
lurnal K.juroteraan 3 (1991) 71 -79

Compiler-Compiler for an Eight Bit Microprocessor

Kasmiran Bin Jumari
K.R. Dimond

ABSTRAK

Kerlas ini memaparkan teknik yang boleh digunakan untuk merekahenluk
penghimpunan-penghimpunan bagi salU mikroprosesor lapan bit. Dengan
menggunakan penghantar yang biasanya sarna dalam seliap aturcara. kerja"
merekabenluk alurcara yang bergonlun9 kepada penggunaan dopal dipermu­
dahkan. Apa yang penling di sini adalah perekabeilluk yang biasanya
merekabenlUk sislem herdasarkan mikroprosesor akan dapat menghayati
kemudahan yang di beri oleh penghimpun-penghimpun seperti YACC dalam
rekabentuknya.

ABSTRACT

This paper shows the technique Ihal can be used 10 design a compiler-compiler
Jar an eight bit microprocessor. Using Ihe translated parser which is Ihe same
in every application program. the task oj designing application dependent
programs is greatly eased. OJ particular interest is the power oj a Yet Another
Compiler-Compiler (YACC) can now be appreciated by the microprocessor
based designer.

INTRODUCTION

It is possible to use any high level language to write a compiler or an
interpreter. but the process is eased if the implementation language has
constructions suited to the task. The compiler-compiler is such a system
which enables a compiler or interpreter to be generated semiautomatically.
Historically the existence of a compiler-compiler is a result of using syntax
directed compiling techniques in order to structure a compiler. It brought
us as far as early 60's. Since then several compiler-compilers have been
introduced including the COL [Koster. J 974] compiler-compiler which has
been used in writing Manchester ALGOl68 and V ACC (Johnson 1977) (or yet
another compiler-compiler) with which compilers for C. APl. Pascal. Ratfor
etc have been written.

Essentially the task of a compiler-compiler is to produce a compiler
from some form of specifications of a source language and the target
machine. The input specification may contain a description of the lexical
and syntactic structure of the source language. a description of what output
for each source language. and a description of the target machine.

Context-Free-Grammar(AhoetaI.1986a;AhoetaI.1986b;Gries 1971;
Nijholt 1980) has widely been accepted in describing the lexical and the
syntactic structure of a language. It is similar to the normal dictionary
definition in which a grammar is arranged such that the nonterminal is
defined in terms of the other terminals and nonterminals. which is exactly

72

the same as in dictionary where a word is defined in term of the other words.
This has revealed the logical structure of this grammar. It has heen
employed in at least in one compiler-compiler, YACC, and the derivation of
this grammar leads to the innovation of a two level grammar which was
embedded in the COL compiler-compiler.

Unfortunately, the above compiler-compilers are available mainly in
main frame machines. This paper demonstrates of how such a compiler
writing 1001 for an eight bit microprocessor can be prepared under the Unix
operating system in which YACC resides.

Y ACC COMPATIBILITY WITH A MICROPROCESSOR
ASSEMBL Y LANGUAGE

YACC is an automatic parser generator which converts the grammar rules in
the user input specification written in Context Free Grammar into a set of
parsing tables. It requires a simple but effective parser driving routine that
will parse statements in the language. During the process of specifying the
syntax of the source language, YACC warns of any errors and ambiguities
the grammar may have. Each rule or production of the grammar can be
augmented with an action which contains the decription of what output is
to he generated when the rule is recognized in the input process.

The parser driving routine calls the lexical analyser whenever a token is
needed in the parsing process. whilst the parser that YACC built requires a
controlling routine - the main program.

The YACC input specification may take the following form:

0/0 {
C statements like # define, # include,
C variable declaration, etc.

this section is optional
°/o}
YACC declaration section: lexical tokens,
precedence and associavity information, etc.

this section is also optional
%%
grammar rule section; the associated action is
written.in between {and}
%%

more C statements
the main program; minI){ . .. },
the lexical analyser; yylex(){ ... },
etc.
this section is optional.

In fact, the parser generator only considers the grammar rules of the source
language and the supplied YAcc'declaration (if any). The content of the
associated action is not touched by YACC, instead it is reproduced in a C
switch statement in the parser driving routine, y. tab. c.

The layout of the YACC output file, y.tab.c, for the above input
specification is as follows:

C statements written between % {and %}
more C statement - anything written after
the second % % such as
the main program; main () { ... },
the lexical analyser; yylex () { ... },
etc.
···the parsing table generated from the grammar.
***parser driving routine;

yyparse () {

actions bounded in
a switch statement

}

73

Eventhough YACC works in the C environment, YACC itself does not
understand C. Generally speaking, if the main program, the lexical analyser
and the actions are written in the assembly language, only the parser
driving routine and the parsing tables have to be translated into the
assembly language in order to get the equivalent output program of y.tab.c.
One must bear in mind that the parser driving routine is the same in all
YACC output files, so that the tedious work of manually translating the
parser driving routine is repaid when it is included in every output program.

The parsing tables generated from the grammar rules comprise of eight
arrays in which the number of elements in each array varies depending on
the grammar specification. However, the value of each element is well
within the range of signed 15 bits numbers (-32768 to 32767), which can be
represented by a word or two bytes. Each of them may now be reproduced
in the format used by an assembler in declaring a constant word or a
constant byte such as 'fdb' (form double byte) statement or the 'feb' (form
constant byte) statement. In the latter case, each element has to be
represented in two digits numbers based oli 256.

The conversion of the 'parsing tables to their equivalent tables in the
assembly language is straight forward, for example, for any x:

if x = 0, then the equivalent digits are 0 and O.
if x > 0, then the equivalent digits are

(x div 256) and (x mod 256).
if x < 0, as usual find its two's complement.

The two's complement number is z = 65565 - lxi,
and then the equivalent digits are
(z div 256) and (z mod 256).

As mentioned earlier the actions which are associated in the grammar
section are reproduced in a C switch statement ofy.tab.c. It may look like

switch (yym)
case 3:
{ACflON 1} break;

74

case 4:
{ACTION 2} break;

{LAST ACTION} break;
}

In translating the y.tab.c to its equivalent output in the assembly language,
it is easier to compile them as a subroutine, let say 'action', which will be
called by the parser driving routine.

action: Idx yym ;load a register with switch

100:

101 :

cpx #3
bne 100
ACTION I
jmp break
cpx #4

bne 101
ACTION 2

jmp break

LAST ACTION
jmp break

;control value.
;compare it with the first case, say 3.
;if not equal skip forward to next case.
;clse perform ACTION I.
;and then 'break' - as in C.
;compare the register with the second
;'case', say 4.
;if Dot equal, skip to next ·case'.
;the second action.

;last action in the 'switch' statement.

break: rts ;retum to the parser driving routine.

DEVELOPING AN EIGHT BIT COMPILER-COMPILER

Figure I depicts the steps taken by the compiler-compiler in order to get the
object program (in a microprocessor machine code) from an input me which
posesses the syntactic structure of a language. The input specification file is
first compiled by YACC to produce output file y.tab.c. Then, a converter
program, 'autoparout' is invoked. The converter program has functions as
follows: .

I. to relocate and reformat the declared variables.
2. to reproduce the parsing tables in the format used in the assembly

language.
3. to extract the actions routine from the C switch statement, and

reproduce it in an assembly subroutine called 'action'.
4. to collect the lexical token that has been declared in the YACC

declaration section so tbat the YAcC-defined token can be freely
used in other parts of the assembly program without tbe need to
define it separately.

The file 'ytabcout' is a temporary file tbat contains tbe output of the
converter program. Tbe 'select-concatenate' program is then invoked

75
..

YACC autoparout

I input I, ly.tBb.cl' "ytabcoutl
file co.piler

1 · ·
other necessary output

proqra. in - • program
•• seably language · asseably '---, ·

crtss ye8 co_and ·
.......................... assefler

.
parser body I output
in assembly object

select-concatenate . file •
program

RAJAH I. Preparing an assembly object program from a given grammar

which has a function of selecting and concatenating the 'ytabcouf and the
other necessary assembly routines that have to be included in the output
program. Incidently, the task of the select-concatenate program can easily
be included in the main control program, yc8. Finally, the output program
is assembled by a cross-assembler to produce the object program for
execution on a target microcomputer board.

MICRO-COMPILER-COMPILER AT WORK

The compatibility realization has led to the development of at least in one
microprocessor system, the Motorola 6800. The said compiler writing tool
accepts an input file as follows:

YACC declaration section.
%0/0
Grammar rule section.
0/00/0
The assembly program section such as the lexical analyser,

the main program etc. (optional)
0/00/0
Assembler declaration section (optional)

Comparing the above input specification with the YACC input specification,
other then the language used in preparing the input file, one obvious
difference is the way in which the language variable declaration are done (a
C declaration is written in between % {and %}, the assembler places them
after the ihird % % marker).

The converter program, ~autoparout' has been written in Pascal
(Grogono 1984). In addition to the function outlined in the previous
section, the employed converter program is also capable of simplifying the
communication task between the action and the parser driving routine. It is

76

done by using statements similar to the function of an assembler macro
statement. These enable the user to include arithmetic operations in the
actioo associated with the grammar in a more systematic fashion, as well as
to return a value to, or to obtain a value from the value stack employed by
the parser.

The syntax of the 'macro' statemeot is

.macro operand I = operand2 operator operand3

.macro operand I = - operand2

.macro array [operandi] = operand3

.macro operandi = array [operand2]

where

operandi = {ll, string}

operand2/3 = {!!,! digit, digit, string, @hexa,

#digit, #String, #@hexa}

array = {string}

operator = {oJ, +, -, %, &}

The symbol! is in fact equivalent to the symbol $ in YACC. The <lollar
symbol is not used here because it is a metacharacter ofYAcc. However, the
function of the two symbols are the same. The assembler available on the
author's system recognize a hexadecimal number if it is preceded by a dollar
sign. The symbol @ was used to replace the YACC metacharacter symbol
which will be converted back to a dollar sign in the assembler program.
Symbol'#' carries its usual meaning 'with'. The arithmetic operation is for a
signed or unsigned two byte number. The control program, yc8 (YACC for 8
bits micro) has been written in C shell. The syntax of the command is

yc8 Micprocessor type [-P] [-Oprogram origin]
[- Qparser origin] [- Mmain _ program] [- L1exical_analyser]
[- Eerror _routine] [- Foutput_liIe] File_name

The microprocesser type is mandatory. It takes one of the following
microprocesors name; the 6800, 6809, z80, 8085 or 6502. Different
microprocesser requires different converter program, different parser
driving routine which must be selected accordingly in tbe output program.

The options provide the user to freely configure the output flIe. For
example, if the parser driving routine and the utility programs have been
loaded to the system, the subsequent execution programs do not necessary
to have them. It is done by using the option - P. By using this method the
compiled program is smaller. The user may also specify a new program
origin, parser routine origin, main program etc. by invoking the correspond
options.

77

EXAMPLE PROGRAM

As a comparison, the same example program in YACC (Appendix A of
Johnson 1977) is used in this paper, It has been rewritten to suit the
specification required by the new compiler-compiler. It is a program for a
small calculator that process integer number in the range of - 32768 and
32767. Note that the macro statement has simplified the action routine that
have to be written otherwise. The full listing of the example program is in
the Appendix A.

CONCLUSION

Provided that there is a suitable compiler-compiler such as YACC, a
comparable compiler-compiler for a microprocesser is not diflicult to be
developed. As the central core of the program is the same for all application
programs, debugging the program is narrowed down only to the input
specification containing the program rules. In some extend only the action
routines which associate the grammar rule is required. The syntax of the
grammar is checked by the compiler-compiler, YACC, whilst the main
program, the lexical analyser and the error routine are similar in all
application program. That means producing program for a variety of
different application can be made more reliable. On the other hand, such a
compiler-compiler open the opportunity to a hardware oriented micropro­
cessor users to experiment the new technique of programming in their
design. One good example of area where such a compiler-compiler is
needed is in the development stage of designing system for a man-machine
dialogue in instrumentation.

REFERENCES

Aho, A.V. & Ullman, J.D. 1986a. Principle of Compiler Design. Addison Wesley.
Aho, A.V., Sethi, R. & Ullman, J.D. 1996b. Compilers-Principles. Techniques. and

Tools. AddisoD Wesley.
Gries, D. 1971. Compiler Construction for Digital Computers. John Wiley.
GrogoDo, P. 1984. Programming in Pascal. Addison Wesley.
Johnson, S.c. 1977. Yet Another Compiler-Compiler. Bell Laboratories, Murray Hill.
Koster, C.H.A. 1974. Using the CDLCompiler-Compiler, Compiler Construction:

An Advanced Course. Springer-Verlag.
Nijholt, A. & 1980. Context-Free Grammers: Covers, Normal Forms. and

Parsing. Spcihger-Verlag.

78

Appendix A

The Example program.

%5tart list

0/

expr

%tokcn DIGIT LETTER
%Jeft'I'
%Jeft '&'
%left' +' I _ '
%left '.' • /' '0/0'
% left UMINUS j* supplies precedence for unary minus

% % j* beginning of rules section *;
list : r empty 0/

I
list stat' \0:'

list error '\It:

jsr mmerror

stat : expr

Idaa #1
jsr mmgetval ;equivalent to 'print SI'.
jsr mmprntno ;

I LETTER ' ~' expr
{.macro regs [I] ~ !3}

'(' expr ')'
{.macro !! ~ !2}

expr ' +' expr
{.macro!! ~ !t + !3}

expr • -' expr
{.macro!! ~ !1 - !3}

expr '.' expr
{.macro !! = !t • !3}

expr '(expr
{.macro!! = !1!!3}

expr '%' expr
{.macro!! = !l % !3}

expr '&' expr
{.macro !' = !t & !3}

expr'l' expr
{.macro!! = !II !3}

, -' expr %prec UMINUS
{.macro!! = -!2}

LETTER
{.macro!! = regs[!I])

number

number: DIGIT
{.macro!! =!I)

number DIGIT

{.macro!! = #10'!1
.macro!! = !! + !2}

%%
lex:

Of:

I2f:

Of:

%'/0
regs:

jsr
psha
cropa

bit
cmpa
bgt
Idx
suba
bra
cmpa
bit
cmpa
bgt
Idx
suba
staa

elr
pula

rt,

rmb

inch

M'a'
rtf
If':
f1f
#LETIER
/fa'
f2f
#'0'
or
#'9'
Df '

#DlGIT
M'O'
mmlval+1

mmlval

52

Kasmiran Bin J umari

;input character.
;sa'lC the character. ...

;classify for LETTER.

;LETIER is returned. ... , ,

... ,

;classify for DIGIT.

;DIGIT is returned. ... ,
;assign the value at
;the value stack.

;retrieve the input
;cbaracter.

;52 spaces for the
;array

labatan Kejuruteraan Elektnk, Elektronik dan Sistem
Universiti Kebangsaan Malaysia
43600 Bangi
Selangor O,E.

K.R.Oimond
Electronics Laboratory
University of Kent
England en 7NT.

79

