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Madelung Constants for Ionic Crystals 
using the Ewald Sum 

Ronald M. Pratt 

ABSTRACT 

Ionic crystal configuration energies have always been one of the bugbears 
of computational thermodynamics due to the inherent long-range interactions. 
Unlike the van der Waals forcer associated with non-ionic compounds. it is 
not possible to utilize a long-range cucoJ!; ionic interactions require 
summation over an infinitely large crystal lattice. The situation is further 
complicated by the fact that the resulting infinite series for an ordered 
crystal lattice is non-convergent. This means that a direct summation over 
the charged particles is not feasible. This paper develops and analyzas a 
powerful yet under utilized method for calculating these lattice energies, the 
Ewald sum. Not only is this a powerful and accurate of calculating the 
configuration energies of ionic crystals, it is also 1101 dependel1t on existence 
of crystal structure. Hence this method is useful in any application involving 
Coulonbic interactions, including substances in the liquid phase. The general 
Ewald method is presented with some simplifying assumptions to produce a 
working equation amenable to computer evaluations and sample computations 
are made for NaCI and esc!. Extansive discussion is presented on detennining 
the optimum splitting parameter. A simple yet general FORTRAN program for 
calculating the Madelung constant for an ionic system of any phase is 
presented and a sensitivity analysis is perfonned. 

Key wards: Ewald sum, Ionic crystals. Madelung constant, Long-range 
interactions. Molecular Simulation. Reviprocal space 

INTRODUCTION 

Lattice energy calculations for ionic crystals are physically straighforward. 
yet in practise, quite difficult. The difficulty arises due to the long-range 
nature of Colombie interactions. Unlike van der Waals type interactions 
which are often modeled using an .... decay rate (Smith et al. 1996 and Haile 
1992). Coulombic interactions have a decay rate of r'. It can be shown 
(McQuarrie 1976) that decay rates of less than r' require special mathematical 
treatment. Various methods have been employed (Berry et al. 1980), but 
none as ingenious and powerful as the method proposed by Ewald (Ewald 
1921). 

The landmark paper of De Leeuw et al. 1980 developed a general 
method of using Ewalds method in the solution of problems involving 
charged panicles. Their paper provides a terse derivation of the Ewald 
summations formula but unfortunatly, their final results are not yet amenable 
10 implementation on a computer. One of the goals of this paper is to present 
a simple, user-friendly and straightforward algorithm for employing the 
Ewald summation method. Also, a sensitivity analysis is made to discuss 
selecction of the Ewald splitting parameter. correcting some common 
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misconceptions. Finally, the method is illustrated using a simple FORTRAN 

program applied to table salt and cecium chloride. 

BACKGROUND 

The difficulty in computing these ionic lattice sums is illustrated using an 
NaCI (table salt) crystal lattice which is shown in Figure I. A simple and 
straighforward method to calculate the ionic configuration energy is to 
imagine an infinitely large crystal lattice, choose any arbitrary ion in the 
system as the center, and begin adding up charges, starting with the central 
ion's nearest neighbors. If we take the ionic spacing to be distanced d and 
start from the center ion in Figure 1. we see that there are 6 nearest 
neighbors which are d units from the central ion. Moing outward, we then 

see that there are 12 second nearest neighbors at a distance d..fi units from 
the central ion. Continuing outward, there are 8 tbird nearest neighbors at 

a distance d..f3 units from the center, 6 fourth nearest neighbors 2d units 

from the center, 24 fifth nearest neighbors dE units from the center, and so 
on. We are contructing an infinite series as follows: 

(Eq. I) 

where e is the electronic charge, q is the dimensionless ionic charge (±l), 
and d is the ion spacing. This is usually written as 

2 
E= e Q,Q2 M 

d 
(Eq.2) 

AGURE 1. Spatia] Arrangement of Ions in NaCI Crystal Lattice 
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where M is the Madelung constant. The reported value for table salt is M = 
1.747558 (Berry et al. 1980). A direct evaluation of the series in (Eq. I) is 
easily carried out by computer. Results are displayed in Figure 2, which 
show the occupancies out as far as 36 coordination shells. Figure 3 shows 
the cumulative value of the Madelung constant of (Eq. 2) out as far ~s 250 
coordination shells, i.e. 250 terms in the series of (Eq. I). We see from 
Figure 2 that the value of the series is not converging. It turns out that this 
series is conditionally convergent (De Leeuw et al. 1980) and no matter how 
many terms are included in the series of (Eq. I), the series will not converge. 
More sophisticated methods are needed. A method of summing this series 
has been devised by H.M. Evjen (Berry et al. 1980), but this method works 
only when the particles are in their lattive positions. If the position of the 
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ions were perturbed (as in lattice vibration) or if they were to move freely 
about the system cell (as in a liquid) then this procedure would be unsuitable. 
These problems are overcome with the Ewald summation method which 
calculates the ionic energy for a system of ions in any spatial arrangement. 

THE EWALD SUMMATION METHOD 

Simply stated, the Ewald method carries out the summation in (Eq. 1) in two 
pans, a small region form zero to some convenient cutoff in real space, and 
the reminder in reciprocalor wave space. The relative contributions of the 
two terms is goverened by the splitting parameter, ct. Essentially the method 
uses a Fourier transform to map real space to reciprocal space so that the 
summation of (Eq. 1) to infinity may be easily calculated. More specifically 
(Allen et a1. 1987), the crystal is considered to be replicated infinitely in 
each of the three dimensions, as before. Each point charge in the system is 
surrounded by a Gaussian charge distribution of equal magnitude and 
opposite sign. This charge distribution screens the point charges making 
them short ranged and amenable to a small, real space cutoff. The set of 
point charges may be summed over all particles in the system and in the 
neighboring image systems. The summation is corrected by subtracting off 
the Gaussian distributions to retrieve the effect due to the original system of 
point charges. The canceling distribution is summed in reciprocal space. 

Developing the Ewaki summation formula is a difficult task involving 
imaginary numbers, and a complete and corrected derivation is available 
from the author. After considerable effort, we finally develop (see Appendix 
1) the working equation: 

(Eq.3) 

where i = Hand erjc is the complementary error function: 

2 rx , 
erjc(x) = 1- .J7i J

o 
e- I dt 

and E is the total (dimensionless) Coulombic molar configuration energy. 

The vector k represents a three dimensional vector in wave or reciprocal 

space, while the vector r represents a vector in real space and indices i and 
j are over the number of particles (N) in the principal cell. It is assumed that 
the principal cell is a cube of Volume Va" 

The dimensionless energy in (Eq. 3) for salt is found to be -6.99026 
which c:orresponds to a Madelung constant (Appendix II) of 1.747565 over 
the range 5<ct<35. This is shown in Figure 4. When splitting parameter, ct, 
lies outside this range, then Madelung values are in error due to either over 
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FIGURE 4. Madelung constant as a function of splitting parameter for rock salt. 
Four 'Molecules' in principaL cell. 40 wave space vectors were used 

or under weighting the wave space contribution at the expense of the real 
space contribution. Section IV discusses selection of this splitting parameter. 
The obtained value is in close agreement withthe reported value of 1.747558 
(Berry et al. 1980). The dimensionless energy, E, is readily converted to 
physical units, E" by multiplying by a conversion factor, F: 

where 

( 
e2 X2N X P )} F= -- __ A - xlOOcm/mx 0.001 kllJ=105.515kllmol 

41rEo Nm M, 

e = 1.60219 x 10-19 C 
E, = 8.854188 X 10-12 C' s'/(kg m') 

N. = 6.02205 X 10''' molecules/mol 
N. = Number of molecules in primary cell = 4 

P = 1.35 glcm' 
M, = Total mass of primary cell = 232/N A g 

yielding a value of Ep = -737.58 kllmol, which agress with the tabulated 
value Ep = -737.37 kllmol (Smith 1986). In addition, the same program was 
used to calculate the Madelung constant for CsCl, and yielded 2.03553 
which agress exactly with the recorded value (Born et aI. 1998) of 2.0354 
(Appendix II). 

PARAMETER SELECTION AND SENSITIVITY 

For discussion purpose, we consider (Eq. 3) to consist of three parts, i.e., 
three contribution to the total dimensionless Coulombic configuration energy, 
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E, of the salt lattice: Two real space contribution (£S and E'j and one 
reciprocal or wave space contribution (£"): 

the real space constant contribution (independent of particle configuration): 

N 
s ex ~ 2 E =- r= £,.qj 

-V 1C j=1 
(Eq. 4) 

the complementary error term contribution: 

E£ = L [qi;j e/fc(u1rl)] 
1~i<:.jSN II (Eq. 5) 

and the reciprocal or wave space contribution: 

(Eq. 6) 

Therefore, 

(Eq. 7) 

where (dimensionless) E = -6.9883 corresponds to that reported by (Smith 
1986) for rock salt. 

A simple FORTRAN program for evaluation the Madelung constant and 
Coulombic configuration energy of a NaCi crystal is given and discussed in 
Appendix II. The most time consuming part of (Eq. 3) is evaluation of EW 

which involves a complex sum over wave space vectors, k, since this is 
effectively a triple-nested loop. II is therefore desirable to minimize the 
number of wave space vectors contained inthe summation; this will be 
discussed consequently. The summation over i and j represent real space 
summations over particles in the principal cell. The key parameter is the 
spitting parameter, a.. While there are no inherent restrictions on [he value 
of the splitting parameter in the initial work of De Leeuw et al., we will soon 
see that the further assumptions proposed by Smith (1986) which have been 
incorporated into (Eq. 3) require judicious selection of this parameter. (See 
Appendix I). 

We have seen that the Ewald algorithm does indeed reproduce the 
correct value of the Madelung constant to five decimal places, 1.74756 and 
the value for cesium chloride, 2.03535. It is beneficial to observe the 
sensitivity of the calculation to three degrees of freedom in (Eq. 3). 

I. The value of the splitting parameter, a; 
2. The number of wave vectors (KMAX in Appendix II) included in the 

reciprocal space calculation. 
3. Number of ions contained in the unit cell, N; 
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EFFECT OF CHANGING THE VALUE OF THE SPLl1TING PARAMETER. (AND 
NUMBER OF WAVE VECTORS 

As mentioned above. the splitting parameter effectively determines the 
relative imponance of the real and wave space contributions to the total 
energy. The larger the value of Ct. the larger the relative contribution of the 
reciprocal space tenn. This then requires more wave space vectors (KMAX in 
Appendix TI) to be included in the summation in (Eq. 6). This is shown in 
Figures 4 and 5 which all employ four Nael 'molecules' or eight ions (N=8 
in Eq. 3) in the principal cell. Figure 4 shows the calculated Madelung 
constant as a function of splitting parameters, a, using 40 wave space 
vectors. We observe the correct value (1.74756) from along the plateau 
which extends from about 5<Ct<35. The large number of wave space vectors 
(KMAX = 40) enabJed valid resuJts over this wide range of the splitting 
parameter. This large number of wave space vectors also makes the program 
very slow to execute. 
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FIGURE 5. Madelung constant as a function of splitting parameter for NaCI crystal. 
Four 'molecules' in principal cell 

In Figure 5 we see that when 12 wave vectors are used, the plateau 
extends from around 5<a< 17, and when eight wave vectors are used the 
plateau extends from 5<a<11. Using less wave space vectors makes the 
program run much more quickly. We observe then that we can be less 
choosy about the splitting parameter (at tbe expense of a much slower 
computation) if we are willing to include additional wave vectors in the 
calculation. Figure 6 shows for eight wave vectors the relative contributions 
of E' , £E. and EW (in units of kllmol) to the total configuration energy, which 
should match the Iiterarure value of E = -737.37 kllmole (Smith 1986). We 

p 

see that the range of validity for (is again 5<a<l1 and that the principal 
contributions to the total energy are from the real space constant. E', and 
from the wave space term, ew· This is because the small size of the principal 
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Eight wave space vectors were used. Four 'molecules' in principal cell. 

cell (N=8) precludes a significant real space contribution from the error 
function term. 

Many applications. as in Monte Carlo or molecular dynamics simulation 
(Rapaport 1998). require repetitive calculations of Coulombic interaction 
energies. One would then want to use a minimum number of wave space 
vectors. This must be done very carefully and after much experimentation. 
An example is shown in Figure 7. where agains. we plot Madelung constant 
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as a function fo splitting parameter. However, this time, we have only used 
three wave space vectors, i.e., KMAX=3. This computation is extremely rapid 
and yields the Madelung constant to four decimal places accuracy (1.7476) 
but only when a splitting parameter value of 5.60 is used. A slightly different 
value from 5.60 (i.e., 5.59 or 6.01) will yield a less accurate value for the 
Madelung constant. It is quite risky doing these calculation when only a 
specific point value of the splitting parameter is able to yield correct results. 
De Leeuw et aI. , recommend an efficiency-optimized value of (of 5.714, 
which can see from Figure 7 would be somewhat less than optimal for this 
system. Also, we see from Figure 7 that selecting the spliuing parameter on 
the basis of minimizing the potential energy will be fruitless, since in fact, 
the optimal value occurs at the inflection point, i.e., 

d2M 
-=0 
da 2 (Eq.S) 

In short, these values must be determined very carefully for the specific 
system at hand since the plateau becomes an inflection point, not a local or 
global extrema efficiency is maximized. 

EFFECT OF CHANGING THE SIZE OF THE PRINCIPAL CELL 

Figure 8 shows the relative contributions to the total Coulombic energy for 
a system comprised of 216 ions (N=216) which employs eight wave space 
vectors. We see now, that over the acceptable range of a, that all three 
energy contributions in tum make a significant contribution to the total , Note 
that the valid range of a is not significantly enlarged by incorporating more 
particles in the principal cell . Neither is there any improvement in the 
accuracy of the calculated value of the Madelung constant. 
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From Figure 9, we observe how the three contributions to the Coulombic 
energy vary as a function of size of the principal cell. The wave space 
contribution becomes negligible for N >:; 500 ions in the principal cell. This 
would then offer a considerable savings in computation time, and it may be 
possible in some application to neglect this computationally expensive term. 
Again, this must be done very carefully. 

400 ~-

200 --'-

-400 

-600 
.' 

-600 -, 
I 

-1000 

0 200 

Error Function 

-COTCCota·~lcoC-ouc-'o-mccb;-' ~E""'-gy 

400 600 BOO 

Number of Particles in System 

1000 

FIGURE 9. Energy contributions as a function of principal cell size. (N). Eight wave 
Space vectors were used 

CONCLUSIONS 

In this study we have presented a development of ,the Ewald equation, 
subsequent simplifications making the equation suitable for computer 
evaluation, and a brief sensitivity analysis along with a simple and complete 
computer program. The Madelung constant for rock salt has been reproduced 
with five decimal places accuracy or about 0.0004% error and the Madelung 
constant for cesium chloride matches all decimal places of reported values. 
Much of the application of the Ewald summation method is in the area of 
molecular simulation and molecular mechanics where systems characteris­
tically involve hundreds or thousands of particles, and the calculation must 
be repeated hundreds of thousands of times for ever changing configurations. 
In these situations, program efficiency is absolutely essential. 

From the discussion above, we can see that one would want to choose 
the minimum number of necessary wave space vectors (since this is triple 
nested loop) and then very judiciously choose the splitting parameter, n, to 
yield an acceptable value of the Madelung constant (or configurational 
energy). For large systems, it may be possible to neglect the reciprocal space 
term entirely. Again, the power of the Ewald method is that there is no 
dependence on any particular crystal syarnmetry, indeed, there is no 
dependence on symmetry at all, making the calculation suitable for liquid 
simulations. Further considerations on efficiency are not considered here, 
but the reader is referred to the excellent discourse of Smith (1986) for 
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discussion of using De Moivre's theorem with recursion and wave space 
symmetry considerations. The reader as also recommended to peruse the 
CCP5 website for dowaloadable molecular simulation programs, many of 
which incorporate the Ewald sum. 
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APPENDIX I. DERIVATION Of THE EWALD SUM EQUATION 

A partial derivation is found in De Leeuw, et aI., 1980, and a complete and 
corrected derivation is available from the author. The total energy of a 
simulation cell can be written as 

(AI) 

where there are N charged particles in the primary Or principal cell and 
indices i and j represent sums over all charged particles in a particular cell. 
The primary cell is taken to be replicated infinitely in three dimensions, with 
the summation over n summing over this infinite number of replicas. The 
prime (') indicates that when;; = 0 (i.e .. the principal cell) the i=j tenns are 
not included. Charge neutral ity is also required, 

(A2) 
; ,, 1 

The lattice sum in (A I) is conditionally convergent, i.e., it yields results 
as shown in Figure 2. The sum may be made absolutely convergent by 

insertion of the convergence factor, . - ' 1'1' , and then taking the limit as 
s->O. 

(A3) 

which finally yields the De Leeuw, et aI. , 1980 result: 

I LN 1 [L[ eifc(liila) e _71:~'I'] 2a ] 271[LN _ ]' +- q . + -- +- q r . 
2' I-I 'c 3 I , 

i .. 1 ;_0 n ttlnl v1t I_ I 

(A4) 

This expression can be put into a more convenient fonn by making 
some additional assumptions. Due to charge neutrality and the fact that 
cbarges and spatial positions are independent, we can assume: 

I. The 2371ltq,;;I'tenn is negligible; 
.. I 

By judicious selection of the splitting parameter, a, we can assume: 
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2. Truncate the erfc conlributions at ii =0. 
This greaUy simplifies (A4): 

exp(_lfl' J 
4a' N ' 

E=~l ' 1~>iexp(if';;)1 + L [qi:( e/fc<a1i'1)] 
o i .. a III 1:1 ISi <jS N 

N 
a~, 

--LJqj 
.J1i i _ I 

(Eq.3) 

This final expression is used in the computer program of Appendix II to 
calculate the Coulombic configuration energy and Madelung constant of 
NaCl and CsC!. 
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APPENDIX II. A SIMPLE FORTRAN PROGRAM m CAI.CULATE 
TIlE MADEl.UNG CONSTANT 

The program given below calculates the Madelung constant and Coulombic 
configuration energy based on infinite replication of a principal cell consisting 
of four salt "molecules", i.e .. four sodium ions and four chloride ions in the 
cubic spatial arrangement shown in Figure I. Programming emphasis is on 
clarity, not efficiency, and the reader is referred to the CCP·5 publication of 
Smith, 1986 for discussion and an example code segment of an efficient 
algorithm used in a molecular dynamics application. Program input and 
output for both NaCl and CsCl is given below. 

Coordinates for ions in the principal cell and their ionic charges «(I) are 
read in from the external file 'nacl.dat' (or 'cscl.dat') which is listed below. 
These are the only external data read into the program. Program output, the 
Madelung constant and Coulombic configurational energy are written out to 
the file 'nacl.out' ('csel.out'), also given below. Representations of the ions 
in the data file 'nael.dal' are shown by the shaded spheres of Figure I. The 
main program, 'madelung' , calls three subroutines as shown below: 

The main program, 'madelung', specifies various parameter values 
required in the calculation and handles all input and output. The splitting 
parameter, Cl, is set in line 33. The real space contribution to (Eq. 3) is 
calculated in subroutine 'rwald' . Lines 13·17 in 'rwald' calculate the constant 
lenn, . SPE': 

N 

SPE=-..sL Lq,' 
..fii '_I 

while line 33 in 'rwald' calculates the complementary error function term, 
'OPE': 

OPE= L [ql~J eifc( alrl)] 
1S. I <jSN 

and uses the 'erfc' function also provided below (Abramowitz, et al. 1970). 

The most time-consuming part of the calculation is subroutine 'kwald' 
which caleulates the reciprocal (Fourier) or wave space contribution to the 
energy, This is the subroutine where the computer spends 99+% of its time. 
This is due to the triple loop over wave space vectors (KMAX) between lines 
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32-58 (inside of which is a single loop over ions) in subroutine 'kwald'. The 
value of KMAX is set in line 4. The program makes use of FORTRAN's built­
in complex arithmetic functions. The exponential factors are first calculated 
in lines 26-28 to be used later. Lines 44 and 55 explicitly calculate the wave 
space contribution, 'EPE': 

11lese three dimensionless contributions summed and may be converted 
to real units as outlined above. 11le Madelung conslant is calculated from 
the dimensionless energy in line 47 of the main program (for salt. this means 
divide by -4). 

I. FORTRAN oro2ram 
C •••••••••••••••••••••••••••••••••••••••••••••••••• -._....... 1 

C This program uses the Ewald sum method to calculate the 2 
C Coulombic potential energy and Madelung constant for J 
C salt (NaCI). Coordinate data for 4 NaCI moJecuJes in a 4 
C cryslallanice are read in from the file 'nllcl.dar. 5 
C u ................... u..................................... 6 

PROGRAM MADELUNG 7 
implicit double precision (a-h,Q-z) 8 
implicit integer". (j-n) 9 
PARAMETER(NATOMS=B) 10 
COMMONlCMCNSTI PI 11 
COMMONICMOANTI CHGE(NATOMS) 12 
COMMONlCMPARMI RCUTSO.ALPHAD.FACPE 13 
COMMON/CMNUMSI NOM.NSPEC.NION(2).NOP.H.RCUT.ALPHAL 14 
COMMONICMCRDSI X(NATOMS). Y(NATOMS).l(NATDMS) 15 
open(B.file=·nacl.oor) 16 
open(9.file='nael.dat') 17 

C PHYSICAL CONSTANTS 18 
PI = 4.·ATAN(1 .) 19 

C NO. OF MOlECULES(4). SPECIESIMOLECULE(2). IONS(4 Na.4 CI.B TOTAL) 20 
NOM=4 21 
NSPEC=2 22 
NION(I)=NOM 23 
NION(2)=NOM 24 
NOP=2'NOM 25 

C REAO IN ION X.Y.Z COORDINATES AND IONIC CHARGES 26 
00 1=1 .NOP 27 
READ(9.') X(I),Y(I).Z(I).CHGE(I) 28 
ENDOO 29 

C CUT·OFF RADIUS IS HALF BOX LENGTH 30 
RCUT=I .0 31 

C CHARGE DISTRIBUTION PARAMETER FOR EWALD SPLITTING 32 
ALPHAL=B.O 33 

C FLOAT NUMBER OF MOLECULES 34 
FNOM=FLOAT(NOM) 35 

C SOUARE OF OIMENSIONlESS CUT -OFF 36 
RCUTS=RCUT"2 37 

C DIMENSIONLESS VALUE OF ALPHA 38 
ALPHAD-ALPHAU2.0 39 

C CALCULATE REAL SPACE CONTRIBUTIONS. OPE ANO SPE 40 
CALL RWALO(QPE.5PE) 41 

C CALCULATE RECIPROCAL SPACE CONTRIBUTION. EPE 42 
CALL KWALD(EPE) 43 

C CONVERT INTO J/MOL 44 
TPF = OPF+FPF+SPF 45 
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C CALCULATE MADE LUNG CONSTANT FROM MOLAR COULOMBIC ENERGY 46 
CMDLNG'TPEIFNOMICHGE(1)ICHGE(NOM+1) 47 

C DISPLAY RESULTS 48 
write(·, oJ 'Dimensionless energies:' 49 
write(8,O) 'DimenSionless energies:' 50 
wrlle(",10) OPE 51 
write(8 .10) OPE 52 

10 ionnal(,ERF : '.120.110.4) 53 
wrile{·.11) EPE 54 
Wrile{8.11) EPE 55 

11 formal(,Fourier : '. t20,f10.4) 56 
write,",12) SPE 57 
wrile(8.12) SPE 58 

12 format(,Self Interaction : '.t20.f10.4) 59 
write(",13) TPE 60 
write(8.13)TPE 61 

13 format(,Total energy: ',t20.f10.4) 62 
write(8.20) CMOLNG 63 
writer.20) CMOLNG 641 

20 tormal(,Madelung Cooslanl [Nacq • ·,13O.f8.6) 65 
END ~ 

SUBROUTINE RWALO(OPE.SPE) 1 
implicit double precision (a-h,o-z) 2 
implicit integero4 (i-n) 3 
PARAMETER(NATOMS'8) 4 
COMMONICMCNSTI PI 5 
COMMONICMNUMSI NOM.NSPEC.NION(2).NOP.H.RCUT.ALPHAL 6 
COMMONICMOANTI CHGE(NATOMS) 7 
COMMONICMPARMI RCUTS.ALPHAO.FACPE 8 
COMMONICMCRDSI X(NATOMS). Y(NATOMS). Z(NATOMS) 9 

C ............................ u.............................. 10 

C CONSTANT TERM IN SELF INTERACTION CONTRIBUTION TO POT ENGY 11 
C ••••••••••••••••••••••••••••••••••••••••••••••••••••• ••••••• 12 

SUM·O.O 13 
DO 1·1.NOP 14 
SUM·SUM+CHGE(I)"2 15 
ENDDO 16 
SPE··ALPHADISORT(PI) • SUM 17 

C······· ...... •· .. · .. ···· .. · .. ·• ...... • .. •• .... ••· .. •· .. ·····.... 18 
C ERROR FUNCTION TERM 19 
C ............................................... ..... ........ 20 

OPE'OO 21 
D021·1.NOP·1 22 
DO 3 J'I+ 1.NOP 23 

C SEPARATION OF PARTICLES 24 
Rx=xm.Xf.1l 25 
RY·Y(I)·Y(J) 26 
RZ·Z(I)·Z(J) 27 

C CUT·OFF CRITERION 28 
RSQ·RX·RX+RY·RY.RZ'RZ 29 
IF(RSQ.GT.RCUTS) GO TO 3 30 
R'SQRT(RSQ) 31 

C ERROR FUNCTION TERMS 32 
QPE'QPE+CHGE(I)'CHGE(J)'ERFC(R'ALPHAD)IR 33 

3 CONTINUE 34 
2 CONTINUE 35 

RETURN 36 
END ~ 

SUBROUTINE KWALD(EPE) 1 
implicit doubte pf'eciskm (a·h,o-z) 2 
implicit inleger"'4 (i·n) 3 
PARAMETER(NATOMS'8.KMAX·26) 4 
DOUBLE PRECISION KSQ 5 
COMMONICMNUMSI NOM.NSPEC.NION(2).NOP.H.RCUT.ALPHAL 6 
COMMONICMQANTI CHGE(NATOMS) 7 
COMMONICMPARMI RCUTS.ALPHAD.FACPE 8 
COMMONICMCROSI X(NATOMS). Y(NATOMS). Z(NATOMS) 9 



COMPLEX EXPIKR(NATOMS),SUM 
COMPLEX EL(NATOMS,-KMAX:KMAX) 
COMPLEX EM(NATOMS,-KMAXKMAX) 
COMPLEX EN(NATOMS,-KMAX:KMAX) 

c·· .... ·· .. ······ .. ···· .. ·· ·· ...... · .. · .. · .. · ...... ·········· .. 
C RECIPROCAL SPACE (K-SPACE) CONTRIBUTION TO POTENTIAL ENERGY 
C ---••••••••••••••••••••••••••• -••••••••••••••••••••••••••••• 

DATA ZERO/1.0E-10i 
TWOPI=8,O'ATAN(10) 

C SIZE OF BOX 
DATA CL,CM,CN/2.0,20,201 
V=CL'CM'CN 
EPE=O.O 

C STORE EXPONENTIAL FACTORS 
DO 1=I,NOP 
DO K=-KMAX,KMAX 
EL(I,K)-CMPLX(COS(K'TWOPI'X(IYCL),SIN(K'TWOPI'X(IYCL)) 
EM(I ,K)=CMPLX(COS(K'TWOPI'Y(IYCM),SIN(K'TWOPI'Y(IYCM)) 
EN(I.K)=CMPlX(COS(K·TWOPI·Z(IVCN),SIN(K"lWOPI·Z(IYCN» 
ENDDO 
ENDDO 

C START LOOPS OVER WAVE VECTORS IL,M,N) AND NUMBER OF ATOMS II) 
DO 10 L=-KMAX,KMAX 
RL=TWOPI"FLOATIL)ICL 
DO 20 M=-KMAX,KMAX 
RM=TWOPI'FLOAT(M)ICM 
DO 30 N=-KMAX,KMAX 
RN=TWOPI"FLOAT(NVCN 

C TESTS ON MAGNITUDE OF K VECTOR 
KK=L °l +MOM+N"N 

C SKIP WHEN K VECTOR = ZERO (ED 3) 
IF(KK,L T ZERO) GO TO 30 

C COEFFICIENT AIK) 
KSQ=RloRL +RMoRM+RN°RN 

AK=TWOPIN' EXPI-KSDI(4. 'ALPHAD'"2))IKSD 
C FORM EXP(IKR) FOR EACH PARTICLE 

DO 1=I ,NOP 
EXPIKR(I)-ELII ,L)"EM(I ,M)"EN(I,N) 
ENDDO 

C FORM SUMS FOR EACH SPECIES 
SUM=(O" O.) 
DO 1=I ,NOP 
SUM-SUM+CHGEII)"EXPIKRII) 
ENDDO 

C A~~~~E~~A:;'~~R~~~~E~~~Z~;:;~s~':itGY 
30 CONTINUE 
20 CONTINUE 
10 CONTINUE 

RETURN 
END 

DOUBLE PRECISION FUNCTION ERFCIX) 
C ERROR FUNCTION USING 7,1,26 OF ABRAMOWITZ AND STEGUN 

IMPLICIT DOUBLE PRECISION (A-H,O-Z) 
DATA PIO,32759111 
DATA A 1,A2,A310.254829592,-Q.284496736, 1.4214137411 
DATA A4,As/-l ,453152027,1 .00 14054291 
T=1.I11 .+P·X) 
EXPAR2=EXP(-X"2) 
ERFC-«(((AS' T +M )"T +A3)"T +A2)'T +A 1 )TEXPAR2 
RETURN 
END 
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2. Input data file, 'oatl.dat' 

0 . 00 0 . 00 0 00 
1. 00 1 . 00 0 00 
1 . 00 0 .00 1 .00 
0.00 1 .00 1 .00 
1. 00 0.00 0 . 00 
0.00 1. 00 0 .00 
0.00 0.00 1.00 
1. 00 1.00 1.00 

3. Progr:4m C}1ltPUt, "nacl.out' 

Dimensionless energies: 
ERF : 0.0000 
Fourier : 
Self Interaction 

11.0638 
-18.0541 

Total energy : -6 .9903 

-1.0 

-1. 0 
-1. 0 

-LO 
1 . 0 
1 . 0 
1.0 
1.0 

Madelung Constant (NaCl] _ 1.747565 

4. Inpu' da'. file, '«d.d.,' 

0 . 50 0.50 0.50 
1. SD 0.50 0.50 
0 . 50 1.50 0.50 
1. so 1.50 0.50 
0.50 0.50 1. 50 
1 . 50 0.50 1.50 
0.50 1. 50 1. SO 

1.50 1. SO 1. 50 
' 0.00 ,0.00 0.00 
1.00 0.00 0.00 
0.00 1. 00 0.00 
1. 00 1. 00 0.00 
0.00 0.00 1. 00 
1.00 0.00 1. 00 
0 . 00 1. 00 1. 00 
1 .0 0 1.00 1. 00 

5. Program output, 'csel.out' 

Dimensionless energies: 
ERF : 0.0000 
Fourier : 
Self Interaction 

19 . 8253 
-36.1081 

Total energy: -16.2828 

1.0 
1.0 
1.0 
1.0 
1.0 
1.0 
1.0 
1.0 

-1.0 
-1.0 
-1. 0 
- 1. 0 
-l. 0 
-1. 0 
-1. 0 
-1. 0 

Madelung Constant (esCl) ~ 2.035353 
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