel programming used is Single Instruction Multiple Data SIMD. Each 
processor executes exactly the same instruction, but u e i own 
Different program can be written and operated in a ingle pro_ or 
different processor. This method operates with the duty being di\ided into 
small individual's division and solved by processor. 

In this paper, an adaptive finite element mesh anal) I 0 

simulate crack propagation for two-dimensional elastopla tic 0 

computer code has been developed using FORTRAN programming I :: ge 
for finite element analysis calculation process based on di 
formulation. 

FINITE ELEMENT EQUATION AND 
P ARALLELIZATION STRATEGY 

In crack propagation simulation, the geometry of the domain 
each step of crack propagation at the vicinity of the crack ( S ) -a 
The smaller the finite element mesh sizes, the more accurate 
element approximate solution. Mesh refinement process will on -n e un ·1 
specified size achieved. Reduction in the mesh size will lead 0 10 ::er 
computational time. 

An adaptive finite element mesh is applied to analyse two-dime ional 
elastoplastic micro-fracture during crack propagation. An automati reme:hing 
is calculated at each step of crack advance based on stress error e · tion 
of the element shape. The crack is free to propagate without predetermined 
path and direction. Crack tip opening angle (CTOA) is used as a riterion -or 
crack growth, while the maximum principal stress is used as i dire-tion. 

In general, the smaller the finite element mesh, the more aurae the 
finite element approximate solution. However, reduct~on in the me ize 
leads to more computational effort. Therefore it is more attra ti\e to 

selectively refine the mesh in areas where the error in the approxiro te 
solution is the highest. One example of the crack propagation simulation i 
when a two-dimensional plate with a single crack is subjected to uniforml) 
distributed loading on the top boundary segment of the domain m 
Figure 1. 

30mm 

FIGURE 1. Two-dimensional plate with single crack 



69 

In the calculation, the three-noded triangle element mesh is automatically 
changed into a six-noded element. The mesh refining processes will mesh 
continuously until the optimum mesh arrangement with error permissible at 
the element given is obtained. The number of element and number of node 
are changed for each sequence. The size of element is different in whole 
domain area. In the area of higher stress concentration, the size of element 
is smaller then other place. 

The finite element model in solving the crack propagation problem is 
based on displacement formulation. Six-noded triangular elements are used 
since it can fill most of the element at border. The step for modelling finite 
element starts by dividing the domain to small finite element, Q .. Composition 
of these elements will form 11 finite element domain model, 

(1) 

which the system coordinates that is used is shown in Figure 2. 

y 

o ,,=0 

(a) Global (b) Local 

FIGURE 2. Global and local coordinate system in triangular element 

The displacement equation for each element can be written as follows: 

[Ke]{~a.l={r.l (2) 

where [K.1 is elemental stiffness matrix, {~a.l is incremental displacement 
vector in boundary environment and {r.l is force vector not included in the 
analysis. Equation for elemental stiffness matrix is given by, 

(3) 

where B is elemental strain-displacement matrix and D is elastoplastic 
e • 

material property matrix. The Gaussian technique is used to calculate the 
integration (Chandrupatra & Belegundhu 1997) and finally the global stiffness 
matrix becomes 

(4) 
e=1 
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The solution for linear equation system is based on incremental iteration 
technique. According to the updated Lagrangian strategy, the values of 
displacements and stresses are used with reference to previous calculations. 
Incremental stress during the plasticity must fulfil the yield criterion and 
plasticity flow. The calculation must be calculated until the stress state 
returns to the stress yield surface when the plasticity level is achieved. 

In the incremental iteration of the solution, the fust step takes the value 
of the material elastic matrix, De Calculation results from the first step 
become the input for the following step where characteristic of the material 

Plastic elastic matrix, D are considered into the material matrix, D. Then, 
ep 

for each increment, the stresses, strains, coordinates and reactions were 
updated according to the Lagrangian formulation. 

DOMAIN DECOMPOSITION AND LOAD BALANCING 

Domain decomposition is most commonly used in solving solution. The 
solution space is divided up among the processors and each processor solves 
its own piece. This method of solution often leads naturally to a set of 
simultaneous equations that can be solved by parallel matrix solvers. 
Therefore, the domain decomposition is a natural way to solving a finite 
element problem (Wriggers & Boersma 1998). 

Data decomposition is represented by a splitting of the finite element 
mesh. The decomposition, or partitioning, can be dynamic and may change 
during the computation, or it can be static. Krysl and Belyschko (1997) has 
shown that dealing with non-linear problems, it would be advantageous to 
use dynamic partitioning. The effort to compute the internal forces may 
change dramatically during the computation. 

In order to provide parallelism, Nikishkov and Kawka (1998) have 
selected the domain decomposition method (DDM) as a tool for the division 
into parallel tasks. According to the DDM, the finite element domain is 
partitioned into subdomains, and a large part of calculation is performed at 
the subdomain level without interprocessor data communication (Nikishkov 
& Kawka 1998). 

Load balancing is used to distribute computations fairly across processors 
in order to obtain the highest possible execution speed. Load balancing can 
be attempted statically before the execution of any process or dynamically 
during the execution of the processes. Some systems may have communication 
delays that vary under different circumstances, and it could be difficult to 
incorporate variable communication delays in static load balancing. Therefore, 
dynamic load balancing can be used for these circumstances. In dynamic 
load balancing, tasks are allocated to processors during the execution of the 
program. The master processor holds the collection of tasks to be performed. 
Tasks are sent to the slave processors. When a slave completes one task, it 
requests another task from the master process (Wilkinson & Allen 1999). 
However, dynamic load balancing is a rather complicated and evolving 
issue, for which no simple solutions exist. Therefore, static domain decom­
position is used in this work. 
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PARALLEL ALGORITHM WITH MASTER-WORKER COMMUNICATION 

Parallelization for computer networks requires much larger messages to 
ameliorate the effects of large latencies (Krysl & Belyschko 1997). Master­
workers model techniques configuration of a central 'master' program 
communication with a number of 'workers' (Geist et. al. 1997). At the 
beginning of calculation, the master processor receives all the input data 
from user. Then all the data input are broadcasts from master processor to 
all other processor (Jaques & Ross 1994). The system stiffness matrix is 
partitioned into a number of equally sized smaller domain matrices, each of 
which is allocated to a separate processor as in Figure 3. The domain 
matrices are solved independently. As soon as the calculations completed, 
domain matrices from each processor are then send to master processor for 
assembly. 

-- Data send from master to slave 
• - - Data send from slave to master 

FIGURE 3. Configuration of the master and the workers in a star 

In the investigation done by Nikishkov in the parallel ITAS3D code 
(Nikishkov & Kawka 1998), global vector operations are carried out in 
parallel at the subdomain level only for time consuming routines in the for 
subdomains. Global vectors are disassembled into subdomain vectors. After 
subdomain calculations, subdomain vectors are assembled into domain 
vectors, and modules with small consumption of computing time are run on 
all the processors in a serial mode. Both vectors and subdomain vectors are 
stored at each processor node. The disassembly operation is carried out at 
each processor node without data communication. A possible disadvantage 
is the serial part of the program worsens parallel efficiency with the 
increasing number of processors (Nikishkov & Kawka 1998). 

Initial mesh of the domain is given as a basic input data. The user only 
needs to create an element for each boundary segment. After the first stage 
of remeshing, the number of node and element becomes larger depending on 
error estimation at each initial element. Mesh refining process will continue 
to work until the permissible optimum mesh arrangement error obtained. In 
the area with higher stress concentration, the size of element is smaller than 
areas with low stress concentration. 

Calculation result from the first stage is updated and stored in a file for 
other calculation. Each step of crack propagation, a new boundary segment 
is formed. The process will continue until all the calculation for elemental 
stiffness matrix in each loop is performed by slave processors and global 
stiffness matrix is formed in master processor. Figure 4 shows a flowchart 
of parallelization adaptive crack propagation process. 
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Mesh generation and boundary 
condition calculations 

Calculations of Error and Stress Level 

FIGURE 4. Flowcharts for the adaptive crack propagation proce . 
using finite element method 

PERFORMANCE MEASURES 

Amdahl's law predicted very limited improvement in performance be ause 
Amdahl claimed that the speed of a mUltiple-processor computer was limited 
by its slowest (sequential) part (El-Rewini & Lewis 1998). For a parallel 
algorithm, in addition to determining the number of computational tep. the 
estimation of communication overhead is needed. 
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AMDAHL'S LAW 

Assume there will be some parts that are only executed on one processor. 
The ideal situation would be for all the available processors to operate 
simultaneously. If the fraction of the computation that cannot be divided into 
concurrent tasks is f, and no overhead incurs when the computation is 
divided into concurrent parts, the computation time with n processors is 
given by [frs' + (l-j)t/n], f is also the inherently sequential fraction of a 
computation to be solved by n processors (Wilkins~n & Allen 1999). 
Illustrated is the case with a single serial part at the beginning of the 
computation, but the serial part could be distributed through the computation. 
Hence, the speed-up factor is given by: 

(5) 

where S(n) is speed-up, f is fraction that cannot divided into concurrent 
parts, ts is overall time calculation and n is number of processors. 

The improvement is theoretically possible in the best case by ignoring 
overhead and communication costs (EI-Rewini & Lewis 1998). For many 
applications, as problem size increases, fraction of sequential operations 
decreases. Therefore Amdahl's law plays less of a limiting factor. This 
equation is known as Amdahl's law. 

PARALLELIZATION FOR COMPUTER NETWORKS 

For workstation cluster, the communication time will depend on many 
factors including network structure and network connection. Parallel execution 
time t is composed of two parts, computational time (t ) and 

para comp 

communication time (t ). T is the time to compute the arithmetic 
comm camp 

operations such as multiplication and addition operations of a sequential 
algorithm. Analysis of the t is performed by assuming that all the comp 

processors are the same and operating at the same speed, this tcomm will 
depend upon the size of message. 

t comm = tstartup + mt data + tidle (6) 

If the number of iterations b, and the size of the message for 
communication m, the formula for communication time is as follows, 

t = b( t + mt + t. ) comm startup data Idle ' 
(7) 

where t is the startup time (message latency). T is time to send a 
startup startup 

message with no data. It includes time to pack the message at the source and 
unpack the message at the destination. The term t data are assumed as 
constants and measured in bits/? sec, t

idle 
is the time for message latency and 

time to wait for all the processors to complete the works. The performance 
of parallel algorithms in distributed memory environment is measured by the 
speed-up factor, efficiency and effectiveness defined respectively as 
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~ Sp 
Total Speed-up: Sp = - ; Total efficiency: Cp =-; 

Tp P 

. Sp 
effectIveness: Fp = T' 

p p 
(9) 

where T, is the CPU time for the best serial algorithm, Tp is the CPL" time for 
parallel algorithm using n processors, S is the total speed-up fa tor for the 

p 

parallel computation, and C
p 

is the total efficiency for the parallel al",orithm. 
The temporal performance is given as follows, 

(10) 

where the unit of L is work done per micro second. From equations (9) and 
p 

(10), 

(11) 

which shows that F measure both speed-up and efficiency. There -ore. a 
p 

parallel algorithm is said to be effective F hence, 
p 

PERFORMANCE RESULTS AND DISCUSSION 

( 12) 

In this section, two sets of performance data are presented. The consoucted 
Linux-cluster utilized for the simulation consists of four Pentium 3. 9"'3 ~lliz 
CPUs with 512 MB memory. The Linux system has two nodes, four CPL" with 
each node have two CPUs with shared memory. There are di rributed 
memories between each node with a 100 Mbit 3Com fast Ethernet wit h Li 
et al. 2002). 

Another set for cluster of workstation consists of four Pentium ~ 1.6 
GHz distributed memory CPUs with 20GB. Despite the method's multire olution 
capability, large problem sizes necessitate the use of distributed memory 
parallel supercomputers to solve the problem (Bao & Bielak 1998). Figures 
5 and 6 show the speed-up and efficiency of the model. 

The simulation results show that value for speed-up and efficiency for 
Pentium 3 is higher that Pentium 4. It is because higher CP peed will 
decrease the computational time and the ratio of computational to 
communication times. Architecture for the cluster of workstation also 
influences the result of calculation. The result also show that clu ter of 
Pentium 3 is better than Pentium 4. For the cluster of Pentium 3. be ide 
connection by network, there is also shared memory in the architecture. 

There is no communications cost within processors in shared memory. 
The communication cost decreased when the value of speed-up is increased. 
The results present the numerical properties of the parallel solver on the 
homogeneous architecture of PC with Linux operating systems, connected 
with Local Area Network (LAN) and using message-passing libraries , MPI 
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and PVM (Geist et al. 1994). The formula of communication cost for crack 
propagation solution depends on number of processors and size of data (m) 
as in Table 1. 

From Tables 2 and 3, it is clear that with increasing number of 
processors, time calculation decreased (Evans & Sahirni 1988). The 
experiment results show that communication cost depends on number of 
processors. When the number of processors increases, the communication 
time increases and the computational time decreases. Both of the experiments 
show the percentage of idle time is increased. It is because of message 
latency, load balancing and time to wait for all processors to complete the 
processes. 

In the analysis of crack propagation using Pentium 3, it shows that a 
gain of communication time is about 13.83 - 14.67 % (2-3 processors). The 
communication time for Pentium 3 is 35.21 % from using from four processors. 
This is because the idle time is too high when using from four processors 
until 33.44% compared to using three processors which only 12.53%. When 
using from four processors for calculation, it include connection using 
shared memory and distributed memory. These architecture will increase the 
latency of network and the speed-up become very low. 
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TABLE 1. Communication cost for the problem of crack propagation 

P 

2 
3 
4 

M ex 1000) 

218 
164 
142 

Communication cost 

TABLE 2. Execution, total time taken, computation, ratio of computational. 
communication and idle times in seconds for the problem of 

crack propagation using Pentium 3 

p Total time Comp Ratio Comm Comml Idle 

2 3917.35 3375.40 6.23 541.96 39.15 
% 86.17 13.83 1.00 
3 2637.10 2250.26 5.82 386.84 56.34 
% 85.33 14.67 2.14 1- -3 
4 2604.69 1687.70 1.84 916.99 46.92 "'0.9_ 
% 64.79 35.21 1.80 3.~ 

TABLE 3. Execution, total time taken, computation, ratio of computational. 
communication and idle times in seconds for the problem of 

crack propagation using Pentium 4 

p Total time Comp Ratio Comm Comm l Idle 

2 1901.99 1316.93 2.25 585.06 64.1941 -20.-6 
% 69.24 30.76 3.38 2-.3"' 
3 1751.49 877.96 1.01 873.53 68.61 .92 
% 50.13 49.87 3.92 .:. - .96 
4 1261.92 658.47 1.09 603.45 67.27 -36.1 
% 52.18 48.22 5.33 ':'2.49 

FIGURE 7. Simulation crack propagation using pentium 3 

Generally, when the number of processors are increased, data-sending m 
is decreased but communication between processors is increased. The 
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persentage of communication still increases. The ratio of computational and 
communication times show that the computational time is larger than 
communication time. Figure 7 shows sinlu4ttion results for crack propagation 
for the model given using four Pentium 3 CPUs. Different colours of domain 
show each domain calculated by each processors including the master 
processor. 

CONCLUSION 

Several parallel computations on a system of homogeneous distributed 
computers are addressed in the paper. The parallelization is performed on the 
domain decomposition approach and finite element method. This paper 
describes the parallel algorithm for adaptive mesh solution of 2D crack 
propagation. The algorithms are independent of the underlying boundary 
value problem and structure. To optimise the computational performance in 
parallel by even distributed of the work among the processors, proper load 
balancing is needed. 

The experiments show that the domain decomposition strategy is 
efficiently utilized and straight forward to be implement on a cluster of 
workstations. As a conclusion from Tables 2 and 3, by sending a larger 
number of messages, communication cost and the frequency of communication 
activities are reflected in the communication time. 
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