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A Plasticity Theory and Finite Element
Implementation ot Friction Model
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ABSTRACT

A friction model bused on plasticity theory is presemted. An inrerfuce
element was used in the finite element implenmentation. - An incremental-
iterative solution strategy was suggested to simulate the non-linear problem
in friction. The model was tested to simidate the friction force of the ejection
of a powder compact component from a die. The nmerical sinnlation
resitls were validated and shows good agreement.

ABSTRAK

Sat model geseran berdasarkan teori plastik dibentangkan. Satu wisur
antara-niika  dignndakan dalam implementasi unsur rerliingga. Strategi
penvelesaian tokokan-leluran dicadangkan bagi menveluku masalalh tak-
lefurus dalam geseran. Model ini dinji untuk penvelakuan duva geseran
terhadap dava tolakan komponen padatan serbuk dari dalum acuan.
Keputusan penvelakian berangka telah dibuktikan dan menunjukan keprtusan
vang haik,

INTRODUCTION

Friction appears as a consequence of the interaction between two bodies.
The nature of friction forces developed during contact and sliding is
extremely complex and is affected by a number of factors such as the
characteristics of the interface. the time scale and the frequency of the
contact, the response of the interface to normal forces. inertia and thermal
effects. the roughness of the contact surfaces. history of leading, wear and
general failure of the interface materials, the presence or absence of lubricants
and so on (Oden and Martin, 1985) .

Recently, much attention has been devoted to the numerical analysis of
friction and contact in general engineering problems, Despite this, friction
modelling is not so well developed as a continuum mechanics modelling.
and further work in this area is still needed. In order to take into account
the frictional effects, several treatments have been considered in conjunction
with finite element modelling. Most of the finite element implementations
of frictional phenomena have been based on the classical Coulomb law
(Coccoz et al. 1994). A Tresca friction law which is a generalisation of the
Coulomb frictional law has also been used (Jinka 1992). More recently.
frictional phenomena have been considered within the framework of the
theory of plasticity. Elastopiastic analogies have been used o devise the
frictional algorithms (Curnier 1984; Schonauer 1993). Also due to its effect
at the microscopic scale, micro-mechanical models have also been used in
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the treatment of friction and their results incorporated into a constitutive
theory (Rodic and Owen 1989).

Another issue in this modelling is the treatment of the interface. The
interface behaviour has been modelled by a connecting nede between the
workpiece and die (Park 1985). This has been extensively used in the metal
forming processes especially in sheet metal simulation. In this type of
treatment, common connected nodes were used for different materials which
may not represent the real situation when a thin layer of oxide or lubricant
lies in between them. Another approach for representing this interface
behaviour is to use a contact layer which has a very small thickness
{Vakhroucher et al. 1992). In this case, another type of domain was
considered as an interface material. A more robust treatment is associated
with using an interface element (Rodic and Owen 1989) with one side
representing the die and the other representing the workpiece. The work
presented in this paper will address the macromechanical model of the
friction incorporating the plasticity anology and the used of an interface
element in the finite element procedure.

PLASTICITY THEORY OF FRICTION

One of the first descriptions of frictional behaviour which can be derived
from the classical theory of plasticity can be found in Fredriksson (1976).
The formulation can be achieved from an analogy between frictional and
plastic phenomena. Table 1 presents the related formulation to a plasticity
model. The formulation of frictional phenomena are discussed as itemised
below.

TABLE 1. Plasticity and fricion theory

Plasticity = Friction
elastic & stick
elastic-plastic = stick-slip

vield criterion =) friction criterion
hardening/softening rules o tearing/wearing rules
flow rules o slip rules

STICK REGION

The physical meaning of the stick region is that sticking is caused by the
elastic deformation of the asperities at the contact surface. The sticking
behaviour in the tangential direction is described by

T=cg +C.8 (h

The tangent stress, 7 leads to a tangential shear displacement, g/ with
coefficient of sticking, c. In a closed or rigid die, it is assumed for simplicity
that there is no movement in the normal direction because there will be no
penetration of workpiece into the tools, so the normal displacement, g, = 0.
Figure 1 shows a clear view of the shear force and displacement in a
quasistatic compaction or more obviously during ejection of the component
from the die.
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FIGURE 1. Shear stress - shear strain

STICK-SLIP DECOMPOSITION

The shear displacement is decomposed into two parts; stick and slip, which
is in principle the same as the decomposition of elastic and plastic behaviour.
The stick is reversible and the slip is irreversible. As mentioned earlier, the
normal displacement is assumed to be zero so only a tangential displacement
will be considered which consists of stick and slip decompositions,

8= =g (2)
where g/ and g’ are the tangential shear displacement for stick and slip

respectively.

FRICTION CRITERION

A friction criterion is the indicator whether tangential sticking or slipping
occurs, If the friction force reaches a certain threshoid, called the slip limit,
then relative shearing occurs. The general form is given as

<0 stick
FAALE, ){: 0 slip (3)

The most common friction criterion for a perfect friction state 1s the
Coulomb law which can be expressed mathematically as
F(toy)='t+po, —¢, (4)

where 7 is frictional shear stress, ¢, is normal stress, u is friction coefficient
and ¢, is friction cohesion. The normal stress should in under compression
condition or there will be no friction between the workpiece and the die if
the stress is under tensile condition. Or more generally as suggested by
Curnier (1984) which includes wear and tear model.

Fi(toy)=l1"+po, +b (5)

where exponent ¢ and constant » denotes the tear and wear phenomena.
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WEAR AND TEAR

The wear and tear is the phenomena of hardening and softening during
sliding. It this phenomenon is ignored. the frictional behaviour is analogous
10 a perfectly plastic material in plasticity. The Kinematic variables of stick
and slip are associated with the friction force and also wear and tear forees.
These two forces were introduced as different forms of the same phenomenon
{i.e. grinding-iny (Curnier. 1984: Rodic and Owen, 1989) and both processes
were assumed to produce a reduction in the force of friction. The shear stress
increases when the hardening mechanisms occur and conversely, when the
shear stress decreases. the softening mechanism takes place.

The development of shear force during shearing is dependent on the
fength of the compacted part which has been found in several references
(Ernst and Barnekow. 1994}, which describe typical examples for this
behaviour. In gjection. the shear force decreases for the shorter component.
On the other hand, the shear force increases for longer component.

SLIP RULES
The direction of slip. is governed by slip rules deriving trom a slip
potential, Z

Nz
Ty

dy =¢ ((.); and d¢) =@ {6)

where @ is u constant expressing the colinearity of the slip increment with
the outward normal to the slip potential. It Z is replaced by the slip criterion
£ . the slip rule becomes associated. Physically. this is not acceptable
hecause it will create a gap (separation) as shearing process proceeds. The
non-associated slip rule is therefore more applicable to model the friction
problem. Figure 2 shows a better view of the associated and non-associated
slip rule applied to contact behaviour. It clearly shows that the direction of

sipping
separation

= U“

FIGURE 2. Slip surface criterion and non-associated slip rules
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slipping is parallel to the direction of shearing stress. The non-associated
slip rule. by analogy. is the same as associated flow rule in the von Mises
criterion in plasticity.

COMPUTATION OF THE FRICTIONAL PROBLEM

A special six-noded isoparametric inferface element was used in the finite
element discretization procedure and this is shown in Figure 3. The first
three nodes of this element represent the workpiece material on one side and
the tool on the other side. After giving the definition of displacement and
strain by using the standard finite element, the stress-strain relationships for
this interface clement have to be defined which represent the normal and
shear relationships. The normal is to caplure the asperity deformation in the
workpiece material or the tooling. whereas the shear relationship is dependent
on the yield criterion, The frictional stiffness matrix was then calculated
Iromt these relationships to give the stress-strain matrix at a particuluar element.

l

- A or

(a) glohul defination thy local defination

FIGURE 3. Global and tocal definations ol interface element

FINITE ELEMENT APPROXIMATIONS

By using shape functions as the usual way in the finite element procedure.
the displacement at any point & on the powder side is given by the vector
{up} and on the tooling by {u}.

For the special element shown in Figure 3. the displacement of node i
in the local & and 717 axes needs to be defined. The shape functions &
associated with node i are expressed in terms of the local & coordinate as

N,=lEE-1) 1 i=1.6 (7

i

N =1-§ i=2.5 (8)

N,=E(E+1) : i=3.4 (9)
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The unit tangent and vector normal to the interface are respectively given by

n=%[%i+%j] (10)
and s=%[%i+-§é:l (1

where the Jacobian J is related to the length L of the interface

4 512
ox) (dyY
"Kaﬂ {%) ] w
The transformation from global to local displacement (or strain) is then

given by the following matrix and is introduced to deal with the arbitrarily
orieniated surface geometry of the tooling i.e.

T=[“] (13)
s

Therefore, the local displacement is obtained from the following
transformation

u,'=Tu, (14)
u,'=Tu, (15)

The local relative displacements are defined as the difference between the
local displacement of the workpiece and the tool, i.e

2 u "
{gf.}={":}_{"f} W

From equations (14) and (15), then (16) leads to the relationship

gf ul‘
g =B! . where B =TN (17)
" p

Since the interface is a zero thickness element, the definition of strain is
taken directly from the relative displacement in equation (16).

CONSTITUTIVE RELATIONSHIP

The normal strain is considered negligible and is governed mainly by
asperity deformation at the contact. Since the normal stress is significant, the
small strain is achieved by prescribing a large modulus coefficient E. Also
this is chosen since deformation in this normal direction does not have any
significance in the forming process (Burr and Donachie 1963). Thus, the
normal stress-strain relationship can be achieved by means of a linear
equation

G"=E’g” (18)
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where E_ can be chosen to capture asperity contact as an appropriately
chosen large number. In this work, the value used is 105. Equation (1)
expressed the tangent stress which has been decomposed into stick and slip
part. Considering the stick region first, the incremental form of the shear
stress-strain relationship can be given as

At=c'Ag, (19)

where the sticking coefficient is proportional to the stick shear modulus of
the workpiece and tool as shown in Figure 1. The shear force then. is limited
by the slip criterion as in equation (4) or (5). However, because of the -
availability of experimental data (Gethin et al, 1994), the shear stress-strain
relationship for the stick-slip region can be obtained.

The stiffness matrix at the interface is defined using the standard finite
element method, i.e

_ [T
K_LJBJDfodL (20}

where L_is the length of the interface element. D, is the stress-strain matrix
in the local coordinate system. So that the stress-strain can be written in
incremental form as )

_JAT s GF 0 Ag,
Ao_{Aon}_[O Ef}{Agn (21)

D,Ae (22)

The frictional non-linearity is produced by the modulus of slip shear which
can be obtained in terms of the gradient of relationship between shear stress
and shear strain.

The non-linearity of the friction problem needs the application of
numerical techniques. The incremental-iterative solution strategy is used.
incorporating the frictional parameters. The total computational procedure is
summarised in Appendix I

NUMERICAL EVALUATION AND VALIDATION

In the literature review, friction is well known as an important parameter
where it may affect the applied forces, stresses and density variation throughout
the component, Figure 4 illustrates the variation of experimental ejection force
as a compact component drawn out from the die. There are two regions which
may be defined as stick friction and follows by slip friction. The curves also
show clearly that the level of ejection force is very dependent on the length.
Details of this phenomena has been explained (Gethin et al. 1994) where the
ejection stage is considered. These information data is used in this work for
numerical input data and the experimental validation.

The incremental form of the shear stress-strain relationship under this
stick region can be given by;

AT=G Ag, (23)
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FIGURE 4. Ejection force for iron powder

where G, is the stick shear modulus which is given by the slope in this
region. In the slip region. the slip shear modulus. (5, is appropriate. This
slip modulus is given by the slope in the skip region. The values of stick and
slip modulus summarised in Table 2 are used in this work.

TABLE 2. Stick and slip modulus

G, (N/mm?) G, (N/mm*)
20 mm 40 mm

150 =210 0.05

Figure 5 shows the effect of friction modulus associaied with the stick
and slip behaviour during ejection phase. Figure 5(a) shows the variation in
ejection force over a range of stick modulus (110 - 180 N/mm2). It is evident
that when a higher stick modulus is applied, the ejection force to break the
static friction is higher. Figure 5(b) shows the effect of slip modulus changes
(-2.0- 2.0 N/mm*) and clearly the modulus has a significant effect on the
level of the ejection force.

Figure 6 shows the simulation of the ejection force which is compared
with the experimenal results for 20 mm and 40 mm length component. Good
agreement has been achieved when using the friction modulus imput data in
Table 2 which incorporates the softening function established from
experimental work. In comparing the numerical stability during ejection. the
Newton- Cotes integration was found to be more stable than Gauss integration.
This is attributed ot the higher order error for Gauss integration for the same
number of integration point used.
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CONCLUSION

A friction model is completed based on a plasticity theory, Basic ingredient
of the model consist of stick-slip decompaosition, friction criterion, wear and
tear rules and slip rules. In implementing the theory, the numerical procedure
incorporating finite element was used. Good agreement has been achieved
between simulation and experimental observation.
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NOTATION

Wear and tear constant
Cohesion of friction
Coefficient of slipping
Coefficient of sticking
Elasticity matrix

Young modulus

Friction function

Stick/slip normal displacement
Stick/slip tangen displacement
Displacement tensor

Slip function

Plastic muitiplier

Friction coefficeint

Stress tensor

Friction shear stress

Plane or axisymmetric coordinate system for global
defination

Land Local defination coordinate system

APPENDIX I: Computational process for friction

(1) The total prescribed shear displacement, « is divided equally to » small increments,

Al

For each increment

(a)

3

4)

5
(6)

)

(8)
(%

For each increment, calculate the tangent stiffness matrix[K] using appropriate
G, modulus. For the first step and first iteration i, set G,=G,. For subsequent
iterations G, is defined in computational step (6).

Compute displacement as Ay ZK-"I’:{_!

Ag Au
Compute ' B = i
P Ag | /1 |Av
n rl
Evaluate 7 at n+1 according to the slip criterion.
Evaluate the frictional shear stress, T

TLH = t:’l_l + GFAg:H-I
where G, = T—E
|Ag,|

Evaluate f< 0 continue step (9)

F > O continue step (8)

Refine and correct the shear stress state and go to step (5).

Check convergence for each iteration using convergence criteria at each
gaussian point

(AT — AT
’ AT

if not satisfied calculate frictional stress 7 a1 step (6).

= TOLLER

n

(10) Again n=n+1 for next increment step (1)
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