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Crack-tip Fields 
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ABSTRACT

Analysis of crack tip stress field is important in determining of the integrity of structures under the influence of cracks and 
defects. Current techniques to analyze crack tip stress fields are based on two-dimensional approach and very conservative. 
Efforts to develop three-dimensional crack tip stress analysis methods have been inconclusive with various drawbacks. In this 
paper, the structure of three-dimensional crack tip fields has been examined under non-hardening condition which will allow 
a detail examination of crack tip stresses in the absence of strain hardening effects. Three-dimensional crack tip analysis is 
based on three-dimensional bend and tension cracked models. The fields along the crack front were examined as a function 
of load level, J, and thickness, x3/t.  The results showed that at the crack tip (r = 0), a group of asymptotic fields develop 
which feature a constant stress sector directly ahead of the crack tip. Within this sector the fields differ hydrostatically while 
being similar in respect of the maximum stress deviator. From the behavior of the crack tip stresses, explicit expression of 
crack tip constraints are given for constraint loss in terms of maximum stresses due to out-of plane effects at  and along 
the crack front 0 ≤ x3/t ≤ 0.5. Significantly, the results showed that constraint based fracture mechanics can be extended to 
fully three dimensional crack tip fields.
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ABSTRAK

Analisa medan tegasan suatu hujung retak adalah amat penting dalam memastikan integriti struktur yang dipengaruhi oleh 
kecacatan dan retak. Teknik yang sedia ada untuk menganalisa tegasan oleh retak didasarkan oleh kaedah dua-dimensi 
yang amat konservatif. Usaha-usaha untuk menghasilkan kaedah analisa bagi tegasan retak tiga-dimensi masih lagi 
tidak lengkap disebabkan pelbagai kelemahan. Di dalam penulisan ini, struktur tiga-dimensi medan hujung-retak telah 
diperiksa di bawah keadaan tiada-pengerasan yang membenarkan pemeriksaan teliti tegasan retak tanpa kesan pengerasan 
disebabkan oleh terikan. Analisa tiga-dimensi tegasan hujung retak dilakukan berdasarkan formulasi sempadan lapisan 
tiga-dimensi. Medan-medan di sepanjang retak diperiksa melalui fungsi beban, J, dan ketebalan, x3/t. Pada hujung-retak  
(r = 0), satu kumpulan medan asimtotik terhasil yang menunjukkan sektor tegasan tetap pada hujung retak. Di dalam sektor 
ini,  medan berbeza secara hidrostatik tetapi sama dalam penyimpangan tegasan maksima. Ungkapan yang jelas diberikan 
bagi kehilangan kekangan dalam tegasan maksima disebabkan oleh kesan satah terkeluar pada θ = 0o dan di sepanjang 
retak 0 ≤ x3/t ≤ 0.5   yang menyebabkan mekanik retak berdasarkan penilaian kekangan diperpanjangkan kepada masalah 
hujung retak tiga dimensi. Hasil keputusan yang ketara adalah, mekanik patah berdasarkan kaedah kekangan kini boleh 
diunjurkan untuk menyelesaikan masalah medan hujung retak tiga-dimensi.

Kata kunci: Kaedah Unsur Terhingga Tiga-Dimensi; Kesan Kekangan; Mekanik Patah

INTRODUCTION

Constraint based fracture mechanics is based on the study 
of the state of elastic-plastic stresses at the crack-tip. The 
nature of  elastic-plastic three-dimensional fields have 
been demonstrated independently by many different 
researchers and notably by (Nakamura & Parks 1990; Hom 
& McMeeking 1990) whereby the maximum stress occurs at 
the centre plane and approach the plane strain field while at 
the free surface, a plane stress field is recovered. The nature 
of the stresses were also affected by the T-stress and the 

attempts to characterize the three-dimensional crack-tip fields 
and to estimate the constrained state have been discussed by 
(Nevalainen & Dodds 1995; Henry & Luxmoore 1997; Yuan 
& Brocks 1998; Pardoen et al. 1999; Kim et al. 2003) however 
it has been shown that the extension of the two-dimensional 
plane strain (J-T/Q) technique to approximate the loss of 
constraint along the three-dimensional crack front is limited 
according to the underlying (J-T/Q) framework (O’Dowd 
1995; Anderson 2005). 

Other approaches to characterize the three-dimensional 
loss of constraint were proposed such as the J-Tz (Guo 1993), 
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the J-φ (Mostafavi et al. 2010), the J-Ap (Yang 2013). The 
J-Tz approach was developed based on a modified J-integral 
scheme to state stresses based on a Tz parameter, however 
the technique is dependent on finite element analysis to 
determine the J-φ or stresses at a given location along the 
crack front. In a different development, the J-φ and the 
J-Ap were used to predict the fracture toughness of cracked 
specimen by semi empirical approach but do not describe 
the state of stresses within the deformation zone. At present 
a method to characterize the in-plane and the out-of-plane 
constraint loss is still lacking and the purpose of the current 
work is attempted at re-characterizing the two-parameter 
J-T/Q approach to describe the three-dimensional crack front 
tip stress fields. 

In the present work, the approach developed by (Betegon 
& Hancock 1991; O’Dowd & Shih 1991) were adopted to 
investigate the effect of the in-plane and the out-of-plane 
crack tip constraint in three-dimensional elastic-plastic 
crack-tip fields. 

METHODOLOGY

An elastic-plastic finite element (FE) crack analysis was 
performed using ABAQUS v.6.12 (ABAQUS, 2012). Full field 
finite element SENB and CCP models were presented in this 
study as shown in Figure 1. 
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with the Young’s modulus, E = 200 GPa, the yield stress, σ0 = 
200 MPa and the yield strain, ε0 = 0.001 while εp is the plastic 
strain and η is the strain hardening exponent.

Figure 2 shows the finite element crack tip mesh with 
24 rings of 24 second order hexahedral hybrid elements with 
reduced integration surrounding the crack tip. The crack 
tip is located at a coordinate of (0, 0) which consists of 49 
coincident but independent nodes at any element layers along 
the crack front. Along the specimen thickness direction, the 
thickness of each element layer decreases gradually from 
the mid-plane (x3/B = 0) to the free surface (x3/B = 0.5) of 
the specimen as illustrated in Figure 3.The thinnest layer 
located at the free surface of the specimen, has a thickness 
of t/B = 0.004 . 

FIGURE 1. The SENB and CCP cracked models

A straight through thickness crack was modeled at the 
center of specimen with a crack depth to ligament length ratio, 
a/W = 0.5, 0.3, 0.2 and 0.1. Symmetrical features allowed 
the mode I problem to be represented as only a quarter of 
the full model for the SENB and CCP models respectively. 
Two thickness values were employed for the models, with  
B/(W – a) = 1 and 0.05, as representatives for a thick and a thin 
specimen correspondingly. The calculations were performed 
with a strain hardening material response, n = ∞ and a Poisson 
ratio, v = 0.49. In this study, the material responses adopted 
are given as shown in Equation (1):

FIGURE 2. In-plane meshing pattern applied in each of the crack 
depth to ligament length ratio

 a/W = 0.1 a/W= 0.2 a/W = 0.3  a/W = 0.5

crack tip (0,0)

x2

x2

FIGURE 3. Out-of-plane FE configurations with B/(W – a) = 1 
and 0.05

B/(w-a) = 1
B/(w-a) = 0.05          x3/B = 0.5

free surface

midplane

midplane
x3/B = 0

free surface

x3/B = 0

x3/B = 0.5 x3
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The applied load, ui, was determined from limit load 
equations as described by (Miller 1988), for SENB model in 
Equation 2:
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and for CCP model in Equation 3:
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The limit of load applied to the cracked specimens was 
governed by the J-Dominance for the associated specimens. 
The limit of J-Dominance is described by a non-dimensional 
grouping µ as shown in Equation 4:
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where c = (W – a) is the uncracked ligament and  quantifies 
the crack tip deformation.

RESULTS AND DISCUSSIONS

First, the direct stress, σ22, asymptotically around the crack 
tip from the mid-plane (x3/t = 0) to the near the free surface 
(x3/t = 0.49) is shown in Figure 4. The stresses in Figure 4 
have been compared to a two-dimensional plane strain fully 
constrained stress field which is shown as a dashed line. It 
is shown that the direct stress σ22 for a three-dimensional 
crack tip fields approached the Prandtl field at the mid-plane 
and approach the plane stress field at the free surface. The 
nature at which the constraint is lost is characterized by a 
hydrostatically different stress across the thickness within 
the sector θ ≤ 45° which showed that the hoop stress drops 
consistently with distance from the mid-plane towards the 
free surface. Similar behavior is demonstrated for SENB and 
CCP models. For the CCP models, the maximum stress lose 
the in-plane constraint readily and the out-of-plane constraint 
drops consistent across the thickness.

Figure 5 shows the state of the deviatoric stress around 
the crack tip with the sector ahead of the crack and ahead of 
the crack tip along a three-dimensional crack front. It is shown 
that the deviatoric stress is similar in the forward sector of 
the crack front tip.

FIGURE 4. The asymptotic direct stress, σ22/σ around a three-
dimensional SENB and CCP models

FIGURE 5. The hoop stress deviator at 0°< θ < 45° and ahead of 
a three-dimensional crack front along 0 < x3/t < 0.5 for SENB and 

CCP models
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Both state of stresses satisfy the basic two conditions set 
for the J – T/Q approach however the third conditions which 
is the direct stresses ahead of the crack have to be distance 
independent cannot be satisfied for three-dimensional crack 
tip fields. (Yusof 2006) demonstrated that direct stresses along 
a three-dimensional crack front tip was independent of x2/t at 
fixed distance ahead of the crack front tip. Figure 6 shows the 
state of the hoop stress at a given distance ahead of the crack 
front and along the crack front which can be related uniquely 
as a function of J and distance along the crack front.

To approximate σθθ along the crack front at θ = 0° of the 
thick SENB and CCP models as shown in Figure 7, an analytical 
expression is developed based on the relationship between the 
constraint loss and T-stress at the mid-plane. The constraint 
loss denoted as Qc is firstly defined as the difference of  from 
the midplane of models (x3/B = 0) and the Prandtl field value 
at θ = 0° in Equation 5: 
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Then, the values of Qc of the thick models are plotted 
with respect to the normalized T-stress, T/σapp in Figure 8. The 
correlation between Qc and T/σapp in the thick SENB models 
can be described by the expressions as follows: 
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Meanwhile, the polynomial expression for the Qc of the 
thick CCP models is given as:
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FIGURE 6. The hoop stress for SENB (B/W –  a = 1 and 0.1) at 
 r = 2J/σ0 along the crack front

The curve (Figure 6) shows that stress drop from a fully 
constrained level associated with a plane strain, T = 0 field. 
The stress then drops according to an exponential curve an 
approach a plane stress field at the free surface.

Figures 4 to 6 demonstrate that a three-dimensional crack 
tip field can fulfill the condition for a two-parameter fracture 
mechanics framework because the crack tip stress field is 
hydrostatically different but stress is deviatorically similar 
ahead of the crack tip front. More importantly the stresses 
were shown to be independent of distance when stresses were 
plotted at a distance ahead of the crack but varied with the 
distance along the crack front tip.

Constraint Estimation Scheme for σθθ at θ = 0o

The state of finite stresses for elastic-perfectly plastic 
non-hardening materials can be utilized to predict stresses 
along a three-dimensional crack front tip. Figure 7 show the 
distribution of σθθ at angle, θ = 0o along the crack front of the 
models with thickness, B/(W – a) = 1 from the midplane (x3/B 
= 0) to the free surface (x3/B = 0.5). From the mid-plane, the 
hoop stresses in the SENB and CCP models gradually reduces 
towards the free surface due to the out-of-plane constraint 
loss. In the region x3/B ≥ 0.35), σθθ in the thick SENB and 
CCP models approach a unique constraint loss toward the 
free surface.

FIGURE 7. Distribution of σθθ at θ = 0° and r = 0 along the crack of 
a) SENB, b) CCP models (B/(W – a) = 1) with a/W = 0.5, 0.3, 0.2 

and 0.1

Pl. Strain, T = 0

Pl. Strain

x3/t : 0.46, 0.42, 0.32. 0.25, 0
θ = 0o, r = 2J/σ0

J
x3σ0
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Using Qc approximated from equations 6 and 7, the 
distribution of σθθ along the crack front of the thick SENB and 
CCP models can be estimated via the following expression 
in Equation 8:
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where ct is a constant which depends on the crack 
configuration. The values of ct in equation 8 are tabulated 
in Table 1. The fitting curves plotted for the thick SENB and 
CCP models using equation 8 are shown as dashed lines in 
Figure 8.

The distribution of σθθ along the crack front of the 
thin models, (B/(W – a) = 0.05 is shown in Figure 10. The 
distribution of σθθ for each a/W ratio of the thin models is 
relatively close to each other. The deviation of σθθ from the 
fully constraint Prandtl value in the thin SENB models with 
a/W = 0.1 and 0.2 are smaller than that in the thick SENB 
models because of the smaller in-plane constraint loss since 
they feature higher magnitude of T-stresses as shown in 
Figure 9a. Such trend is also found in the thin CCP models. 
The thin CCP models possesses less compressive T-stresses 
(see Figure 9b), resulting in higher σθθ along the crack front 
than that in the thick CCP models.

FIGURE 8. Fitting curve for Qc against T/σapp at the midplane of the 
SENB and the CCP models (B/(W – a) = 1)

TABLE 1. Values of ct for each crack configuration  
in the models with B/(W – a) = 1

a/W                               Value of

 SENB CCP

0.5 9 10
0.3 10 15
0.2 11 16
0.1 17 17

The distribution of  along the crack front of the thin 
SENB and CCP models can be estimated by the following 
analytical formula:

ε σ σ σ

ε
σ
σ

σ σ

σ

e

p

n

o
o

E
c

M
W a

W

= <

=








 <

= −





( )

( )

.
.

0

0 0
0

21 15

4
1 261 1 










=
−









=

= −

2

0

2

3 2
P

W a

c J

Q

o

o

o

c
prandtl

σ

µ σ

σ
σ

σθθ θθ

( ) /

( ) (( , / ) ( , )FE x B

c
app

c
app

r

Q
T

Q
T

3 0

0

0 0

0 0

8

= = =

= ≥










=









σ
θ

σ

σ

o

 −










<










=







2

0 19 0 013

0

0 97

. . ;

.

T

T

Q
T

app

app

c
app

σ

σ

σ 
 −









 + <











= +

2

0

0 043 0 0058 0

2

. . ;

(

T T

a b

app appσ σ

σ
σ
θθ )) ( ) exp . ;

. ;

− − − −





 +





















≤ ≤







a b c
x

B
b

x

B

t 0 5

0 0 5

3

3 aa Q b

Q

x
B

d

c

c

= − =

= − −
−








( )










2 97 0 84

2 97
0 520

3

. .

( . )exp
.

σ
σ
θθ






























≤ ≤







2

30 0 5

;

.
x

B

          (9)

where d is a constant which has a value of 0.003 for the 
thin SENB models and 0.055 for the thin CCP models. The 
fitting curves plotted for the thin SENB and CCP models using 
equation 9 are shown in Figure 10.

FIGURE 9. Thickness distribution of -stress in the SENB and 
CCP models
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CONCLUSIONS

Crack tip constraint is important because it affects fracture 
toughness and hence defect tolerance. The nature of three-
dimensional crack tip fields has been shown to be formed by 
a group of fields which differ hydrostatically but is similar in 
respect of the maximum stress deviator. In-plane constraint 
loss effects are distance (r) independent, but out-of-plane 
constraint loss arises from decay in the mean stress, σm, 
with distance from the crack tip. Despite the decay in the 
mean stress, σm, and the opening stress, σ22, the maximum 
stress deviator, s22, remains independent of distance, r, and 
position along the crack front, x3. Explicit expressions are 
given enabling constraint loss to be determined due to out-of-
plane constraint loss. As this allows for the in-plane effects, 
it is applicable for all three dimensional configurations and 
establishes a basis for extending constraint based fracture 
mechanics into three dimensional fields.
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