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ABSTRACf 

Due to the difficulty of ch~racterizing complex heterogeneities with 
mathematical equations, the analytical solution based on the convection­
dispersion equation assumes dispersion that is independent of time and 
space. However, more established results suggest that dispersion varies with 
space due to the complexity of a porous structure and the effect of large 
scale heterogeneities in the field. This space dependence of dispersion has 
been considered as the primary reason for the "scale-up" problem, which is 
the disparity between laboratory and field measured dispersion. In this 
work, the space dependence of dispersion is converted to time dependence 
by considering the fact that distance x = nt and K(x) = K(nt) = nK(t) since 
average velocity flow is considered. Results from this work demonstrate that 
space or time independence of dispersion only occurs at relatively long 
duration of flow where the flow is generally stabilized and small values of 
fractal exponent. The concentration profile in a porous system assuming 
constant and time dependent dispersion is also evaluated. 

Keywords: Homogeneity, heterogeneity, dispersion, permeability, porosity, 
fractal exponent, mixing zone, porous media. 

ABSTRAK 

Lantaran kesukaran untuk mencirikan keheterogenan kompleks dengan 
persamaan matematik, penyelesaian beranalisis berasaskan kepada 
persamaan olakan-serakan kerap mengandaikan bahawa serakan tidak 
bersandar kepada masa dan ruang. Akan tetapi, keputusan yang lebih 
diiktiraf mencadangkan bahawa serakan berubah dengan ruang disebabkan 
oleh kerumitan struktur berliang dan kesan daripada keheterogenan skala 
besar di dalam medan ini. Serakan yang bersandarkan kepada ruang telah 
dianggap sebagai punca utama kepada masalah "sekala menaik", iaitu 
ketidakseimbangan antara serakan terukur makmal dengan medan. Di 
dalam kertas kerja ini, serakan yang bersandarkan kepada ruang telah 
ditukar kepada yang bersandarkan kepada masa dengan mengambilkira 
fakta bahawajarak, x = nt dan K(x) = K(nt) = nK(t) memandangkan purata 
halaju aliran diambilkira. Hasil kajian ini menunjukkan bahawa serakan 
yang tidak bersandarkan kepada ruang dan masa hanya berlaku pada aliran 
dalam jangkamasa panjang relatif, dengan aliran secara amnya distabilkan 
dan nilai fraktal eksponen rendah. Susuk kepekatan dalam sistem berliang 
yang mengandaikan serakan malar dan serakan bersandarkan masa juga 
dinilai. 

Katakunci: Kehomogenan, keheterogenan, serakan, telapan, keliangan, 
eksponen fraktal, zon tercampur, media berliang. 
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INTRODUCTION 

Dispersion is caused by many factors, one of which is the fluctuation in the 
velocities of the individual fluid elements as they move within a porous 
system due to inhomogeneities in the permeability and porosity. Dispersion 
comprises three fundamental mechanisms. The first, being molecular diffusion, 
is caused by the random thermal motion of molecules. The second is 
microscopic convective dispersion, which develops from flow paths caused 
by rock inhomogeneities that are small compared with the dimensions of 
laboratory cores. The third is macroscopic convective dispersion which 
results from flow paths caused by permeability heterogeneities that are large 
compared with the dimensions of laboratory cores (Stalkup 1983). The last 
two mechanisms, microscopic and macroscopic convective dispersion are 
together known as mechanical dispersion. Dispersion varies with space due 
to the complexity of a porous structure and the effect of large scale 
heterogeneities in the field. This space dependence of dispersion is considered 
to be the primary reason for the "scale-up" problem which is the disparity 
between laboratory and field measured dispersion coefficients. 

The success of a miscible oil recovery process depends on the length 
and integrity of the mixing zone within which dispersion works to cause 
mixing and dissipation of the injected solvent. Subsurface mixing behavior 
can be determined from inter-well tracer tests in which the tracer concentration 
at a producing well is monitored. The concentration proflle is a function of 
the evolution of the mixing zone with time. This information is used to infer 
formation characteristics and the dispersive process of the characteristic 
medium (Brigham et al. 1987). In both cases, the applicable differential 
equation is the convection-dispersion equation assuming a constant dispersion 
coefficient given by Brigham et al. (1987) and Stalkup (1983) where, 

8C 
V.[KVC-vC]=8i (1) 

in which K is the constant dispersion coefficient, C is solvent concentration, 
and n is the uniform velocity of flow. Despite the fact that all reservoirs are 
heterogeneous, current analytical determination of the mixing zone based on 
the convection-dispersion equation above assumes reservoir homogeneity 
(Streltsova 1988). This is due to the difficulty of characterizing complex 
heterogeneities with mathematical equations. 

Dispersivity, a, a measure of the degree of the dispersive characteristics 
of porous media, is related to dispersion coefficient by the expression K=an. 
a can be determined in the field by means of a tracer test. Pickens and 
Grisak (1981) performed a field tracer test that involved the injection of 
water containing a radioactive iodine tracer into an aquifer via an injection 
well and then subsequently pumping the well to recover the injected fluid. 
Laboratory measured dispersion coefficients show considerable deviation 
from the field measured values. These factors of inconsistency have been 
reported in the work of Bear (1972) and Mishra et al. (1988) to be as a result 
of the scale dependence of dispersivity. Results from the laboratory and field 
experiments performed by Pickens and Grisak (1981) show that the greater 
the flow length, the larger the value of dispersion coefficient. 
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The relationship between the flow length and dispersion coefficient 
however is not easy to describe mathematically because differences in scale 
exist in the laboratory and field porous media. In addition, the field porous 
media may not be homogeneous and there are variations in the fluid 
velocities within a pore, between pores of slightly different sizes, and 
different flow paths that have slightly different lengths. This has been 
described in detail in the work of Fetter (1993). It is also known that fluid 
spreading due to permeability variation in the field is much greater than 
pore-scale dispersion in the laboratory (Fetter 1993). 

At a field scale, measuring the exact size of the pathway in which fluid 
particles travel is difficult and the accuracy depends on the scale used. In 
fractal geometry, a fractal dimension is used to explain the difference in 
length scale of the flow paths measured in the laboratory and field. Fractal 
geometry offers a model to explain distinct behavior at short and long length 
scales of irregular objects. One relationship between flow length and 
dispersion coefficient at all length scales has been proposed by Zhang 
(1991) who expresses dispersion coefficient in a fractal form as, 

(2) 

(3) 

LD=xla, where x is a flow length and a is a characteristic length. no is the 
ensemble-average velocity and qo is the variance of the velocity field. The 
variance of velocity field is simply the summation of the square of the 
difference between the velocity of individual fluid particles and the average 
velocity of the fluid. 

f3 is called a fractal exponent whose values are illustrated in Figure 1. 
f3 normally takes values from less than zero to negative infinity. For 
f3 < -1, normal dispersion prevails which characterizes a Fickian model of 
dispersion. For fractal exponent in the range of 0 > f3 ~ -1, anomalous 
dispersion or non-Fickian dispersion takes place in the reservoir of interest. 
Positive values of f3 are not applicable to a physical system as advocated by 
Erkal (1997). 

The traditional approach of characterizing reservoir heterogeneity has 
been to apply stochastic techniques to permeability variation. A stochastic 
model is a method to reduce errors in the estimates and analyze the variation 
of the permeability using statistical techniques. The use of stochastic 
functions such as arithmetic or geometric mean, standard deviation, variance, 
and correlation length to generate spatially correlated parameter fields is 
given by Luster (1985) and Sudicky (1986). Mishra et. al. (1988) provides 
a moving average method to produce log-permeability field with a circular 
semi-variogram in two-dimensions. 
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FIGURE 1. Fickian and non-Fickian model of dispersion 

The objective of this work is to describe dispersion in macro scale 
heterogeneously porous media utilizing fractal geometry. 

ANALYTICAL SOLUTIONS FOR CONSTANT DISPERSION 

For a gravity stable one dimensional, miscible flood in a dipping 
homogeneously porous media (reservoir), the less dense solvent displaces oil 
down-dip at a rate below a critical displacement rate such that gravity acts 
to keep the solvent segregated from the oil and prevents protrusions of 
solvent fingers into the oil. Assuming homogeneity, such a system has been 
modeled as an infinitely long one dimensional flow system containing no 
solvent initially, but into which a constant solvent concentration is 
continuously injected beginning at time zero. For one dimensional longitudinal 
dispersion, the relevant convection-dispersion equation in a semi-infinite 
homogeneous medium having a plane source at x = 0, is given as 

Introducing the dimensionless variables into the equation gives: 

The equation can be written in term of Peelet number, N : 
p< 

1 82CD OCD OCD 
----2----=--
Np< &D &D OlD 

(4) 

(5) 

(6) 

where CD = CICo, xD = x[L, and tD = (vt)/L. The Peelet number relates the 
effectiveness of mass transport by advection to the effectiveness of mass 
transport by either dispersion or diffusion (Lake 1989). It has the general 
form of vUK. 

SOLUTION TO FIRST TYPE BOUNDARY 

The initial and boundary conditions for one dimensional first type boundary 
is a step change in concentration given as, 



C (x,O) = 0 
C (O,t) = Co 
C (oo,t) = 0 

; x ~O 
; t ~ 0 
; t ~ 0 
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The first statement is an initial condition that states that at time t = 0, 
the concentration is zero everywhere within a semi-infinite flow domain 
where x is greater than or equal to zero. The second condition states that the 
face at x = 0 is maintained at concentration C for all time. The third o . 

condition states that the flow system is infinitely long and that no matter 
how large time gets, the concentration will always be zero at the end of the 
system. The exact analytical solution (Lake 1989; MarIe 1981) for constant 
K in equation (4) is given as, 

(7) 

In a dimensionless form, the above equation can be rewritten as, 

(8) 

SOLUTION TO SECOND TYPE BOUNDARY 

The second type of boundary condition is one of continuous-constant 
injection into a flow field. The boundary conditions are, 

C(x,O) = 0 ; -00 < x < +00 

~ 

f t:PeC(x,t)dx = Cot:P,vxt ;t > 0 

C(oo,t) = 0 ; t ~ 0 

The initial and third conditions for this boundary are similar to those of 
the first kind. The second boundary condition states that the injected mass 
of solute over the domain from -00 < x < +00 is proportional to the length 
of time of the injection. <1>, is the effective porosity and v)s average linear 
flow velocity in a longitudinal direction. Following the solution by Sauty 
(1980), the exact solution is obtained, 

(9) 

In a dimensionless form it is represented by, 
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(10) 

It can be observed that the only difference between equation (7), (8) and 
(9), (10) is the plus and minus sign before the second term of the equations. 

HETEROGENEOUS CASE: TIME DEPENDENT DISPERSION 

Current analytical models for determining the concentration profile during 
fluid mixing in a porous system assume constant dispersion coefficient and 
reservoir homogeneity. In this work, the space dependence of dispersion 
coefficient is converted to time dependence by considering the fact that 
distance x = vt. Since n is constant (only average value is considered), 
K(x)= K(vt) = vK(t). Thus, space dependence is converted to time dependence. 
The advantage of making this conversion is that it allows available analytical 
solutions to be used. In the work of Erkal (1987), the time dependent 
dispersion coefficient is defined as, 

d 
K(t} = -(J(t}.t) 

dt 

where, 

1[- (1 + 1I)~2 + 11) I(t)=-
t t 2 (I+t)P 

(1 + 11)(2+ 11) 

(11) 

--+ + + 
(1 + 11) (1 + 11)(2 + 11) (1 + fJ)(2 + fJ) 

t (1 + t)P 2t(1 + t)p ] 

Whenftt) above is multiplied by time and then differentiated with respect to 
t, the following time dependent dispersion coefficient is obtained, 

[

11(1 + t)P-I + 2{Jt(l + t)P-1 + 2(1 + t/ + (Jt2(1 + t/-I +] 
t 2t(1 + t)p 

K(t)=-(1+II) + (1+1I}(2+1I) 

for 11 *' -1,-2 

APPROXIMATE SOLUTIONS FOR TIME DEPENDENT DISPERSION 

For heterogeneous systems, the same convection-dispersion equation can be 
applied except that the dispersion coefficient is now time or space dependent. 
Thus, we can rewrite the governing equation as: 

d 2C 8C 8C 
K(t} &2 -v & =8i' (12) 
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where K(t) is the time dependent dispersion coefficient. The PDE solution 
employing the flrst type boundary condition can be approximated by 
introducing the time dependent dispersion coefficient to yield, 

C 1 {x-yt) EX; {x-yt) ---erfi +-eifc 
Co - 2 2~K(t)t 2 2~K(t)t 

(13) 

The exact solution, if known, should satisfy equation (12) and the flrst 
boundary conditions simultaneously. The error in the approximate solution 
can be evaluated by substituting equation (13) into equation (12). y denotes 
the error from the true solution calculated from, 

d2C {JC {JC 
y=K(t) &2 -v & =& (14) 

For the approximate solution to be the true solution of the convection­
dispersion equation, the value of y should be zero. For the second type 
boundary condition, the solution can be approximated from, 

C 1 {x-yt) EX; {x-yt) ---erfi +-erfi 
Co - 2 2~K(t)t 2 2~K(t)t 

(15) 

RESULTS AND DISCUSSION 

Figure 2 illustrates the relationship between the time dependent dispersion 
coefficient, K(t) and dimensionless flow time for different values of the 
fractal exponent. Observe that as the fractal exponent decreases ($ approaches 
negative inflnity) or as a medium becomes strongly Fickian in nature, the 
curves start to plateau. The curves eventually become horizontal at p ~ -100 
for which the dispersion coefficient remains a single constant value. The 
curves also become plateau at relatively large time scale. Thus, it can be said 
that a single value of dispersion coefficient may be appropriately applied 

DimalsiOllless Time, ID 

FIGURE 2. Dispersion coefficient as a function of dimensionless time at 
different values of the fractal exponent 
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only for large time scale or where f3 ~ -Ioo, corresponding to values of 
dispersion coefficient smaller than 0.01. 

The graph suggests that the constant values of dispersion coefficient 
only occur at: (I) relatively long duration of flow where the flow is 
generally stabilized and (2) small values of fractal exponent. It is appropriate 
to assume constant dispersion coefficient only for large time scales. However, 
for small values of dispersion coefficient, it is appropriate to assume 
constant dispersion coefficient for all time. 

For f3 > -Ioo, when a fluid particle moves through a porous system, it 
initially experiences small dispersion due to the small area it occupies. As 
the particle moves further out to occupy bigger areas, it disperses more due 
to the fact that the reservoir is heterogeneous until it reaches a point where 
it has covered eryough area to the extent that K(tJ values remain constant. 
For f3 values smaller than -loo, the particle disperses the same manner 
regardless of the space and time. This happens when the medium is perfectly 
homogeneous. 

This is analogous to a sample taken from a large population having 
different weights. When a small sample is selected at random, the average 
of the sample weight is not enough to represent the average weight of the 
population. However, if a larger sample is taken, its average value will be 
closer to the population mean. The same concept holds for reservoir that is 
heterogeneous. The value of K(tJ represents reservoir dispersive characteristic 
only at a given time and distance. In order to obtain K(tJ value that 
represents the reservoir, a longer flow time should be allowed to occur. Now 
consider a population of exactly the same weight. No matter how small or 
big the sample is, its average weight will be the same as the population 
mean. This situation applies to a reservoir that is homogeneous. The value 
of K(t

D
) will remain the same regardless of the time or distance the fluid 

travels. 
Figure 3 shows the deviation of equation (13) from the true solution. 

The errors can be conveniently computed using MathCADQ'I application 
software. From the figure, it can be observed that the errors are extremely 
small, of the order less than 10-6. It can be observed also that the error is 
larger at smaller flow time or for bigger values of fractal exponent. At long 
flow times or small values of fractal exponent, however, the error approaches 
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FIGURE 3. Error of the approximate solution employing first type boundary 
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zero. This is as expected since these conditions approach the constant 
~fficient case. The deviation is extremely small and it can be considered 
negligible particularly in the field application. 

Figure 4 shows the error generated from equation 15. The error is much 
smaller in the order of less than 1 0-8• Again, the error is larger for bigger 
values of fractal exponent. For b = -1.5, the deviation of the approximate 
solution from the true solution appears to increase as it approaches tD about 
0.1 and then decreases to approach the true solution at tD about 0.5. From 
here on, the deviation starts to increase again and maintain for some time 
before it starts to decrease slowly at larger time scale 
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FIGURE 4. Error of the approximate solution employing second type boundary 

Figure 5 illustrates the change of concentration distribution with time 
and fractal exponent. This figure illustrates the evolution of concentration 
with time at a fixed position. Figure 6 is plotted to show the relationship 
between CICo and tD for different values of dimensionless dispersion 
coefficient, 1'/, at 100, 50, 20, 5, 0.9, and 0.00667 respectively which is 
employed in the work of Ogata and Banks. 11 is equal to KI(vL), where K 

1.00 r------------------::~__::::;:::II_, 

0.90 

0.80 

0.70 

0.60 

0.50 

0.40 

0.30 

0.20 
0.10 
0.00 L--..... E:::;...:::::::;.; __ :::;;,.c:::::-..:::::=---_________ ----l 

0.2 0.3 0.4 05 0.6 0.7 0.8 0.9 1.1 1.2 1.3 1.4 1.5 

Dimensionless Time, to 

FIGURE 5. Dimensionless concentration against dimensionless time for 
various values of the fractal exponent-First Type Boundary 
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FIGURE 6. Dimensionless concentration against dimensionless time 
from the work of Ogata and Banks 

100 

is a constant. Curves with • S' shaped profile are evident from both of the 
figures, agreeing with similar phenomena experienced in the laboratory 
experiments (Stallcup 1983). 

When longitudinal mixing takes place in a miscible displacement 
process, where a first contact miscible solvent is injected into a reservoir to 
displace oil that has the same density and viscosity as the solvent, the 
effluent solvent concentration initially is produced at low concentration. 
Then, it is followed by a period of rising concentration and finally a period 
where effluent concentration gradually approaches injected concentration. 
Thus, the • S' shaped concentration profile is observed. 

Considering the case for which the dispersion coefficient is independent 
of time when f3 = -100. The value of K(tJ for f3 = -100 is 0.01. For x = L 
= 150ft, and v = O.Olftisec, substituting these values and calculating for 1/ 
from 1/ = KI(vL) yields 0.00667. The two curves representing f3 = -100 and 
1/ = 0.00667 respectively superimpose one another. This shows that the 
application of fractal exponent gives identical results when K is time 
independent and hence fits well with the current analytical models. 

Figure 7 is generated from the equation utilizing the second type 
boundary. It can be observed that the solution employing the second type 
boundary condition becomes closer to the solution employing the ftrst type 
boundary condition as the value of b decreases. For a perfectly homogeneous 
reservoir, both solutions become the same. For a heterogeneous reservoir, 
the solution employing the second boundary condition yields lower values 
of dimensionless concentration than the solution employing the first boundary 
condition. 

APPROXIMATION OF FRACTAL EXPONENT TO DETERMINE 
DISPERSION COEFFICIENT 

It is possible to estimate the value of f3 from a tracer test by measuring the 
tracer concentration at the producing well with time. The average fluid 
velocity can be obtained from a tracer analysis. Considering that the tracer 
concentration measured at the producing well takes approximately 2.3 hours. 
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FIGURE 7. Dimensionless concentration against dimensionless time for various 
values of the fracral exponent-First and Second Type Boundary 

The distance between the injector and producer is 150 ft., v = 0.01 ft/sec and 
the tracer concentration measured is 10 percent of the initial concentration. 
The dimensionless time, tD is calculated to give 0.55. From the tracer 
concentration and dimensionless time, the point lies on the curve where 
fl = -3 in Figure 2. K(tol can be read directly from the figure to give value 
of 0.29 ft2/sec. This is an example of analysis using single point data to 
estimate the value of fl. Series of measurement of the tracer concentration 
with respect to time can be performed so that a type curve matching 
technique (a more preferable approach) can be employed to estimate fl. In 
a type curve matching approach, several values of CIC

o 
are plotted against 

dimensionless time and then compared with the curves in Figure 7. fl which 
represents the reservoir is equal to the fl value from the two curves that 
match. 

CONCLUSION 

Results from this work demonstrate that the use of time dependence of 
dispersion to determine the concentration profile of invading fluids is 
consistent with previous investigation by Ogata and Banks when fl ~ -100 
or K(tol ~ 0.010 and for smaller range of fractal exponent. It has been 
verified that the assumption of constant dispersion coefficient is valid only 
for porous media that exhibits very small values of fl (approaching 
homogeneity). For typical values of fl (-100 < fl < 0), dispersion coefficient 
is not constant but increases with space or time. It is proper to treat the 
dispersion coefficient as a constant only if fl forms a horizontal line in a 
K(tD) vs. tD plot or K(tol ~ 0.01. The space dependence of dispersion is 
converted to time dependence by considering the fact that distance x = vt 

and K(x) = K(vt) = vK(t) since average velocity flow is considered. In 
general, the space or time independence -of dispersion only occurs at 
relatively long duration of flow where the flow is generally stabilized and 
small values of fractal exponent. 
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