
Jurnal Kejuruteraan 16 (2004) 79-95 

Performance of Packet Filtering Using 
Back Propagation Algorithm 

M. 1. Buhari, M. H. Habaebi & Burhanuddin Mohd. Ali 

ABSTRACT 

In this paper, we analyzed the use of neural network for packet filtering. The 
neural network system was designed in eight ways with input to the neural 
network in the form of either access rules or optimized access rules or 
binary form of access rules or representing wildcards as 0 & 255 or 
combination of them. These trained neural networks were analyzed for their 
correctness and the performance aspects such as training time using test 
data. In order to further improve the security, the data related to the local 
usage of the network were also used to train the network. An example of 
implementing these trained systems in active networks packet filtering was 
presented. 

Keywords: packet filtering, back propagation, firewall, active network, TCP 

ABSTRAK 

Dalam kertas kerja ini, kami menganalisis penggunaan rangkaian neural 
untuk penurasan paket. Sistem rangkaian neural telah direka dalam lapan 
kaedah dengan masukan kepada rangkaian neural dalam bentuk samada 
peraturan capaian atau peraturan capaian optimum atau dalam bentuk 
binari bagi peraturan capaian atau diwakili oleh kad liar iaitu 0 dan 255 
ataupun gabungan antara mereka. Rangkaian neural yang telah dilatih ini 
dianalisa dari segi aspek ketepatan dan prestasinya seperti masa latihan 
menggunakan data ujian. Bagi tujuan meningkatkan tahap keselamatan, 
data yang berkaitan dengan penggunaan setempat bagi suatu rangkaian 
juga telah digunakan untuk melatih rangkaian tersebut. Satu contoh 
implementasi sistem terlatih dalam rangkaian aktif penuras paket juga telah 
disampaikan. 

Katakunci: penurasan paket, perambatan balik, dinding api, rangkaian 
aktif, TCP 

INTRODUCTION 

The firewall has to use an IP router to control the passing of any packet from 
the Internet into the Intranet. Packet filtering parses the headers of the 
received IP packets and forwards or discards the packets according to an 
Access Control List (ACL) specified by a network administrator. The 
performance of the whole router depends on the procedure on which the 
rules in the ACL are applied to the packet and a decision made to allow or 
reject the packet. Processing all packets passing through a router degrades 
the packet-forwarding performance. Also, the performance of the off-the-



80 

shelf routers is degraded in proportion to the complexity of the ACL. Hence, 
IP routers that forward packets more efficiently are to be explored. Currently, 
packet filtering is done using access control lists, which are processed 
sequentially. 

SEQUENTIAL PARSING AND ITS DRAWBACKS 

A rule in an ACL is a set of conditions that are to be satisfied to perform the 
specified action. If the action in the ilh row of the ACL is Ai' the ACL is 
sequentially parsed; i.e., each action is performed only when the corresponding 
condition is satisfied: 
If (Conditions of Rule I) then A J 

Else if (Conditions of Rule 2) then A2 
... Else if (Conditions of Rule n) then An 

Sequential parsing causes the following problems (Miei et al. 1997): 
1. As the number of rows of the rules in the ACL increases, the cost of 

packet filtering also increases. 
2. Because a condition consists of conjunctions of parameters, disjunctive 

conditions must be specified in several rules. In these rules, each kind 
of parameter has the same value unless it specifies a disjunctive value. 
As a result, the same value might be applied to a packet many times. 

3. Consider the conditions of the ilh rule and the klh rule in the ACL. where 
i < k. If the Condition of the ilh rule is always true when the Condition 
of the klh rule is true, the rule in the klh row of the ACL is redundant 
because its action, A

k
, is never carried out. This is similar to an 

infeasible path (IFP) in a procedural program and this ha to be 
remedied. 

TYPES OF ACCESS LISTS 

There are two types of access lists, namely, Standard acce Ii t and 
Extended access list (Odom 2000). A description of them is given below. 

TABLE 1. Types of access lists 

Type of Access list What can be matched 

IP standard a. Source IP address 
b. Portions of the source IP address, using a wildcard mask. 

IP Extended a. Source and destination IP address 
b. Portions of the source IP address, using a wildcard mask 
c. Portions of the destination IP addre s, u ing a wildcard 

mask 
d. Protocol type (TCP, UDP, ICMP, IGRP, IGMP, and others) 
e. Source and Destination port 
f. Established - matches all TCP flows except first flow 
g. IP Type of Service, IP precedence 

RELATED WORK 

As the performance of the firewall has been highly affected due to the 
process of sequential parsing, Miei et al. (1997) have proposed a compiler 



81 

for parallelizing IP-packet filter rules, to improve the network security and 
reduce the degradation in packet-forwarding performance. In the proposed 
method there is no need for any intermediate program. The current day 
packet filtering is done using sequential parsing methods (Miei et al. 1997). 
With the sequential parsing technique, increase in the number of rules in the 
ACL list will cause the parser to consume more time and become inefficient. 
According to Park (2002) and Sandhu (2003), the concept of usage control 
(UCON) method includes traditional access control, trust management and 
rights management techniques. Traditional access control technique focuses 
on all the users who utilise the server to do their job, in a closed system. 
Trust management technique is used to cover authorization for strangers in 
an open environment such as the Internet. Rights management technique is 
client-side oriented which deals with the rights required by the client to 
access a specific page. 

In Osborn et al. (2000), Sandhu et al. (2000), and Sandhu (2001), the 
authors discuss about Role-Based Access Control (RBAC), which associates 
permissions and roles. Users are assigned roles based on their responsibilities 
and qualifications. This approach simplifies the management of permissions. 
Roles can be created for the various job functions in an organization and 
users could be assigned roles based on their responsibilities and qualifications. 
There are provisions for moving users from one role to another, when there 
is a change in job specification for a concern user. Roles can be granted new 
permissions as new applications and systems are incorporated, and permissions 
can be revoked from roles as needed. As per Ferraiolo et al. (2001), 
hierarchical RBAC is used to define the relationship between the senior and 
the junior, whereby the senior roles acquire the permissions of their juniors, 
and junior roles acquire the user membership of their seniors. 

According to Murthy et al. (1998), a firewall can be made of an external 
router along with a bastion host. A bastion host is the important component 
of a firewall that performs the tasks of user authentication, machine 
verification, logging of all security events to an internal host and the 
execution of proxy servers for all allowed services. The most serious 
drawback of this kind of system is that if the traffic through the host 
increases, the system might be overloaded. Thus Murthy et al. (1998) pro­
posed the concept of smart filter. The smart filter reads the header of a 
session's first packet, compares it to the rules and, if approved, routes 
successive packets through a cache. While each packet files through the 
cache, the filter compares its header to that of the first packet to verify that 
it belongs to the same session . Thus, it does not need to verify each packet 
against the rules. 

PARALLELIZING OF ACCESS RULES 

If the ACL rules are executed in parallel, then the whole process could be 
handled within a very short time and so the time taken to process the packets 
can be minimized. But at the same time, there is a constraint on the 
conversion of the sequential parsing rules into parallel rules. This is due to 
the fact that the rules are highly dependent on each other and dividing them 
into parallel tasks is difficult. It might even end up in danger, if there is 
alteration of the rules without extreme care. 



82 

In order to develop a paralleJized system, the rules have to be converted 
into independent rules. That is, in the truly independent intermediate rules, 
a packet matches only one particular condition and never matches any other 
condition. Repetition of executing the same rules again and again should be 
eradicated. The time needed to paralleJize the above rules must be less, so 
that it is appropriate to incorporate such parallelism. It is necessary because 
whenever the rules are to be changed, the whole parallel process should be 
considered. 

PROBLEM MOTIVATION 

IP packet filtering using optimized-sequential processing, neural network and 
expert systems was done. In each of the above three methods proposed, the 
rules are optimized and hence reduce the degradation in packet filtering 
performance. Time is an important criterion in the IP packet filtering. From 
the Table 2, out of all the three methods considered, the expert system has 
an edge over the other methods as it processes a fewer number of rules than 
the other methods. It is found to be better than the optimized sequential 
parsing and the neural network methods of packet filtering. But, security 
lapse was found with both the neural network and expert system 
implementation. In this paper, we try to improve the performance of neural 
network system by applying different techniques and then take care of the 
security lapse also. 

TABLE 2. Comparisons of proposed methods 

Sequential Opt. Sequential Neural Network Expert System 
[Comparison] [Comparison] [Compari on] 

Min Max Min Max Addition Multiplication Min Max 

Exl 12 60 5 25 7 11 4 
Ex2 8 24 7 21 11 15 7 
Ex3 12 48 9 27 12 30 10 
Ex4 12 84 10 70 13 31 14 
Ex5 12 290 9 210 12 28 18 

Security lapse was noted for both neural network and expert system 
oriented packet filtering. To solve the security lapse, we analy e the correctness 
of the trained neural network oriented IP packet filtering and it performance 
impact. As the use of access control rules alone for neural network does not 
provide correct output as required by the packet filtering ystem. different 
neural network systems were designed and trained in the following ways: 
1. Using Access Control rules. 
2. Using Access control rules and replacing wildcards with 0 and 255. 
3. Using Access control rules in binary format. 
4. Using Access control rules and wildcards with 0 and 255 in binary 

format. 
5. Using Optimized Access Control rules. 
6. Using Optimized Access control rules and replacing wildcards with 0 

and 255. 



83 

7. Using Optimized Access control rules in binary format. 
8. Using Optimized Access control rules and wildcards with 0 and 255 in 

binary format. 

As the number of inputs and in tum the architecture (number of input 
and hidden neurons) of the neural network with the above-mentioned 
methods varies, the training process of the neural network also varies. These 
trained neural network systems were tested for consistency with the actual 
action from the ACL rules described in Tables 3, 4, 5, 6, and 7. The selected 
test data is used to check the correctness of the trained neural network 
system. The security and performance aspects of the trained system were 
determined based on: 
1. Whether the system attained the maximum allowed error during the 

training process. 
2. The result of the trained system is compared with the action based on 

the ACL rules. 
3. Amount of time taken in terms number of iterations or epochs by the 

neural network system to train. 
4. Number of input needed to train the system along with the architecture 

of the network. 
5. Number of rules and its impact on the training of the system. 
6. Use of wildcards and how neural networks is affected by that use. 
7. Impact of optimization of the access rules and the conversion of the 

access rules into binary. 

TABLE 3. Experiment 1 ACL rules 

Conditions 

Packet Source Source Destination Destination ACK bit Action 
Type IPv4 TCPIUDP IPv4 TCP/UDP 

address port address port 

TCP * * 202.185.*.* * Established Permit 
TCP * * 202.185.*. * 53 * Permit 
TCP * * 202.185.33.44 25 * Permit 
TCP * * 202.185.55.66 119 * Permit 

IP * * * * * Deny 

* Not Available 

TABLE 4. Experiment 2 ACL rules 

Source IP Destination IP Action 
address address 

10.1.2.1 10.1.1.* Deny 
10.1.2.* 10.1.3.* Deny 

* * Permit 



84 

TABLE 5. Experiment 3 ACL rules 

Conditions 

Packet Source Source Destination Destination ACK bit Action 
Type IP TCP/UDP IP TCP/UDP 

address port address port 

TCP * * 10.1.1.2 www * Permit 
UDP 0.0.0.* * 10.1.1.1 * * Deny 

IP 10.1.2.* * 10.1.3.* * * Deny 
IP * * * * * Permit 

TABLE 6. Experiment 4 ACL rules 

Conditions 

Packet Source Source Destination Destination ACK bit Action 
Type IP TCP/UDP IP TCP/UDP 

address port address port 

TCP 10.1.1.2 WWW * * * Permit 
UDP 10.1.1.* * 0.0.0.* * * Deny 

IP 10.1.3. * * 10.1.2.* * * Deny 
IP 10.1.2.* * 10.1.3. * * * Deny 
IP 10.1.1.130 * 10.1.3.2 * * Deny 
IP 10.1.1.28 * 10.1.3.2 * * Deny 
* * * * * * Permit 

EXPERIMENT 

In an attempt to improve the performance of IP routers in forwarding 
packets, we propose to use the back-propagation oriented neural network 
algorithm to train the network to learn the ACL rules as demon trated below. 

USAGE OF BACKPROPAGATION NETWORK 

The neural network algorithm proposed for this experiments i de igned to 
be real-time because any addition to ACL rules means that the whole ACL list 
needs to be changed and there is need for a new training process. The 
network sees the N most recent patterns through a shifting time window. It 
learns to predict the next value of the series. First, the network i trained to 
the point of convergence using a set of access rules previou ly designed. 
During this process, the weights are updated from a random start configuration 
to the values corresponding to the desired transfer function. Then, this 
function is inserted online and works well without further modification. 

The disadvantage of a neural network is that it takes a long time for 
training depending upon the various sets of patterns provided to it. In the 
case of general neural networks, it is possible that the already trained set of 
data is affected by a newly arriving training pattern. In order to avoid this 
kind of discrepancy, a part of the output is fed back to the input of the 
network. 



85 

TABLE 7. Experiment 4 ACL rules 

Conditions 

Packet Source Source Destination Services ACK bit Action 
Type IPv4 TCP/UDP IPv4 

address port address 

* * * * finger, bootp, * Deny 
udp-525, 

ident, login 
* 202.185.128.* * 202.185.11.* http, smtp * Deny 

* * * 202.185.*.* smtp, imap, 
pop3 * Deny 

* * * * smtp, imap, * Permit 
pop3 

* 202.185.131. * * * * * Permit 
* 202.185.128.* * 202.185.130.1 http, tcp * Permit 
* * * 202.185.130.3 http, tcp * Permit 
* 202.185.130.2 * 202.185.128.* netbeui * Permit 
* * * 202.185.130.4 ftp * Permit 

* 202.185.128* * 202.185.131.178 ftp * Permit 
202.185.131.179 

* * * 202.186.130.1 rpc, * Permit 
syslog tcp 

* 202.185.130.4 * 202.185.130.5 * * Permit 
* 202.185.128.* * 202.185.130.5 telnet * Permit 
* 202.185 .131.170 * 202.185.129.120 * * Permit 

* 202.185.128.* * 202.185.131.* http, ftp, * Permit 
202.185.130.1 tcp, telnet 

* * * 202.185.130.5 tcp, dns, * Permit 
http, nntp 

* 202.185.128. * * * tcp, http * Permit 
* * * 202.185.130.1 - http, tcp * Permit 

202.185.130.5 
* 202.185.129.* * * dns, nntp, * Permit 

http, tcp, 
spool 

* 202.185.128.* * 202.185.131.* snmp, icmp, * Permit 
echo 

In the case of a back propagation network, the training phase needs both 

the input and their corresponding output. So, the network is made of varying 

inputs and one output. The number of inputs varies with regard to the 

different forms of input provided to the system, like binary or optimized. 

The "newff' (Feed forward back propagation) function was used to train the 

network and the trained network is simulated to identify the output for any 

specific input pattern. 'Newff' is a MATLAB oriented function which posses 

the training features like epochs, learning rate, momentum factor and 

required goal. As sample representation is as follows: 

net = newff([O 3; 0255;0255;0255; 0 l],{J,l],{'logsig', 'purelin' }, 
'traincgb' ); 
% 5 indicates five patterns 



86 

% for opt seq ex. 1 
net.IW{1,l} = rands(1,5); 
% first 5 is the number of columns; second 5 is the number of rows 
net.LW{2,l} = rands(1,l); % five patterns with one output each 

% number of epochs allowed 
net.trainParam.epochs = 500; 
% learning rate 
net.trainParam.lr = 0.1; 
% momentum factor 
net.trainParam.mc = 0.5; 
% goal that ought to be attained to stop the training process. 
net.trainParam.goal = 0.0001; 

If in one case, anyone of the input parameters is absent then the wild­
card character is used, which represents two input patterns - the lower (value 
as 0) and upper bound (value as 255) of the corresponding parameter. Only 
one output neuron is used to identify a permit or deny. 

The weights are randomly chosen during initialisation of the network. 
The network is trained to give the same output for the two extreme values 
of any input, which is represented by wild-card character. This has been 
ascertained using the justification that the output for any intermediate input 
value will be the same as the output that it's got when the extreme values 
are used to train a system to attain a fixed value. 

NEURAL NETWORK BASED IPV4 FILTERING 

Originally, as per the data available from the packet, the number of input 
parameters is twelve. These are Packet Type (One input), Source IPv4 
address (Four inputs, standing for 18, 116, 124 and 132 part), Source UDprrcp 

Port (One input), Destination IPv4 address (Four inputs, standing for 18, /16, 
124 and 132 part), Destination TCPIUDP Port (One input) and Acknowledgement 
bit (One input). These twelve input parameters are to be processed for 
identification, by the router. 

In the case of neural networks, the wild-card character is represented by 
two input patterns the lower and upper bound of the corresponding parameter. 
Only one output neuron is used to represent the Permit or Deny operation. 
The network is trained to give the s_ame output for the two extreme address 
values 0 and 255 and hence any v~el'between 0 and 255 will give rise to 
the same output. This has been ascertained using the following mathematical 
justification. 

In a neural network, the net input to a neuron is given by, 

where Net is the net input to the neuron 
Xl ... xn are the inputs 
WI'" Wn are the weights between the nodes 

(1) 

A typical neural network diagram for Back Propagation Algorithm is 
shown in Figure 1. 



87 

Input Layer 

FIGURE 1. Back propagation algorithm 

Mter optimization is applied, only five parameters are used for training 
a neural network. They are Packet Type, Destination IPv4 address, Destination 
TCPIUDP Port and ACK bit. For Packet Type, 1 represents TCP, 2 represents 
UDP and 3 represents IP. For Destination IPv4 address, we have two inputs 
standing for /16 and /32 parts of the address. For Destination TCPIUDP Port, 
we have only one input. For ACK bit, Established is represented as 1, 
wildcard "*,, as O. 

For processing the optimized rules, a back propagation Neural network 
is trained. The Neural Network has five input neurons, two hidden neurons 
and one output neuron. The selection of two hidden neurons is based on the 
following previous works: 
1. "A rule of thumb is for the size of this hidden layer to be somewhere 

between the input layer size and the output layer size." (Blum 1992) 
2. "How large should the hidden layer be? One rule of thumb is that it 

should never be more than twice as large as the input layer." (Berry 
1997) 

3. The number of hidden neurons should be less than the number of input 
neurons. (Lawrence 1997) 

4. The number of hidden neurons is calculated as (Kwon & Kirby 1997): 

Number of hidden neurons = (IYumber of input + 
number of output)12 (2) 

Thus with five input neurons and one output neuron, we can have three 
hidden neurons as per (Kwon & Kirby 1997). We preferred to have two 
hidden neurons after testing the neural network with different number of 
hidden neurons. With hidden neurons = 1, the number of epochs was 41 but 
the data was trained well. With hidden neurons = 2, the number of epochs 
was 8 with actual output as 0.9955 instead of 1 [target output]. With hidden 
neurons = 3, the number of epochs was 17 with actual output as 0.9928 
instead of 1. With hidden neurons = 4, the number of epochs was 12 with 
actual output as 1.0033 instead of 1. With hidden neurons = 5, the number 
of epochs was 10 with actual output as 0.9884 instead of 1. From the above, 
it is clear that the use of two hidden neurons perform better in terms of 



88 

epochs and error in trammg. The trained neural network is tested using 
arbitrary data and it is found to give the correct actions according to the 
rules (Figure 2). The learning curve for both the optimized and non­
optimized set of rules is shown in the Figure 2. From this figure, it is clear 
that the optimized set of rules learn faster, and therefore their learning curve 
time span is shorter, than the non-optimized set of rules . 

10 . . 
8 • • • •• Non-optimized 

Q) 
:J 

6 ---Optimized 
~ 
~ e 4 
W 

2 

0 

3 5 7 9 11 13 15 17 

Number of epochs 

FIGURE 2. BPN Learning Chart 

EXPERIMENTAL DATA AND ANALYSIS 

Here, we select a set of rules that are based on the extended access list 
format where only the source and destination addresses are used. Five sets 
of data were taken among which four are shown here. 

ACL RULES ORIENTED NEURAL NETWORK ANALYSIS 

The neural network system was designed with the access control rules 
discussed above. These rules were represented into the neural network 
system with back-propagation network algorithm. The network with inputs 
and action as the output was trained for all the five experimental access rules 
set presented in Tables 3, 4, 5, 6, and 7. From the tables we can see that 
Experiments 2 and 4 alone have implicit rules (rules that posses no specific 
conditions but only indicate the action for those packets that don't satisfy the 
other access rules) at the end of the access lists. The number of rules in each 
access list varies from 3 to 21. These five experiment access lists are trained 
with eight different forms as input to the neural network system. The output 
of the system is either 0 or 1 indicating deny or permit respectively. 
According to the form of the input, the system architecture also changes as 
shown in Table 8. The following are the various forms of input for the neural 
system: 
1. ACL: The access list data were input as in the access list and replacing 

the wildcard by O. Here, the problem was noted in the case of totally 
wildcard rules like that in Experiment 2 because all the inputs are zero 
there. 

2. ACLW: In order to cater for the range of the wildcard, we represented the 
wildcards with two sets of inputs as 0 and 255. Any access rule with 



89 

wildcard is entered twice, with 0 replacing wildcards in one rule and 
255 replacing wildcards in another. 

3. BACL: In order to make the neural network train faster, because decimal 
calculation might consume more time and the error rate might high for 
decimal data, we converted the data into binary format. For the packet 
type, we had two bits representing it, TCP as 1, UDP as 2 and IP as 3. The 
source and destination addresses and ports were represented using eight 
bits. This made the number of inputs present in the neural system· to 
increase. In Experiment 5, we did provide numbers for various services 
given there and input them as numbers of eight bits. 

4. BACLW: With BACL as the format, we added information for the wildcards 
using 0 and 255 representations in binary format. In most cases, the 
number of patterns was doubled by the use of 0 and 255 representations 
of the wildcards. 

5. ACL, ACLW, BACL and BACLW were done with optimized rules and they 
are named as OACL, OACLW, BOACL and BOACLW, respectively. 

The network performance was noted for how long it takes for the neural 
network to train and whether the training process was completed successfully. 
The number of epochs (iterations) indicated whether the performance goal 
was met or not while the architectural representation of the network was 
shown in Table 8. Performance goal indicates the maximum allowed error 
between the output generated by the neural network system and the actual 
ideal output. In the case of architecture, we note the number of inputs 
present in each pattern. This number of inputs indicates the number of input 
neurons in the neural network system and the number of patterns indicates 
the number of output neurons needed for the neural network system. 

From Table 8, we can infer that the neural network system has learnt 
well in most cases, and the performance goal was met not only in three 
cases. The neural network stops the training process when the performance 
goal is met (which means the error between the output of the neural network 
and the actual output is less than the allowed error) or when the change in 
weights is minimum and that this change does not make the neural network 
learn further. From this table, we can also infer that the binary form of 
neural network requires more iteration to train due to the increase in number 
of inputs. The number of rules present in each experiment determines the 
number of patterns. Even though converting to binary increases the number 
of input nodes and with it the complexity of the network architecture, the 
number of epochs doesn't seem to be affected much due to the fact that the 
binary operations are performed faster than the decimal operations. 

After training the neural network in various different forms as mentioned 
earlier, we tested the system with three data sets for each experiment. These 
data sets where selected to see the consistency of the trained neural network 
system with the actual results the access control rules provide. The test data 
set for all the experiments is shown in Tables 9 through 13. 

The neural network system with all the above data set was tested for 
security aspects. The actual output expected for these data sets is shown in 
Table 14 as 'Idle Value'. The Table 14 is used to get the actual value of the 
neural system for various settings and compare it with the ideal value 



90 

TABLE 8. Performance comparisons 

ACL ACLW BACL BACLW OACL OACLW BOACL BOACLW 

Ex 1 No. of Epochs 5 18 11 33 12 
Goal met? 
InputslPatterns 12/5 12110 83/5 83/10 5/5 

Ex 2 No. of Epochs 3 6 6 8 3 
Goal met? 
InputslPatterns 8/3 8/5 64/3 64/5 7/3 

Ex 3 No. of Epochs 8 
Goal met? 
InputslPatterns 12/4 

Ex 4 No. of Epochs 26 
Goal met? 
InputslPatterns 12/7 

Ex 5 No. of Epochs 27 
Goal met? 
InputslPatterns 21112 

25 

12/8 

24 

12/13 

163 
No 

21142 

8 

84/4 

14 

83/7 

49 

83121 

20 

84/8 

23 

83/13 

59 

83142 

10 

9/4 

14 

10/7 

25 

9121 

TABLE 9. Test Data for experiment 1 

Conditions 

17 
No 

5/10 

5 

7/4 

72 

9/8 

38 

10/13 

50 
No 

9/42 

10 43 

27/5 27110 

5 14 

56/3 56/4 

15 

56/4 

21 

74/7 

53 

72121 

18 

56/8 

23 

74/13 

57 

72142 

Packet 
Type 

Source 
IP 

address 

Source 
TCPIUDP 

port 

Destination 
IP 

address 

Destination ACK bit Action 
TCP/UDP 

IP 11.12.13.14 
TCP 11.12.13.14 
TCP 11.12.13.14 

15 
15 
15 

21.22.33.44 
202.185.25.100 
21.22.100.100 

port 

119 
53 
100 

1 
o 

Deny 
Permit 
Permit 

TABLE 10. Test Data for experiment 2 

Source IP 
address 

10.1.3.4 
10.1.2.5 
10.1.2.1 

Destination IP 
address 

10.10.10.7 
10.1.1.7 
10.1.1.7 

Action 

Permit 
Permit 
Deny 

TABLE 11. Test Data for experiment 3 

Packet 
Type 

Source 
IP 

address 

Source 
TCP/UDP 

port 

TCP 10.10.10.10 10 
TCP 10.10.10.10 10 
IP 10.1.2.100 100 

Conditions 

Destination 
IP 

address 

10.1.1.2 
10.1.1.2 

10.1.3.100 

Destination ACK bit Action 
TCP/UDP 

port 

www 
www 
100 

o 
1 
o 

Permit 
Permit 
Deny 



91 

TABLE 12. Test data for experiment 4 

Conditions 

Packet Source Source Destination Destination ACK bit Action 
Type IP TCPIUDP IP TCPIUDP 

address port address port 

TCP 10.1.1.2 80 lD.lD.lO.lD 100 1 Permit 
IP 10.1.3.25 100 lD.1.2.25 100 0 Deny 
IP 10.1.1.28 100 10.1.3.2 100 1 Deny 

TABLE 13. Test data for experiment 5 

Conditions 

Packet Source Source Destination Services ACK bit Action 
Type IP TCPIUDP IP 

address port address 

TCP 202.185.128.lDO 100 202.l 85. 131.100 ftp 0 Permit 
TCP 202.185.128.50 50 202.185.130.5 tel net 1 Permit 
TCP 202.185.128.4 50 202.185.130.5 http 0 Permit 

expected. A system is said to have learnt well and considered as well suited 
for this operation if the actual output acquired is in close proximity of the 
ideal value. The output from the various neural network systems is shown 
in Table 14: 

1. The neural network that is of ACL rules alone has not trained the system 
and so none of the experiments gave accurate result for all the three test 
data sets. 

2. Experiment 2 was not properly learnt due to the following rules: 
a. Presence of very few numbers of rules in the ACL rules list and one 

of them is an implicit permit. Being implicit makes the neural 
network difficult to learn. Representing the implicit as 0 makes the 
neural network learn only for 0 or closer values and representing 
the implicit as 0 and 255 makes the neural network confuse the 
other set of rules. The impact of sequential set of rules also has an 
impact on the neural network training process. 

b. Referring to the number of epochs from Table 8, the value is less 
compared to other experiments. This doesn't mean that the neural 
network has trained faster and better. Fast learning doesn't mean 
that the neural network has learnt better. 

3. Optimizing the ACL rules and using them to train the neural network 
leads to some improvement. Experiment 3 and 5 are trained using OACL. 

But the impact by representing 0 and 255 as wildcards to OACL is not 
much. The outcome of the system is the same with OACL and OACLW. 

SO, there is no need of replacing wildcard with 0 and 255 that causes 
the increase in the number of patterns and make the architecture of the 
neural network complex. 



TABLE 14. Security Comparison amoI]g neural network packet filtering systems 

Idle Value ACL ACLW BACL BACLW OACL OACLW BOACL BOACLW 

Ex 1 Test Data 1 0 0.8823 0.3403 0.4189 0.8356 1.0077 1.0000 0.5381 0.7244 

Test Data 2 0.9942 0.9984 1.1913 0.9628 0.1107 0.8021 1.0986 1.1419 

Test Data 3 0.8823 1.9925 0.7438 0.5051 1.0077 0.8000 1.1508 1.1945 

Ex 2 Test Data 1 1 -0.0427 -0.0215 0.0577 0.0817 0.4743 0.5788 1.6736e-005 0.1026 

Test Data 2 1 -0.0536 -0.0274 -0.0299 0.0088 -4.9951e-004 0.0467 1.8616e-005 0.0018 

Test Data 3 0 -0.0522 -4.8718e-004 0.0292 0.0061 3.4158e-005 0.0039 1.9675e-005 -5.4934e-004 

Ex 3 Test Data 1 1 1.0012 0.2060 1.1292 0.4495 1.0007 1.0128 0.4626 0.8048 

Test Data 2 1 1.0012 0.1965 1.2884 0.5794 1.0007 1.0128 0.4626 0.8048 

Test Data 3 0 1.3233 -0.0071 0.0434 -0.0632 0.2597 0.0031 -0.0119 0.3286 

Ex 4 Test Data 1 1 0.2538 0.0925 0.4244 0.7866 0.9913 0.9870 -0.0412 1.1817 

Test Data 2 0 0.2700 -0.0037 0.3800 0.0533 0.9913 0.6910 0.0328 -0.3673 

Test Data 3 0 1.0119 -0.0057 -0.1730 -0.2159 -0.2101 1.1868 0.0044 -0.2688 

Ex 5 Test Data 1 1 0.3251 2.6991 1.1904 0.4980 0.8116 1.0363 0.9806 0.7618 

Test Data 2 1 0.9801 1.9310 1.2490 1.3889 1.0013 0.8803 1.0240 0.9234 

Test Data 3 1 1.0024 0.9749 0.8188 0.3861 1.0013 1.0253 1.0066 0.9975 



-

93 

4. The use of binary input for the OACL makes some difference in the 
output values but the permit/deny decisions remains the same. 

5. The case of OACLW and ACLW for Experiment 5 is ambiguous because 
the system couldn't meet the performance goal. This is due to the fact 
that the neural network would have fallen into the local minima and so 
the weights cannot be further adjusted to train the network better. 

6. The relationship between the number of epochs and training is normally 
that with the increase in the number of epochs, the system trains better. 
But care must be taken that the above applies only when the performance 
goal is met. The case of OACLW for Experiment 3 is an example. 

From Table 14, none of the neural network model can identify the entire 
test set for all the experiments properly. Only the BOACLW could learn three 
of the experiments properly. Experiment 2 is not taken into consideration as 
it has less number of rules and one of them is of implicit type. For 
Experiment 1 (in the case of BOACLW) with little problem of identifying the 
deny option, the network has learnt better than the ACL rules . As the system 
is not complete, we include a next level of security check using the local 
data obtained from the network and also the hourly analysis of the network 
usage. 

CONCLUSION 

In this experiments. different neural network architectures based on back 
propagation algorithm were te ted and trained with eight input sets. Those 
neural network archite ture were analysed for the performance of the 
training proces and the correctness of their learning. Analysis indicates that 
neural network could not learn all the experiments well and the presence of 
implicit rules for denialJpermi ion plays a pivotal role in the training of the 
neural network. In order to improve further on the security aspects, we 
designed neural net\\ork that ould be trained with local user data and the 
hourly hits on serve . After the training, we are able to conclude that the 
neural network learn bener lth binary input data but at the same time this 
binary input data incre e- the lllput nodes and thereby the complexity of the 
network. Improving the ecurit) aspects of the neural network with various 
sets of data along with the blllary form affected the performance of the 
neural network system. 

We hereby wish to thank the reviewers for providing us with valuable 
suggestions for future \ 'or ' Geneu algorithms] and also commenting on 
the motivation behind thi or - [i.e .. to compare with different other packet 
filtering techniques]. 



94 

REFERENCES 

Berry, M .1. A., & Linoff, G. 1997. Data mining techniques. New York: John Wiley 
& Sons. 

Blum, A. 1992. Neural networks in C++, New York: Wiley. 
Ferraiolo, D. F., Sandhu, R., Gavrila, S., Kuhn, D. R., & Chandramouli, R. 2001. 

proposed NIST standard for role-based access control. ACM Transactions on 
Information and System Security 4(8): 224-274. 

Gittleson, H., Sharp, R. & Cheswick, B. 1998. Red-hotfirewalls. America's Network 
1(102): 48-52. 

Lawrence, S., Giles, C. L. & Tsoi, A. C. 1997. Lessons in neural network training: 
overfitting may be Harder than expected. Proceedings of the Fourteenth National 
Conference on Artificial Intelligence 1: 540-545. 

Miei, T., Maruyama, M., Ogura, T. & Takahashi, N. 1997. Parallelization of IP­
packet filter rules. Proceedings of Third International Conference on Algorithms 
and Architectures for Parallel Processing '91 1: 381-388. 

Murthy, U., Bukhres, 0., Winn, W. & Vanderdez, E. 1998. Firewalls for security in 
wireless networks. IEEE Proceedings of 31" Hawaii International Conference 
on System Sciences '987: 672-680 

Odom, W. 2000. Cisco CCNA Exam #640-507 Certification Guide. Cisco Systems. 
Kwon, O. and Kirby, E. 1997. Farm Appraiser: A Neural Network for Agricultural 

Appraisal, Proceedings of the 1997 Annual Association for Information Systems 
(AIS) Conference, Indianapolis, Indiana, August 15-17, pp. 715-717. 

Osborn, S., Sandhu, R. & Munawer, Q. 2000. Configuring role-based access control 
to enforce mandatory and discretionary access control policies . ACM 
Transactions on Information and System Security 3(2): 85-106. 

Park, 1. & Sandhu, R. 2002. Towards usage control models: beyond traditional 
access control. Proceedings of the 7th ACM Symposium on Access Control 
Models and Technologies (SACMAT '02) 1: 57-64. 

Provos, N. 2002. Improving host security with system call policies. CITI: Technical 
Report 02-3. Center for Information Technology Integration, University of 
Michigan. 

Sandhu, R. 2001. Future directions in role-based access control models. Proceedings 
of Mathematical Methods, Models and Architecture for Computer Networks 
Security (MMM-ACNS-2001), Russia, May 21-23, [Lecture otes in Computer 
Science, Springer-Verlag, Volume 2052/2001] pp. 22-26. 

Sandhu, R., Ferraiolo, D. & Kuhn, R. 2000. The NIST model for role based access 
control: towards a unified standard. Proceedings of 5th ACM Workshop on Role 
Based Access Control, Berlin, Germany, July 26-27, pp. 47-63. 

Sandhu, R. & Park, J. 2003. Usage control: a vision for next generation access 
control. Proceedings of Mathematical Methods, Models and Architecture for 
Computer Networks Security (MMM-ACNS-2003), Russia, September 21-23, 
[Lecture Notes in Computer Science, Springer-Verlag, Volume 2776/2003] pp. 
17-31. 



95 

Teresa, F. L., Tamaru, A., Gilham, F., Jagannathan, R. , Neumann, P. G. & Jalali, C. 
1990. IDES: Progress Report. Proceedings of the 6th Annual Computer Security 
Applications Conference '90 1 :273-285. 

M. I. Buhari 
King Fahd University of Petroleum and Minerals 
Dhahran 
Saudi Arabia 
Email: mibubari@ccse.\cfupm.edu.sa 

M. H. Habaebi 
Burhanudin Mohd. Ali 
Department of Computer and Communications Engineering 
University Putra Malaysia 
43400 UPM Serdang. Selangor D.E 
Malaysia 
Email: {hadi:borhan }@eng.upm.edu.my 


