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ABSTRACT 

An experimental investigation has been carried out on two types of shaft 
with different stress concentration features in order to determine the notched 
members fatigue life in bending. The shafts are made from steel with DIN 

specification CK45, which is widely used for machinery components. These 
lives are compared with estimates using the simple notch-stress-strain­
conversion rules (e.g., Neuber, Linear) and the strain energy density methods 
in conjunction with the Coffin-Manson strain-life relationship. The paper 
demonstrates the simplicity and accuracy of the approach although the 
predictive capability was found to depend on the magnitude of the elastic 
stress concentration factor. 

Keywords: Fatigue life, Neuber rule, linear rule, Glinka method, stress 
concentration factor 

ABSTRAK 

Suatu siasatan uji kaji telah dilakukan terhadap dua jenis aci dengan 
keadaan penumpuan tegasan yang berbeza bagi menentukan hayat lesu 
anggota yang bertakuk ketika membengkok. Aci-aci itu diperbuat daripada 
keluli dengan spesifikasi DIN CK45, yang banyak digunakan dalam komponen 
mesin. Hayat lesu itu dibandingkan dengan anggaran yang menggunakan 
aturan penukaran-terikan-tegasan-takukan (cht. Neuber, Linear) dan kaedah 
ketumpatan tenaga terikan bersama dengan hubungan terikan-hayat Coffin­
Manson. Kertas ini menunjukkan kemudahan dan kejituan pendekatan ini 
waZaupun keupayaan ramalan didapati bergantung kepada magnitud faktor 
penumpuan tegasan kenya!. 

Katakunci: Hayat lesu, aturan Neuber, aturan rule, kaedah Glinka, faktor 
penumpuan tegasan 

INTRODUCTION 

Many engineering components contain abrupt changes of geometry. These 
are commonly referred to as 'notches' or 'stress raisers'. These are the main 
source of crack initiation followed by subsequent propagation and sudden 
failure under fatigue loading conditions. Designers must consider their 
potential effects in order to assess the integrity of such components. When 
a notched component is subjected to an external load, there is a direct 
relationship between the maximum stress at the notch root and the nominal 
stress applied remotely from the notch region. The ratio between the 
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maximum and nominal stress is referred to as the elastic stress concentration 
factor, K,. This is valid provided that the maximum stress is below the yield 
stress of the material. Values of K, (i.e., experimental and analytical) for a 
variety of notched components are readily available, e.g., see Pilkey (1997) 
and Hardy and Malik (1992). These are both geometry and loading dependent 
and are particularly useful for brittle materials in order to predict the peak 
stresses. However, for ductile materials, the local region of high stress is 
relieved as yielding occurs and the maximum stress is no longer equal to K, 
multiply by the nominal stress. Therefore, the elastic stress concentration 
factor is not appropriate and a criterion based on the accumulation of strain 
is used to assess the fatigue behaviour. This is particularly true when 
significant yielding occurs and failures are within the low cycle fatigue 
regime. 

The accumulation of strain in a post-yielding situation is not easily 
determined and mathematical solutions are only available for a relatively 
small number of specific cases. Non-linear finite element analysis can be 
used, but the method is expensive and time consuming. Furthermore, the 
modelling of the cyclic elastic-plastic material behaviour is an area of 
approximation and one where research continues to be focussed. Alternatively, 
numerical relationships have been proposed, such as the notch stress-strain 
conversion (NSSC) rules (Fuchs & Stephens 1980; Neuber 1961) and strain 
energy density methods (Glinka & Nowack 1988) to estimate these strain 
values. 

Analytical relationships to predict the strain range at a notch have been 
proposed by various researchers. Crews and Hardrath (1966) conducted 
experimental investigations into the plastic stresses at the root of a notched 
plate made from aluminium alloy with K, = 2. The component was subjected 
to repeated cyclic tension loading. The fatigue life was determined using the 
S-N diagram. The authors developed a correlation for the notched stresses 
and this provided accurate fatigue life predictions. Topper et al. (1969) 
conducted experimental investigations on aluminium plates subjected to 
reverse loading in order to predict the life of the notched components, with 
K, in the range 2 to 4. They compared their results with estimates using 
Neuber's rule (Neuber 1961) and these were found to be in good agreement. 
Papirno, 1971 compared Neuber &d Hardrath-Ohman rules (Hardrath & 
Ohman, 1953) with measurements made on notched tensile steel strips under 
monotonically increasing load with large strains. He concluded that for K, 
between 1.5 and 2, Neuber's rule provided more accurate estimates than 
Hardrath-Ohman's rule. However, the estimates coincided when K, = 2.5. 
Kotani et al., 1976 conducted experimental tests on two types of notched 
specimens, i.e., side notched plates and circumferential notched round bars, 
to study the cyclic stress-strain behaviour. The notched plate results were in 
good agreement with estimates using Neuber's rule, whereas, the notched 
bar results were significantly lower than the estimates. Other investigations 
into the suitability and accuracy of the NSSC rule estimates include the work 
of Byre-Gowda and Topper (1970) on flat plates with circular and elliptical 
holes, Hoffman and Seeger (1985) on round bars with deep circumferential 
notches, Conel and Nowack (1977) on flat plates with key-holes and Wang 
(1990) on U- and V-notched specimens. 
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In this investigation, two types of notched components have been 
considered; stepped shafts with K, values of 1.35 and 2.2 and grooved shafts 
with K, values of 1.6 and 2.6, as shown in Figure 1. These components are 
subjected to bending loads. The experimental results of nominal stress range 
(S) against number of stress reversals to failure (2N

f
) are compared with 

NSSC rule estimates and values obtained using strain energy density theory. 
Although the monotonic and cyclic material parameters required by these 
estimation methods are well documented, the paper describes how they have 
been obtained from simple monotonic and cyclic push-pull tests (using the 
two un-notched components shown in Figure 2), since such data is not 
readily available for all materials. 
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FIGURE I. Notched component geometries 
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COMPONENT MATERIAL 

The components were made from steel with DIN specification CK45, which 
is often used for machine parts, in particular in the manufacture of nuts and 
bolts. The main constituents are shown in Table 1. 
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(b) Cyclic pull-push 

FIGURE 2. Typical geometric components used for (a) simple tension 
and (b) cyclic pull-push loading 

TABLE 1. Components' material analysis 

Constituents 

C 
Si 

Mn 
P 
S 
N 

Percentage % 

0.42 - 0.50 
0.15 - 0.35 
0.50 - 0.80 

0.Q35 
~ 0.035 
0.007 

TESTING PROCEDURES 

MONOTONIC AND CYCLIC PULL-PUSH TESTING OF THE 
UN-NOTCHED COMPONENTS 

The mechanical properties of the component material were obtained using 
an INSTRON tensile machine, which has the capability of applying both 
monotonic and cyclic tensile loading, as shown schematically in Figure 3. 
The machine comprises of two main elements, the mechanical parts and the 
electronics. The mechanical parts consist of a pump and piston for the 
movement of the mounted jaw. This is operated by a hydraulic system using 
pressurised oil. The jaws can accommodate flat and round components with 
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various dimensions. The electronic control consists of a computer for 
monitoring, instructing and measuring the movements. The machine uses an 
extenso meter to measure the deformation within a gauge length. The 
dimensions of the test components are in accordance with the appropriate 
standards, e.g., see Dowling (1999). Tests were carried out under strain 
controlled axial loading. In all cases, the material exhibits cyclic strain 
hardening. Also, a stabilized loop was reached within a maximum of 20 
cycles. 

SPECIMEN 

ACfUATO 
ROD 

r, ADJUSTABLE CROSSHEAD 

J I FIXED CROSSHEAD 

HYDRAULIC 
CYLINDER -!:i~"""'W~ 

SERVO 
VALVE 

, 
FIGURE 3. Schematic arrangement of the INSTRON tensile machine. 

CYCLIC BEND TESTING OF THE NOTCHED COMPONENTS 

Figure 4 shows the schematic arrangement of the fatigue bending machine. 
It consists of a revolution counter unit, motor and a shaft. One end of the 
shaft is connected to the motor through a flexible coupling and the other end 
has a conical shaped hole in which the specimens are inserted. The shaft is 
supported on two bearings. The loading end of the specimen is attached via 
a bearing to a loading spring that is fixed to the chassis. When the spring is 
loaded, it induces and bending load on the component, the magnitude of 
which is indicated. Upon the failure of the component, a cut-off device stops 
the entire system. The motor rotates at a maximum speed of 3000 rpm. 

REVOLUTION FLEXIBLE 
COUNTER MOTOR COUPLING BEARINGS SPECIMEN 

l 
FIGURE 4. Schematic arrangement of the fatigue bending machine 
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MONOTONIC TENSILE TESTING OF UN-NOTCHED SPECIMENS 

A typical stress-strain c'urve for the geometry shown in Figure 2(a) is 
presented in Figure 5(a). The following material properties were obtained: 
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FIGURE 5. Typical stress-strain curve for (a) simple monotonic loading 
and (b) cyclic pull-push test 

CALCULATION OF TRUE FAILURE STRESS OjAND TRUE FAILURE STRAIN e, 

These were determined at the breaking load by measuring the neck diameter 
and using the following relationships (Rees 1990): 

P, lA, 
0", = ( 4r) ( d )=1188MPa, 

1+- In 1+ -
d 4r 

(1) 
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and e = In(~)= In( 100% )= 0.689 
I AI 100%-RA% ' 

(2) 

where RA%=( A.;,A, }lOO% = 49.78%. 

CALCULATION OF STRENGTH FACTOR k AND STRAlN HARDENlNG lNDEX n 

These constants are obtained using the following expressions [Rees, 1990]: 

a = k(ePlr, 
and £Pl = lOt - £el = lOt - (JIE, 

where lOt = In (1+e) and (J = S(1+e). 

(3) 

(4) 

(J and £ are the true stress and strain respectively and Sand e are the nominal 
stress and strain respectively. 

A sample of results taken from the monotonic stress-strain curve and the 
relationship between the true and nominal values is presented in Table 2. 
The true stress and true strain pairs from this table are plotted in log-log 
form in Figure 6(a). The values of the constants k ( = 1157 MPa) and n 
( = 0.191) are obtained from the intersection with the stress axis and the 
slope of the best fit line respectively. 

TABLE 2. Nominal and true stress and strain values for simple 
monotonic loading test 

e' S (MPa) e' s (MPa) s/E epl 

0.005 413.1 0.0050 415.1 0.0021 0.0029 
0.010 427.0 0.0010 431.3 0.0021 0.0079 
0.002 480.0 0.0198 489.6 0.0024 0.0174 
0.025 525.0 0.0247 538.1 0.0027 0.0220 
0.035 583.9 0.0344 604.3 0.0030 0.0314 
0.060 650.8 0.0583 689.8 0.0034 0.0549 
0.080 672.1 0.0770 725.7 0.0036 0.0734 
0.110 682.8 0.1043 757.9 0.0038 0.1005 

Hence the Ramberg-Osgood monotonic equation (Ramberg & Osgood, 
1943) becomes: 

a (a y a (a )0.:91 
e = E + k) = 202000 + 1157 . (5) 

CYCLIC PULL-PUSH TESTING OF UN-NOTCHED SPECIMENS 

A typical stress-strain curve for the geometry shown in Figure 2(b) is 
presented in Figure 5(b). 
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(b) Cyclic pull-push loading: n' = 172 and k' = 1144 

FIGURE 6. Typical true stress-true strain for (a) simple tension 
and (b) cyclic pull-push loading 

CALCULATION OF CYCLIC STRENGTH FACTOR k' 
AND CYCLIC STRAIN HARDENING INDEX n ' 

For cyclic loading, stress and strain ranges are used and hence Equation (4) 
is rewritten as: 

(6) 

aa and Ea are the true stress and strain range respectively and Sa and ea are 
the nominal stress and strain range respectively. 

The values of the constants k' ( = 1144 MPa) and n' ( = 0.172) are 
obtained in similar way to that described in Section 4.2, using sample data 
from Table 3 plotted in log-log form as shown in Figure 6(b). Hence the 
Ramberg-Osgood cyclic equation (Ramberg & Osgood 1943) becomes: 
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I I a (ar a (a JI72 
CO = ~ + k = 202000 + 11M (7) 

TABLE 3. Nominal and true stress and strain values for cyclic 
pull-push loading test 

eo' So (MPa) eo' So (MPa) s/E e/ 
0.0016 307.1 0.0016 307.5 0.0015 0.0000 
0.0020 312.7 0.0020 313.0 0.0015 0.0005 
0.0042 393.0 0.0042 394.7 0.0020 0.0022 
0.0045 400.0 0.0042 401.8 0.0020 0.0024 
0.0097 471.5 0.0096 476.1 0.0024 0.0072 
0.0131 522.0 0.0130 528.8 0.0026 0.0104 
0.0187 570.0 0.0185 580.7 0.0029 0.0156 

FATIGUE TESTING OF THE NOTCHED COMPONENTS DETERMINATION OF K
f 

For a component with a high notch sensitivity, K
f 

approaches K,. However, 
if it is not sensitive to the notch, K

f 
approaohes unity. Hence, the sensitivity, 

q, is the indication of the deviation between K, and K
f 

which are related by: 

K f =1+q(K, -1). 

Peterson (pilkey 1997) experimentally obtained an expression for q as: 

1 
q=-­

IX 
1+-, 

P 

(8) 

(9) 

where p is the notch radius and a is a material property which depends on 
the ultimate tensile strength of the component material, Suo For Su ~ 550 MPa 
under axial and bending loading, a = 0.025(2070ISYs =0.184. 

Table 4 presents the predicted values of K, and K
f 

for the range of 
geometries considered. Geometries 3 and 4 contain two notches, i.e., the 
blend fillet and the grooves. The dimensions and positions of these notches 
were designed in such a way that the maximum elastic stress in the groove 
is 3 times greater than in the fillet. Also, the principle of St. Venant's is 
observed in that a uniform stress distribution is achieved between the two 

TABLE 4. Values of K, and K
f 

for the range of geometries considered 

Geometry K , K
f 

1 1.35 1.33 
2 2.2 1.82 
3 1.6 1.52 
4 2.6 2 
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notches (Gowhari-Anaraki et al. 2000). The inclusion of the fillet in the 
above components is strictly for the safety (protection) of the machine. 

COMPONENT FATIGUE LIVES 

The results from the experimental fatigue tests are presented in Table 5 in 
the form of Sa-2N, pairs for the four geometries. 

TABLE 5. Experimental fatigue test results 

Geometry Sa (MPa) 2N
f 

263.9 2,864,800 
274.6 575,740' 
295.6 580,220 
337.8 86,440 
358.9 64,500 
422.2 26,520 

2 180.0 2,134,410 
232.7 502,450 
296.2 130,220 
335.5 47,400 
359.7 30,120 
423.1 11 ,560 

3 220.4 5,358,760 
236.2 1,012,740 
288.6 331,420 
314.9 199,300 
341.1 50,300' 
367.4 54,440 
393.6 21 ,640 

4 186.0 643,260 
223.0 489,520 
239.0 425 ,120 
265.5 262,400 
292.0 182,840 
318.6 45 ,600 
345.1 35,740 
398.2 19,210 

• Possible surface scratch or metallurgical defect 

DEVELOPMENT OF S.-2N, CURVES BASED ON LINEAR, NEUBER AND 
STRAIN ENERGY DENSITY METHODS 

The low cycle fatigue life of a notched component can be estimated from the 
Coffin-Manson equation: 

(10) 

The material properties in Equation (10) have been obtained from the tests 
described in Sections 4 and 5, i.e.: 



d f == sf = 1188 MPa 

E = 202 GPa 

i f == cf = 0.689 
b = -n'/(1+5n') = -O.172/(1+5xO.172) = -0.0925 
c = bin' = -0.0925/0.172 = -0.538. 

Hence, the Coffin-Manson equation, for this material, becomes: 

( )
-0.0925 ()-o.538 

Ea = 0.0059 2N, +0.689 2N, . 

25 

(11) 

Because the experimental results are based on the nominal applied stress 
range, Sa' it is necessary, for comparative purposes to re-write Equation (11) 
in terms of Sa' The relationship between ca and Sa depends on the selected 
NSSC rule or method. 

LINEAR RULE (Fuchs & Stephens, 1980) 

For the linear rule, it is assumed that the elastic stress concentration factor, 
K" is equal to the elastic-plastic strain concentration factor, K£, and the 
relationship between ca and Sa thus becomes: 

S = Eel K. a a / 
(12) 

Consequently, the specific Coffin-Manson equation is re-written as: 

202000 [ ()-o.0925 ()-o.538 ] 
Sa = K 0.00592N, +0.689 2N, . 

t 

(13) 

NEUBER RULE (Neuber, 1961) 

For the Neuber rule, the relationship between the elastic stress concentration 
factor, K" the plastic stress concentration factor, K(1' and the elastic-plastic 
strain concentration factor, K£, is: 

K 2 = K . K 
t s e,' 

(14) 

from which, the relationship between ea and Sa becomes: 

(15) 

where the true stress range, O'a' is calculated from Equation (7). In this case, 
the solution is not direct and the following procedure is adopted in order to 
obtain pairs of (Sa' 2N

f
) values: 

1. Select a value for 2N
f 

and obtain e
a 

from Equation (11) 
2. Calculate the corresponding value of O'a from Equation (7) 
3. Determine the corresponding value of Sa from Equation (15) with E = 

202 GPa 
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STRAIN ENERGY DENSITY (GLINKA) METHOD (Glinka & Nowack, 1988) 

The nominal stress range, Sa using strain energy density theory, is expressed 
as: 

(K,.SJ ;= (j~ +(~r~JI, . 
2E 2E n'+l k' 

(16) 

Here, procedure to obtain pairs of (Sa' 2N
f
) values is the same as for the 

Neuber rule, with the exception that Sa is obtained from Equation (16) with 
n' = 0.172, k' = 1144 MPa and E = 202000 MPa. 

DEVELOPMENT OF Sa-2Nf CURVES BASED ON EXPERIMENTALLY­
DERIVED MATERIAL DATA 

The theoretical high cycle fatigue life of the un-notched components is given 
by Fuchs and Stephens (Fuchs & Stephens, 1980): 

(17) 

where b' and s'f are material constants and can be derived from the elastic 
strain-life diagram obtained from pull-push tests on un-notched specimens. 
Equation (17) has been modified for notched specimens: 

(18) 

where A and B can be found from two distinct points on the Sa -2N
f 

diagram: 
(i) Sa = d

f 
when 2N

f 
= 1/2 

and (ii) Sa = SJK
f 

when 2N
f 
= 107 

where Sf is the endurance limit of the material. 
In this paper, it is assumed that Sf = Su 12 = 341.85 MPa (Shigley & 

Mischke, 1989) and d
f 

= O"f (= 1188 MPa). Hence, for the components 
considered, Equation (18) becomes: 

Geometry 1 
Geometry 2 
Geometry 3 
Geometry 4 

S = 1115 (2N)-OJJ91 
a f 

S = 1100 (2N)-Oll 
a f 

S = 1109 (2N)-0JJ99 
a f 

S = 1097 (2N)-0ll5 
a f 

RESULTS AND DISCUSSION 

(19) 
(20) 
(21) 
(22) 

The (Sa-2Nf) relationships obtained using the above methods, together with 
the experimental results are presented in Figures 7 to 10 for Geometries 1 
to 4, respectively. 

For the .techniques based on a low cycle fatigue assumption, the linear 
method provides the greatest fatigue life estimate for any nominal stress 
range, followed by the strain energy density method estimate and then the 
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for Geometry 2 (K, = 2.20) (See Figure 7 for legend) 
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estimate using the Neuber rule. The Sa-2Nf high cycle fatigue curve derived 
from the material smooth-specimen data provides the greatest life estimate 
for large 2N

f 
values and the lowest life estimate for low 2N

f 
values. The 

cross-over point is K, dependent. 
For K, = 1.36 and 1.60 (i.e. Geometries 1 and 3 respectively), the linear 

and strain energy density methods generally provide conservative estimates 
when compared with the experimental results for the notched specimens, 
particularly as 2N

f 
reduces. Similarly, the Neuber estimates become 

increasingly conservative as one moves from the high cycle to the low cycle 
regime. Nevertheless, over the nominal stress ranges covered in the 
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experiments, there is reasonable agreement between the experimental results 
and the Neuber and strain energy density estimates. Similarly, the high cycle 
fatigue curves (Equations (19) and (21)) provide reasonable estimates. 

For K, = 2.20 and 2.60 (i.e. , Geometries 2 and 4 respectively), the three 
low cycle fatigue estimates become increasingly optimistic as 2N

J 
increases. 

Furthermore, the Neuber and strain energy density estimates generally 
under-predict the number of cycles to failure when compared to the 
experimental results. The best estimate for fatigue life of these notched 
specimens, over the nominal stress range considered, lies between the linear 
estimate and that provided by Equations (20) and (22) for Geometries 2 and 
4, respectively. 
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FIGURE 9. Nominal stress range/number of stress reversals to failure curve 
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The next stage of the work is to carry out fatigue tests on components 
with large K, values (e.g., components with loaded projections) in order to 
assess the accuracy of these methods when clearly operating in the low cycle 
fatigue regime. 

CONCLUSIONS 

The four methods described for determining the fatigue life of notched 
components are simple to apply, given the appropriate material data from 
smooth specimen testing. Of the methods based on low cycle fatigue, the 
linear method provides the highest life estimate (for a given nominal stress 
range) and the Neuber method provides the lowest estimates. The strain 
energy density method estimates lie between the other two. These three 
methods give very different estimates in the low cycle fatigue regime but 
converge in the high cycle fatigue regime. The high cycle fatigue method 
goes from being under-predictive to being conservative as 2N

f 
increases. 

Over the range of bending loads considered in the experiments, reasonable 
accuracy can be achieved. The choice of 'best estimate' is both K, and Sa 
dependent. 

For the components with a low K, value, the Neuber (plane stress) 
method appears to provide the best overall life estimates based on low cycle 
fatigue (although the components are clearly failing in the medium to high 
cycle regime). For components with a. moderate K, value, the linear (plane 
strain) method appears to provide the best overall life estimates based on 
low cycle fatigue. 

NOTATION 

Af Failure area 
Ao Original area 
d Shaft minimum diameter 
e Nominal strain 
ea Nominal strain range 
E Elastic modulus 
k Strength factor 
k' Cyclic strength factor 
K, Elastic stress concentration factor 
K

f 
Fatigue strength factor 

n Strain hardening index 
n' Cyclic strain hardening index 
N

f 
Number of cycles to failure (i.e., fatigue life) 

2N
f 

Number of load reversals to failure 
P

f 
Final applied load 

q Notch sensitivity factor 
r Necking radius 
RA Reduction in area 
S Nominal stress 
Sa Nominal stress range 
Su Ultimate tensile strength 
a Material property 
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£ 

£ 
a 

at 
a 

y 

True strain (at the notch) 
True strain range (at the notch) 
True failure strain (at the notch) 
Notch radius 
True stress (at the notch) 
True stress range (at the notch) 
True failure stress 
Yield stress 

Superscripts 
el Elastic 
pI Plastic 

Total 
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