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ABSTRACT

This research presents a development of the affine projection algorithm (APA) in voice communication applications. A 
method of controlling the parameters of the APA is devised to improve the performance in cancelling various types of 
ambient noise that could possibly corrupt speech signals in voice communication systems. Indicators are used to identify 
the type of noise accompanying the target signal. Then the corrupted signal is processed in a noise cancellation setup in 
such a way that three parameters of algorithm are changed according to the nature of the noise. The spreading of elements 
in the covariance matrix of the noise is used as an indicator for the type of noise so that the projection order, step-size 
and filter length are changed at the same time. This way the performance of the canceller is improved rendering lower 
estimation error with a moderate computational power. The method was tested under various types of noise and showed 
better convergence performance than the original APA as well as other commonly used algorithms in noise cancellation 
systems. The MSE of the proposed VPAPA method drops to -65 dB in steady state compared to -20 dB using NLMS and just 
below -30 dB using standard APA with projection order of 8, while the powerful RLS reaches around -60dB under the same 
environment. The method can be useful for clearer voice communication in variable environmental noise.
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INTRODUCTION

The nature of the surrounding noise can adversely affect 
voice communication in nowadays communication 
technologies. Real world environmental noise can vary from 
high decibels of noise to quietness in places such as airports, 
streets, stadiums and market places (Kuo et al. 2018). It 
also can have a negative impact on voice controlled audio 
systems such as the one developed by Kuan & Bukhori 
(2019). In such cases, the use of usual filtering techniques 
to remove the noise is not applicable since noise can change 
from silence to high level of decibels in one place. For that 
reason, methods of varying filter characteristics are used to 
cope with the change in noise characteristics, these filters 
are named as adaptive filters since they can vary the values 
of their coefficients i.e. adapt themselves to track any change 
in noise properties 

For many years now, several well-known algorithms 
such as the least mean square (LMS) and the recursive least 
squares (RLS) or their variants are used control the coefficients 
of a digital filter, which can be finite impulse response (FIR) 
or infinite impulse response (IIR) (Diniz 2008). The use of 
IIR filters is avoided in speech applications due to phase 
distortion and instability which causes subsequent distortion 
in the processed signal. Due to its desirable properties, the 
LMS algorithm is used to control the coefficients of a FIR 

filter in adaptive filter systems for speech enhancement 
(Noor et al. 2018). While it can efficiently cope with white 
noise, the LMS filter shows high residual noise in the filtered 
signal when subjected to colored noise. This is due to the 
large spread in the autocorrelation matrix of the noise 
signal (Ramli et al. 2017). This can raise problems for noise 
cancellation in mobile telecommunication systems where 
the user is changing place, which requires fast adaptive 
filtering and tracking process. On the other hand, the RLS 
algorithm can work efficiently in these environments, but 
the price to be paid is the huge increase in the number of 
computations (Haykin 2013).   

More advanced algorithms such as the affine projection 
algorithm (APA) are mitigation between the two extreme 
cases (Jiang & Huang 2019; Zhang & Zhe 2011). However, 
in high order projections, the APA results in large estimation 
errors and a large number of computations per iteration. 
Therefore, the need for an APA that can change its projection 
order according to changes in noise type became necessary. 
This way, it can reduce noise with lower steady error at 
lesser number of computations. The early version of the 
APA was proposed by Ozeki and Umeda (1984), where 
the reusing of past input vectors and weights updating of 
input vectors was proposed. The algorithm showed better 
convergence behavior than the LMS when subjected to 
colored noise signals. The APA converges faster when the 
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order of projection and the step-size are both high. However, 
there has been large residual noise in the output i.e. higher 
estimation error; meanwhile lower residual noise and slower 
convergence are obtained when both step-size and projection 
order are of small value (Samarakan & Beex 2000). These 
issues have been treated in literature in recent years, an 
example is the fast APA devised by Zhi., et al. (2016),  
which increases the convergence rate for low projection 
orders while a small step-size is used. A second example 
is the evolutionary APA proposed by Kim, et al. (2009) in 
which, the order of the projection is calculated according 
to the amount of error in the output and a preset threshold. 
This algorithm was further modified by Albu et al. (2010) so 
as to give less number of calculations by using dichotomous 
coordinate descent method. Furthermore, the original 
version of the APA was subjected to variable step-size in 
other proposals such as those by Vega et al. (2008) and by 
Mayyas & Momani (2011).  In earlier studies, there were 
techniques sought to select the input vector dynamically, 
in which the estimation error was relatively lower than the 
original APA (Kong et al. 2007), however, the error was 
much higher than the error of the LMS which considered as 
a bench mark for comparison. 

Variable projection order of the APA has not been 
used widely in literature to cure APA issues, because it 
needs analytical solutions, which may lead to non-practical 
solutions that use large number of computations when 
implemented on digital signal processors. Having said 
that, there have been attempts in literature to use a varying 
projection order of the APA, such as that proposed by   
Arablouei &  Dogancay (2012). The strategy is based on 
using combinations of analytical and empirical procedures. 
The technique was relied on using   extensive number of 
simulations in working out the order of the algorithm. The 
method has succeeded to some extent, but the problem 
associated with it is the need for a lot of background 
analytical processes, and so many repeated simulations in 
order to change the algorithm order. Other proposals have 
used a combination of dynamic selection and variable 
step-size DSVSS-APA (Motar & Noor 2017), the method 
was applied to echo cancellation in telecommunications, 
although it showed success in cancelling echo from voice, 
it uses a compromise between the two parameters based on 
trial and errors, also entails large estimation errors in low 
projection order cases. More recent techniques have utilized 
analytical solutions based on wave domain analysis, and 

used for cancelling active noise (Zhang et al. 2018), which 
is somehow complicated.

Therefore, the objective of this research is to develop 
a simpler and more practical strategy in order to improve 
the performance of the APA in voice communication 
systems. The proposed method takes into account the 
variations in noise properties, using them as indicators to 
identify the type of noise, so as to change parameters of the 
APA occasionally according to the change in noise type. 
The change in environmental noise results in changing 
the order, the step-size and the filter length, rendering 
better convergence performance at moderate number of 
computations of the algorithm. This makes the algorithm 
suitable for real time DSP implementation. The developed 
method is named as the variable parameter affine projection 
algorithm (VPAPA). 

METHODOLOGY

A schematic diagram of the proposed VPAPA noise canceller 
is displayed in Figure 1. The noise canceller uses two-input 
model in which the voice and the external noise signals 
forms the desired input d(n). The error e(n) is formed by 
subtracting the output of the filter from the desired input and 
it is used to control the coefficient of a direct form FIR filter 
using the proposed VPAPA.  

In noise cancellation circumstances, it is common to 
use the LMS or one of its versions such as the NLMS as 
the controlling mechanism due to its simplicity, however 
as mentioned in the introduction, the LMS accumulates 
large amount of estimation errors when the noise is not 
white. Other algorithms such as the RLS and the original 
APA lead to a large number of computations if the order 
increased. Therefore, a modified version of the affine 
projection algorithm is developed in this research and used 
as the controlling mechanism in the adaptive noise canceller 
shown in Figure 1. Three parameters of the APA are varied 
simultaneously according to the received noise by the filter, 
these parameters are: projection order, step-size and the filter 
length. In the following, the development of the method is 
described. Based on the original APA set of equations, the 
VPAPA is described as follows:

w(n) = w(n–1) + μv.x(n)t(n) (1)

FIGURE 1. The proposed VPAPA noise canceller
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where, w(n) is the coefficient weight vector at discrete 
time n, x(n) is the excitation input matrix (Mv.×.Pv), μv is a 
discretely variable step-size, t(n) and e(n) are given by the 
following:

t(n) = [xT(n)x(n)+δ.I]-1 e(n) (2)

e(n) = d(n) - xT(n)w(n) (3)

where d(n) represents the desired signal, which is the 
speech signal corrupted with noise and (α,I) is a diagonal 
matrix, with α is a constant along the diagonal which is 
used to regularize matrix inversion in the algorithm. The 
parameters Mv and Pv are the filter length the projection 
order respectively. The subscripts v associated with them 
is to denote the variable nature of these parameters, in the 
same way as used for the step-size of the algorithm. T is a 
transpose natation. For stability μv should lie between just 
above zero and 2, i.e. 0 < μv < 2. However, values of μv larger 
than 1 leads to instability in the same way as for the LMS. In 
this work a more conservative limits on μv are placed, that 
is 0 < μv < 1, this condition is reached after several trials 
using types of environmental noise that can corrupt voice 
communication.

In the original version of the APA, the projection order, 
step-size and filter length are kept fixed throughout the 
adaptation process, in this research these parameters are 
made discretely or occasionally variable, in other words 
they are changed at the same time in a certain pattern for 
every noise type. The chosen values for these parameters 
are determined experimentally by prior testing of the 
noise canceller in various environments.  A look-up table 
is formed for several noise types corresponding to certain 
noise characteristics. The criterion used to identify a certain 
type of noise is the spread in eigenvalues in the covariance 
matrix (xx) of a particular noise. Mathematically, this can be 
expressed as follows:

x = E[x(n)xH(n)] (4)

The required criterion is obtained by calculating the 
eigenvalues from the determinant of the characteristic 
equation as follows:

det(x – ëiI) = 0 (5)

where I is an identity matrix and λi represents the 
eigenvalues along the diagonal. The target feature i.e. the 
spread is determined by dividing the largest eigenvalue 
in equation (5) by the lowest one to render the value of 
the spread; hence we can identify the type of noise and 
consequently use a set of parameters in the adaptation 
process of the proposed noise canceller. For instance if 
the noise is white, a certain value of the spread is used as 
a feature, therefore the corresponding values of projection 
order, filter length and step-size are assigned to the adaptive 

filter, likewise if the  noise is colored the value of the spread 
is high, a different set of parameters corresponding to this 
value are assigned. Spreading values were calculated   for 
the several commonly found types of noise.

The aim is to reduce additive external noise from voice 
communication depending on noise features. The effect of 
environmental interference is reduced with lower estimation 
errors at a moderate computational power. In the proposed 
VPAPA, high projection orders are not used all the time 
during noise cancellation process. Therefore in cases of 
white and periodic noise such as engine noise, high orders 
are not needed, while in colored noise cases, relatively 
high projection orders are required to achieve desirable 
convergence. A compromise is achieved by using longer 
filter lengths and lower step-sizes with lower projection 
orders to reduce estimation errors. In cases of white and 
periodic noise, the algorithm is made to act similar to the 
NLMS in its simplicity and robustness, while for colored 
types of noise, the algorithm is made to act just like the RLS 
in its efficiency at lower computations than the RLS.  A flow 
chart of the algorithm is shown in Figure 2. The process 
starts by acquiring noise data then identifying the type of 
noise according to the value of the spread, then using a look-
up table to set the parameters of the VPAPA, this process 
continues until the noise samples have been finished.

EXPERIMENTAL RESULTS AND DISCUSSION

The testing of the proposed VPAPA was conducted using 
human voice subjected to several types of noise assumed 
to corrupt voice communication in real world. The voice 
signal is recorded from an utterance by the author counting 
(One, Two, Three…). This utterance was recorded in a 
noise-free room using a personal computer microphone, 
then converted to (.wav) format. The clean segment of the 
utterance is shown graphically in Figure 3. On the other 
hand, environmental noise segments are obtained from a 
trusted data base that is used for conducting experiments 
to study effects of additive noise on speech recognition 
systems (Vagra & Steeneken 1993). Segments of various 
noise types are selected from this data base and used to 
corrupt the voice utterance. The selected types were; white 
noise, voice bubbles (also known as cocktail party), engine 
noise, factory (machinery) noise and colored noise. These 
segments of different types of noise were concatenated 
together to form a noise with variable characteristics, then 
added to the voice signal resulting in a noisy signal as shown 
in Figure 4. Now, the waveform is ready to be processed by 
the proposed noise canceller.

Before conducting noise cancellation on the full noisy 
utterance, the spread values for each type of noise were 
calculated separately and a table is constituted as in Table 
1. Having done that, each noise type was used individually
to corrupt the speech segment, then noise cancellation was
performed on that particular type of noise. For each type of
corrupting noise a set of parameters is obtained for the APA.
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These parameters are; projection order, step-size and 
filter length. The experiments were repeated several times 
until the best parameters setting were obtained. This has 
been done for all types of noise used in this research. From 
these experiments, a second table is constituted as shown 
in Table 2. In this table, PO is the projection order, SZ is 
step-size and FL is the filter length. The table was used as a 
look-up table for the propose VPAPA noise canceller.

Obtaining these tables made the environment for 
running the proposed noise canceller ready. Noise 
cancellation experiments using the VPAPA have been carried 
out on the noisy voice utterance signal of Figure 4. Variable 
noise is applied to the reference input of the noise canceller 
shown in Figure 1. The white noise piece is placed at the 
beginning followed by other types of noise in the following 
sequence: white, babbles, factory and colored. Data samples 
from the error output of the noise canceller were stored 
and processed for performance evaluation of the proposed 
VPAPA noise canceller. Mean square error MSE plots are 
used as a measure for the quality of the noise cancellation. 
To judge the performance of the proposed noise cancellation 
method, a comparison is made with noise cancellers based on 
standard APA as well as other commonly used algorithms for 
noise cancellation, namely the NLMS and the RLS. Figure 5 
shows these results. The experiments were repeated several 

times and MSE samples were averaged over the number of 
runs and smoothed using a moving average filter.

The main impression from figure 5 is that the proposed 
VPAPA system has a superior noise cancellation performance 
compared to other methods. In the standard APA, NLMS and 
RLS, the filter length is set to 32.  All methods showed good 
start with white noise but when the noise changes to other 
types the NLMS exhibited a degraded performance, flattening 
early with large amount of residual noise. The standard APA 
with projection order of 8 converges better than the NLMS, 
however it possesses larger amount of estimation error than 
the proposed VPAPA. The the proposed VPAPA gave the best 
performance even compared to the RLS which is considered 
the best for noise cancellation.

The MSE of the proposed PAPA method reduces to 
nearly -65 dB in steady state compared to -20 dB using 
NLMS and just below -30 dB using standard APA with 
projection order of 8, while the powerful RLS reaches 
only around -60dB on steady state at the expense of higher 
complexity, proportional to the square of the filter’s order. In 
the proposed method, the VPAPA changes its order, step-size 
and filter length every time a change in noise characteristics 
is detected. To confirm the success of the proposed method, 
a filtered voice utterance using the VPAPA noise canceller is 
depicted in Figure 6, from which it is clear that the original 

FIGURE 2. Flow chart of the VPAPA

FIGURE 3. Clean voice utterance
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FIGURE 4. Noisy utterance 

TABLE 1. Noise types corresponding to spread values 

Noise Type Spread
white 0-5<

Engine, Factory 5-10<
Voice babbles 10-15<

Colored >15

TABLE 2. Parameters values corresponding to noise types

Noise Type PO SZ FL Spread Number of Experiments
White 2 0.1 32 0-5< 8
Engine, Factory 4 0.08 32 5-10< 10
Voice babbles 8 0.02 64 10-15< 12
Colored 16 0.01 64 >15 8

FIGURE 5. Mean square error performance comparison

FIGURE 6. Voice utterance filtered using the VPAPA noise canceller
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waveform which has been corrupted by noise have now 
been cleaned nicely. The slight distortion at the wave edges 
has negligible effect on hearing.

The other main advantage of the proposed VPAPA is 
the low computation complexity of the proposed method. 
For types of noise that are hard to remove by the NLMS or 
by a low order APA, the RLS can perform effectively using 
a very large number of computations. Given that the RLS 
noise canceller possesses the maximal number of operations 
because it involves matrix inversion, the moderate projection 
order VPAPA performs almost similar if not better than the 
RLS at a lower number of computations. In the proposed 
VPAPA, the algorithm processes the four equal segments 
of noise in equal proportions; therefore it only needs the 
highest projection order for a limited time segment. Most of 
the processing time it performs either similar to NLMS when 
the noise is white i.e. PO equals to 2, or as a low order APA 
when projection order is 4 or 8. 

CONCLUSION

The proposed VPAPA noise canceller possesses the 
advantages of both good noise cancellation performance and 
lower complexity than existing techniques. The method has 
the property that it can adapt to any type of environmental 
noise. The technique used in this research offers more 
simplicity than existing methods in recent literature and it 
can be implemented on digital signal processors for purpose 
of voice communications in mobile communication or other 
speech and audio applications.
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