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ABSTRACT

In this study, the ability of numerous statistical and machine learning models to impute water quality data was investigated 
at three monitoring stations along the Langat River in Malaysia. Inconsistencies in the percentage of missing data between 
monitoring stations (varying from 20 percent (moderate) to over 50 percent (high)) represent the greatest obstacle of the 
study. The main objective was to select the best method for imputation and compare whether there are differences between 
the methods used by the different stations. The paper focuses on different imputation methods such as Multiple Predictive 
Mean Matching (PMM), Multiple Random Forest Imputation (RF), Multiple Bayesian Linear Regression Imputation (BLR), 
Multiple Linear Regression (non-Bayesian) Imputation (LRNB), Multiple Classification and Regression Tree (CART), 
k-nearest neighbours (kNN) and Bootstrap-based Expectation Maximisation (EMB). Remarkably, among all seven imputation 
techniques, the kNN produces identically reliable results. The imputed data is all rated as ‘very good’ (NSE > 0.75). This 
was confirmed by the calculation of |PBIAS|<5.30 (all imputed data are‘very good’) and KGE≥0.87 (all imputations are 
rated as’ good’). Imputation performance improves for all three monitoring stations with an index of agreement, WI ≥ 
0.94, despite varying percentages of missing data. According to the findings, the kNN imputation approach outperforms 
the others and should be prioritised in actual use. Future research with the existing methods could benefit from the 
addition of geographical data.
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INTRODUCTION

Water is essential to all life and can be used for a variety 
of purposes, including drinking, irrigation, industry, 
fishing, boating, and swimming (Çadraku 2021; Khan et 
al. 2021; Kerich 2020). The problem of missing data arises 
frequently in environmental fields for a variety of reasons. 
In developing nations, where the proportion of monitoring 
stations with missing data varies widely and is high, this 
water-quality data issue is of particular concern (Aguilera, 
Guardiola-Albert & Serrano-Hidalgo 2020).

Therefore, dealing with incomplete data is crucial, 
especially in modelling, as it can negatively affect the 
interpretation of the data, or the models created from the 
data (Ratolojanahary et al. 2019). The lack of data can 
pose significant challenges to researchers as it can lead to 
incorrect conclusions being drawn from a research project.

When it comes to research, lack of data is a common 
problem for many researchers. Lack of data in environmental 
and ecological studies can be caused by a variety of factors, 
such as insufficient samples, loss of samples, or malfunction 
of measurement instruments (Cheliotis et al. 2019; Hadeed 
et al. 2020).

Little and Rubin (2019) distinguished three types 
of missing data: Completely random missing data  
means that there is no relationship between the known 
values and the number of cases in which a variable is 
missing; the probability that a case contains a missing value 
for a variable may depend on the known values but not on 
the value of the missing data itself if the data are missing at 
random; if the probability of a missing value for a variable 
depends on the value of that variable, the data are not 
missing at random.

The simplest method for dealing with missing data is 
to remove all incomplete cases from the data collection. 
This method, called complete case analysis, can exclude 
critical information, especially for small samples. 
Another approach to missing values is to calculate them 
using the information contained in the data set. This is 
called the imputation method. It is crucial to choose 
the optimal imputation approach for missing data, as the 
consequences of an error are reflected in both the quality 
of the estimators and the results. 

Another commonly used technique is to impute the 
missing values using averages. This is the simplest 
imputation approach as it uses the mean of each variable 
to estimate the missing value for the corresponding 
missing variables (Hamzah et al. 2020; Little & Rubin 
2019). This approach 
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can lead to biases and large errors in the covariance 
matrix, which affects the performance of statistical 
modelling. Other imputation algorithms include hot deck 
imputation based on the nearest neighbour method 
(Andridge, Bechtel & Thompson 2021), least squares 
imputation and maximum likelihood estimation (Shin, 
Davison, & Long 2017).

Numerous studies show that multiple imputation 
(MI) outperforms deletion and single imputation 
approaches for dealing with missing data in the context 
of incomplete data reconstruction (Aleryani, Wang, & de la 
Iglesia 2020; Audigier et al. 2018; de Silva et al. 2017; 
Hamzah et al. 2021; Hayati Rezvan, Lee, & Simpson 
2015; Mandel J 2015; Morita 2021; Ratolojanahary et al. 
2019). If the imputation model at least approximates the 
underlying mechanism of missing data, the MI technique 
has shown promising results (Murray 2018).

Similar methods have been used in previous 
studies to assess the superiority of one imputation 
method over another. Examples of such methods include 
the kernel-based iterative missing data estimation method 
by Liu et al. (2020), which was evaluated against other 
conventional frequency estimators as well as non-
parametric iterative signals with a radius basis function 
kernel and other conventional frequency estimators. 
The methods were compared by simulating different 
levels of missing data, using each approach to predict 
missing values, and then comparing the predictions with 
the removed data using RMSE.

 Tak, Woo & Yeo (2016) proposed an 
imputation method based on a modified k-nearest 
neighbour approach that takes into account spatial and 
temporal correlation. Missing observations were 
simulated by eliminating values between 0.1 and 50% 
of the total data, and then imputed using the proposed 
approach, the nearest history method, bootstrapping-
based expectation maximisation and maximum likelihood 
estimation. The RMSE, MAPE and percentage change 
in variance were used to compare the imputation 
approaches.

In addition, Schmitt, Mandel & Guedj 
(2015) examined six different imputation 
techniques: mean, k-nearest neighbours (kNN), 
Fuzzy k-means, Singular Value Decomposition, 
Bayesian Principal Component Analysis and multiple 
imputations by chained equations. The comparison was 
carried out on four real data sets ranging in size from 
four to sixty-five variables under the completely random 
missing data assumption and using four evaluation 
criteria: RMSE, Unsupervised Classification Error, 
Supervised Classification Error and processing time.

Therefore, the main objective of this study is to 
determine the most appropriate imputation method and 

whether there are inconsistencies between the methods 
used by different stations. In this study, different imputation 
techniques are investigated, including Predictive Mean 
Matching (PMM), Multiple Random Forest Imputation (RF), 
Multiple Bayesian Linear Regression Imputation (BLR), 
Multiple Linear Regression (Non-Bayesian) Imputation 
(LRNB), Multiple Classification and Regression Tree 
(CART), k-nearest neighbours (kNN) and bootstrap-based 
expectation maximisation (EMB).

DATA AND STUDY AREA

The Langat River catchment is located in the western part of 
Peninsular Malaysia, more specifically between latitudes 2o 
40’ 152” N and 3o 16’ 15” N and longitudes 101o 19’ 20” E 
to 102o 1’ 10” E (Hamzah et al. 2021). The catchment covers 
an area of about 2,394.38 km2, with the main river channel 
being about 141 kilometres long. The river flows south 
into the Lower Mainland and west to the coast of Selangor 
State, with its mouth in the Strait of Malacca (Ebrahimian 
et al. 2018). This river basin, which is the most densely 
populated in Malaysia, is believed to offset the benefits 
of overdevelopment in the Klang Valley (Wan Mohtar, 
Bassa Nawang & Rahman 2017; Ahmed et al. 2016). It is 
an important raw water resource for drinking, recreational, 
industrial and agricultural purposes (Ahmed, Mokhtar, and 
Majid 2021) 

Within the Langat River, there are four sub-basins 
(Kajang, Dengkil, Lui & Semenyih). The Langat River 
in Kajang was selected for water quality assessment. The 
Department of Environment (DOE) Malaysia, Ministry of 
Natural Resources and Environment, provided monthly 
water quality time series for the Langat River in Kajang. 
Three stations were selected for water quality monitoring: 
S01, S02 and S03. The details for the selected sampling 
water quality monitoring stations are depicted in Table 1 
and Figure 1. At stations S01, S02, and S03, the average 
percentage of missing values is 25%, 22%, and 52%, 
respectively.

Department of Environment (DOE) had implemented 
WQI to measure the quality of water in Malaysia for over 
25 years. DOE use six water parameters quality to define 
the status of surface water quality based on national water 
quality status (NWQS) for Malaysia, which are dissolved 
oxygen (DO), biological oxygen demand (BOD), chemical 
oxygen demand (COD), pH value, ammoniacal-nitrogen 
(AN) and total suspended solid (TSS). 

For this study, the parameters for six water quality 
variables were selected for the period 2000-2019. 
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Station DOE  
station code

Coordinate
Location Sampling data Percentage 

missing valuesLatitude Longitude

S01 L15 03º02’46.0” N 101º46’38.8” E Pekan Batu 11
Once in a month 

2000 - 2019

25%
S02 L05 02º59’52.2” N 101º47’14.8” E Kajang Bridge 22%

S03 L04 02º57’51.4” N 101º47’01.1” E Near west country estate 52%

TABLE 1. Coordinates of selected sampling water quality monitoring station

FIGURE 1. Selected water quality monitoring stations of the Langat River in Selangor, Malaysia.
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METHODOLOGY 

Two primary subsections constitute this
section. In the first subsection, approaches
for imputed missing data are presented.
while the second subsection explains how
the performance of the methods used is
evaluated. This study used water quality
data from 2000 to 2019 to evaluate the
effectiveness of infilling techniques. The
missing water quality data were restored
after simulating the entire time series data.
The technique for incorporating missing
data into the complete time series is
illustrated in the following phases.
1. Data were summarised to learn about

the variables' frequency distributions,
the percentages of missing data, and the
overall quality of the dataset.

2. Evaluations and computations of the
chosen imputation models were
performed.

3. The model that achieved the highest
levels of performance across the range 
was determined to be the superior option 
for use with each variable at each
monitoring location.

IMPUTATION METHODS

Numerous imputation techniques are
described in the literature. Since there is not
an optimal model for imputation for each
type of variable (Rodríguez et al. 2021), 
several statistical and machine learning
approaches (single and multiple
imputation) were evaluated to achieve the
aim of this study. This study found that
there are seven imputation options that can 
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effectiveness of infilling techniques. The missing water 
quality data were restored after simulating the entire time 
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into the complete time series is illustrated in the following 
phases. 
1. Data were summarised to learn about the variables’ 

frequency distributions, the percentages of missing 
data, and the overall quality of the dataset.

2. Evaluations and computations of the chosen imputation
models were performed.

3. The model that achieved the highest levels of
performance across the range was determined to be 
the superior option for use with each variable at each 
monitoring location.

IMPUTATION METHODS

Numerous imputation techniques are described in the 
literature. Since there is not an optimal model for imputation 
for each type of variable (Rodríguez et al. 2021), several 
statistical and machine learning approaches (single and 

multiple imputation) were evaluated to achieve the aim of 
this study. This study found that there are seven imputation
options that can be used to fill data gaps in water quality 
measurements. 

MULTIPLE IMPUTATION (MI)

Multiple imputation (MI) combines the maximum likelihood 
technique with the ability to generate five to ten data sets, 
including raw data, that can be used to replace the missing 
data (Ser, Keskin & Yilmaz 2016). After merging the data 
from the imputed dataset, the parameters are estimated. MI 
generates a covariance matrix and a vector of means using 
maximum likelihood estimation.

MI goes one step further by incorporating statistical 
uncertainty into the model and using this uncertainty to 
simulate the natural variability found in an entire dataset 
of cases. MI then imputes actual data values to fill in the 
missing data points in the data matrix (Little & Rubin 
2019). Next, the data analyst analyses the individual data 
collections, compiles the analysis results, and summarises 
them into a single set of summary results. 

In multivariate analysis, MI seems to be one of the most 
appropriate methods to deal with missing data. Linear and 
non-linear models benefit greatly from the flexibility and 
adaptability of MI. The various multiple imputation methods 
examined in this study are as follows:
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PREDICTIVE MEAN MATCH (PMM)

The closest possible match between predicted and observed 
values is used to replace missing values for a continuous 
variable in PMM.

BAYESIAN LINEAR REGRESSION (BLR)

Univariate missing data are inferred using Bayesian linear 
regression, a type of statistical inference.

LINEAR REGRESSION (NON-BAYESIAN) (LRNB)

A linear regression line from ‘y’ at ‘x’ is fitted to the observed 
data, ignoring model errors.

REGRESSION AND CLASSIFICATION TREES (CART)

CART is a classification and regression algorithm that uses 
binary decision trees to classify new data. 

RANDOM FOREST (RF)

An ensemble approach that uses fully evolved regression 
trees. The goal is to generate a strong regressor from 
numerous weak learners (regression trees). 

k-NEAREST NEIGHBOUR (kNN)

It is widely accepted that one of the top ten data mining 
techniques is the k-nearest neighbour (kNN) method, where 
the mean of the relevant column of the nearest neighbour of
the corresponding row, that has no missing values is used 
to fill in the gaps when a value is missing. The distance 
between two points in Euclidean space can be used to define 
the nearest neighbour (Santos et al. 2020). 

BOOTSTRAP-BASED EXPECTATION MAXIMIZATION (EMB)

This approach is based on the bootstrap sampling procedure 
and the expectation maximisation algorithm. A sampling 
method called bootstrap sampling is used to estimate the 
sampling distribution of statistics, and the expectation 
maximisation method is a well-known tool for statistical 
imputation of missing data in various disciplines (Cara 
2019; Gunn et al. 2019; Tak, Woo, & Yeo 2016). The EMB 
method generates a random sample for the bootstrap sample. 
Next, the expectation maximisation algorithm calculates the 
maximum likelihood estimate if missing data are available 
before regressing the data. 

EVALUATION INDICATORS

Several key metrics were utilized to assess the study’s 
imputation techniques. Comparing theoretical and real 
data helped identify the optimal missing value estimation 
method. RMSE, MAE, MAPE, NSE, d, KGE, and PBIAS were 
used to compare the accuracy of the deployed techniques 

ructing missing water-quality data. The objectivein reconst  
function was chosen as NSE since it is the most constraining 
(Narbondo et al. 2020). RMSE, MAE, and MAPE were 
utilized for estimation, whereas d, KGE, and PBIAS were 
employed for validation. These metrics are presented in
Equations (1) – (7).

ROOT MEAN SQUARE ERROR (RMSE)

Root mean square error (RMSE) is used in most studies 
to quantify the difference between imputed and observed 
values. It essentially represents the sample standard 
deviation of the difference.

Jurnal Kejuruteraan 35(1) 2023: xxx-xxx
https://doi.org/10.17576/jkukm-2023-35(1)-18

data are available before regressing the
data.

EVALUATION INDICATORS

Several key metrics were utilized to assess
the study's imputation techniques.
Comparing theoretical and real data helped
identify the optimal missing value
estimation method. RMSE, MAE, MAPE,
NSE, d, KGE, and PBIAS were used to
compare the accuracy of the deployed 
techniques in reconstructing missing water-
quality data The objective function was
chosen as NSE since it is the most
constraining (Narbondo et al. 2020). 
RMSE, MAE, and MAPE were utilized for
estimation, whereas d, KGE, and PBIAS
were employed for validation. These
metrics are presented in Equations (1)– (7).

ROOT MEAN SQUARE ERROR
(RMSE)

Root mean square error (RMSE) is used in
most studies to quantify the difference
between imputed and observed values. It
essentially represents the sample standard
deviation of the difference.
 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 1
∑ 345

6789:;9<=45
5>?@A9<B

CD
5EF

G

(1)
The root mean square error (RMSE)

is dimensionally equivalent to the actual
and imputed values. The lower the root
mean square error, the more accurate the
performance of the model.

MEAN ABSOLUTE ERROR (MAE)

Mean absolute error is defined as the 
average difference between imputed and
observed data points and is calculated as
follows (Avila et al. 2018).

𝑅𝑅𝑀𝑀𝑅𝑅 = I
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(2)

The MAE ranges from 0 to infinity,
with 0 being the best fit. Some researchers
suggest using MAE instead of RMSE.
MAE is more interpretable than RMSE. In
mathematics, MAE is the average absolute 
difference between two variables. MAE is
easier to understand than the average of
squared errors. Moreover, unlike RMSE,
each error affects MAE proportionally to its
absolute value

MEAN ABSOLUTE PERCENTAGE
ERROR (MAPE)

In statistics, mean absolute percentage error
(MAPE), also known as mean absolute
percentage deviation, is a measure of the
accuracy of an imputation procedure.

𝑅𝑅𝑀𝑀𝑀𝑀𝑅𝑅 = I
G
∑ [45

6789:;9<=455>?@A9<

456789:;9<
[G

LYI ×
. 100%

(3)

NASH SUTCLIFFE EFFICIENCY (NSE)

The Nash-Sutcliffe efficiency (NSE) (Nash 
and Sutcliffe 1970) was used to evaluate the 
performance of the model. As a normalised
statistic, the NSE determines how much
‘noise’ is present compared to how much
‘information’ is present in the data of an
experiment (Moriasi et al. 2015). In terms
of NSE, the NSE is a measure of how well
the observed and estimated data plots match 
the 1:1 line.

𝑁𝑁𝑅𝑅𝑅𝑅 = 1 − ∑ a456789:;9<=455>?@A9<b
CD

5EF
∑ a456789:;9<=4̄b
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5EF

(4)
NSE is between -∞ and 1.0 

(including 1), where NSE = 1 is the optimal
value. Performance levels between 0.0 and
1.0 are generally considered acceptable, but
values below 0.0 indicate poorer correlation
between observed and predicted values,
indicating poor performance.

The root mean square error (RMSE) is dimensionally 
equivalent to the actual and imputed values. The lower the 
root mean square error, the more accurate the performance 
of the model.

MEAN ABSOLUTE ERROR (MAE)
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As a normalised statistic, the NSE determines how much 
‘noise’ is present compared to how much ‘information’ is 
present in the data of an experiment (Moriasi et al. 2015). In 
terms of NSE, the NSE is a measure of how well the observed
and estimated data plots match the 1:1 line.
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Comparing theoretical and real data helped
identify the optimal missing value
estimation method. RMSE, MAE, MAPE,
NSE, d, KGE, and PBIAS were used to
compare the accuracy of the deployed 
techniques in reconstructing missing water-
quality data The objective function was
chosen as NSE since it is the most
constraining (Narbondo et al. 2020). 
RMSE, MAE, and MAPE were utilized for
estimation, whereas d, KGE, and PBIAS
were employed for validation. These
metrics are presented in Equations (1)– (7).

ROOT MEAN SQUARE ERROR
(RMSE)

Root mean square error (RMSE) is used in
most studies to quantify the difference
between imputed and observed values. It
essentially represents the sample standard
deviation of the difference.

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 1
∑ 345

6789:;9<=45
5>?@A9<B

CD
5EF

G

(1)
The root mean square error (RMSE)

is dimensionally equivalent to the actual
and imputed values. The lower the root
mean square error, the more accurate the
performance of the model.

MEAN ABSOLUTE ERROR (MAE)

Mean absolute error is defined as the 
average difference between imputed and
observed data points and is calculated as
follows (Avila et al. 2018).

𝑅𝑅𝑀𝑀𝑅𝑅 = I
G
∑ J𝑥𝑥LMNOPQRPS − 𝑥𝑥LLUVWXPSJG
LYI

(2)

The MAE ranges from 0 to infinity,
with 0 being the best fit. Some researchers
suggest using MAE instead of RMSE.
MAE is more interpretable than RMSE. In
mathematics, MAE is the average absolute 
difference between two variables. MAE is
easier to understand than the average of
squared errors. Moreover, unlike RMSE,
each error affects MAE proportionally to its
absolute value

MEAN ABSOLUTE PERCENTAGE
ERROR (MAPE)

In statistics, mean absolute percentage error
(MAPE), also known as mean absolute
percentage deviation, is a measure of the
accuracy of an imputation procedure.

𝑅𝑅𝑀𝑀𝑀𝑀𝑅𝑅 = I
G
∑ [45

6789:;9<=455>?@A9<

456789:;9<
[G

LYI ×
. 100%

(3)

NASH SUTCLIFFE EFFICIENCY (NSE)

The Nash-Sutcliffe efficiency (NSE) (Nash 
and Sutcliffe 1970) was used to evaluate the 
performance of the model. As a normalised
statistic, the NSE determines how much
‘noise’ is present compared to how much
‘information’ is present in the data of an
experiment (Moriasi et al. 2015). In terms
of NSE, the NSE is a measure of how well
the observed and estimated data plots match 
the 1:1 line.
 

𝑁𝑁𝑅𝑅𝑅𝑅 = 1 − ∑ a456789:;9<=455>?@A9<b
CD

5EF
∑ a456789:;9<=4̄b

CD
5EF

  

(4)
NSE is between -∞ and 1.0 

(including 1), where NSE = 1 is the optimal
value. Performance levels between 0.0 and
1.0 are generally considered acceptable, but
values below 0.0 indicate poorer correlation
between observed and predicted values,
indicating poor performance.

NSE is between -∞ and 1.0 (including 1), where          
NSE = 1 is the optimal value. Performance levels between 
0.0 and 1.0 are generally considered acceptable, but values 
below 0.0 indicate poorer correlation between observed and 
imputed values, indicating poor performance.

WILLMOTT’S INDEX OF AGREEMENT (WI)

Willmott (1984) introduced the agreement index (WI) as a 
standard method for assessing the extent of model prediction 
error. It is calculated by dividing the ‘potential error’ by the 
‘mean square error’. It is able to incorporate measurement 
uncertainty (Martín, Reyes & Taguas 2017).
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WILLMOTT’S INDEX OF
AGREEMENT (WI)

Willmott (1984) introduced the agreement
index (WI) as a standard method for
assessing the extent of model prediction
error. It is calculated by dividing the
‘potential error’ by the ‘mean square error’.
It is able to incorporate measurement
uncertainty (Martín, Reyes & Taguas
2017).
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KLING-GUPTA EFFICIENCY 
(KGE)

Unlike NSE, there are no clearly defined
criteria for KGE to define a ‘good’ model.
Therefore, in current research, KGE scores
are interpreted similarly to NSE: negative
scores represent 'poor' model performance,
while positive scores represent 'good' 
model performance (Andersson et al. 2017;
Knoben, Woods & Freer 2018). However, a
recent study (Knoben, Freer & Woods
2019) suggests that all model results
−0.41 ≤ 𝐾𝐾𝐾𝐾𝐾𝐾 ≤ 1 can be considered good
efficiency.

𝐾𝐾𝐾𝐾𝐾𝐾 = 1 −
f(𝑟𝑟 − 1)j + (𝛼𝛼 − 1)j + (𝛽𝛽 − 1)j (6)

PERCENT BIAS (PBIAS)

The percentage bias metric (PBIAS)
quantifies the average probability that the
simulated data is greater or less than the 
observed data. PBIAS is ideally 0.0, with
low values indicating efficient model
simulation. Positive numbers indicate an
overestimation of the model, while negative
values indicate an underestimation of the
model (Moriasi et al. 2015). PBIAS is 
determined using equation 7, where PBIAS
is the deviation of the data analysed,
represented as a percentage of the mean.

𝑃𝑃𝐵𝐵𝑊𝑊𝐵𝐵𝐵𝐵 = o
∑ 345

6789:;9<=45
5>?@A9<B∗(Iqq)D

5EF

∑ a45
6789:;9<bD

5EF
r

(7)

The following table contains the
performance values and ratings for NSE,
WI, KGE, and PBIAS used in this work, as
indicated in Table 2 (Chen et al. 2017;
Knoben, Woods & Freer 2018; Moriasi et
al. 2015).

TABLE 2. Evaluation indicators and associated rating of performance.

Indicator Rating of
Performance Physical Water Quality Variables Chemical Water Quality Variables

NSE

Very good 𝑁𝑁𝐵𝐵𝐾𝐾 > 0.80 𝑁𝑁𝐵𝐵𝐾𝐾 > 0.65
Good 0.70 < 𝑁𝑁𝐵𝐵𝐾𝐾 ≤ 0.80 0.50 < 𝑁𝑁𝐵𝐵𝐾𝐾 ≤ 0.65

Satisfactory 0.45 < 𝑁𝑁𝐵𝐵𝐾𝐾 ≤ 0.70 0.35 < 𝑁𝑁𝐵𝐵𝐾𝐾 ≤ 0.50
Unsatisfactory 𝑁𝑁𝐵𝐵𝐾𝐾 ≤ 0.45 𝑁𝑁𝐵𝐵𝐾𝐾 ≤ 0.35

PBIAS

Very good |𝑃𝑃𝐵𝐵𝑊𝑊𝐵𝐵𝐵𝐵| < 10 |𝑃𝑃𝐵𝐵𝑊𝑊𝐵𝐵𝐵𝐵| < 15
Good 10 ≤ |𝑃𝑃𝐵𝐵𝑊𝑊𝐵𝐵𝐵𝐵| < 15 15 ≤ |𝑃𝑃𝐵𝐵𝑊𝑊𝐵𝐵𝐵𝐵| < 20

Satisfactory 15 ≤ |𝑃𝑃𝐵𝐵𝑊𝑊𝐵𝐵𝐵𝐵| < 20 20 ≤ |𝑃𝑃𝐵𝐵𝑊𝑊𝐵𝐵𝐵𝐵| < 30
Unsatisfactory |𝑃𝑃𝐵𝐵𝑊𝑊𝐵𝐵𝐵𝐵| ≥ 20 |𝑃𝑃𝐵𝐵𝑊𝑊𝐵𝐵𝐵𝐵| ≥ 30

WI Very good 0.75 < 𝑊𝑊𝑊𝑊 ≤ 1.00 0.75 < 𝑊𝑊𝑊𝑊 ≤ 1.00

KLING-GUPTA EFFICIENCY (KGE)

Unlike NSE, there are no clearly defined criteria for KGE 
to define a ‘good’ model. Therefore, in current research, 
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WILLMOTT’S INDEX OF
AGREEMENT (WI)

Willmott (1984) introduced the agreement
index (WI) as a standard method for
assessing the extent of model prediction
error. It is calculated by dividing the
‘potential error’ by the ‘mean square error’.
It is able to incorporate measurement
uncertainty (Martín, Reyes & Taguas
2017).
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KLING-GUPTA EFFICIENCY 
(KGE)

Unlike NSE, there are no clearly defined
criteria for KGE to define a ‘good’ model.
Therefore, in current research, KGE scores
are interpreted similarly to NSE: negative
scores represent 'poor' model performance,
while positive scores represent 'good' 
model performance (Andersson et al. 2017;
Knoben, Woods & Freer 2018). However, a
recent study (Knoben, Freer & Woods
2019) suggests that all model results
−0.41 ≤ 𝐾𝐾𝐾𝐾𝐾𝐾 ≤ 1 can be considered good
efficiency.

𝐾𝐾𝐾𝐾𝐾𝐾 = 1 −f(𝑟𝑟 − 1)j + (𝛼𝛼 − 1)j + (𝛽𝛽 − 1)j  
(6)

PERCENT BIAS (PBIAS)

The percentage bias metric (PBIAS)
quantifies the average probability that the
simulated data is greater or less than the 
observed data. PBIAS is ideally 0.0, with
low values indicating efficient model
simulation. Positive numbers indicate an
overestimation of the model, while negative
values indicate an underestimation of the
model (Moriasi et al. 2015). PBIAS is 
determined using equation 7, where PBIAS
is the deviation of the data analysed,
represented as a percentage of the mean.
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The following table contains the
performance values and ratings for NSE,
WI, KGE, and PBIAS used in this work, as
indicated in Table 2 (Chen et al. 2017;
Knoben, Woods & Freer 2018; Moriasi et
al. 2015).

TABLE 2. Evaluation indicators and associated rating of performance.

Indicator Rating of
Performance Physical Water Quality Variables Chemical Water Quality Variables

NSE

Very good 𝑁𝑁𝐵𝐵𝐾𝐾 > 0.80 𝑁𝑁𝐵𝐵𝐾𝐾 > 0.65
Good 0.70 < 𝑁𝑁𝐵𝐵𝐾𝐾 ≤ 0.80 0.50 < 𝑁𝑁𝐵𝐵𝐾𝐾 ≤ 0.65

Satisfactory 0.45 < 𝑁𝑁𝐵𝐵𝐾𝐾 ≤ 0.70 0.35 < 𝑁𝑁𝐵𝐵𝐾𝐾 ≤ 0.50
Unsatisfactory 𝑁𝑁𝐵𝐵𝐾𝐾 ≤ 0.45 𝑁𝑁𝐵𝐵𝐾𝐾 ≤ 0.35

PBIAS

Very good |𝑃𝑃𝐵𝐵𝑊𝑊𝐵𝐵𝐵𝐵| < 10 |𝑃𝑃𝐵𝐵𝑊𝑊𝐵𝐵𝐵𝐵| < 15
Good 10 ≤ |𝑃𝑃𝐵𝐵𝑊𝑊𝐵𝐵𝐵𝐵| < 15 15 ≤ |𝑃𝑃𝐵𝐵𝑊𝑊𝐵𝐵𝐵𝐵| < 20

Satisfactory 15 ≤ |𝑃𝑃𝐵𝐵𝑊𝑊𝐵𝐵𝐵𝐵| < 20 20 ≤ |𝑃𝑃𝐵𝐵𝑊𝑊𝐵𝐵𝐵𝐵| < 30
Unsatisfactory |𝑃𝑃𝐵𝐵𝑊𝑊𝐵𝐵𝐵𝐵| ≥ 20 |𝑃𝑃𝐵𝐵𝑊𝑊𝐵𝐵𝐵𝐵| ≥ 30

WI Very good 0.75 < 𝑊𝑊𝑊𝑊 ≤ 1.00 0.75 < 𝑊𝑊𝑊𝑊 ≤ 1.00

PERCENT BIAS (PBIAS)

The percentage bias metric (PBIAS) quantifies the average 
probability that the simulated data is greater or less than 
the observed data. PBIAS is ideally 0.0, with low values 
indicating efficient model simulation. Positive numbers 
indicate an overestimation of the model, while negative 
values indicate an underestimation of the model (Moriasi 
et al. 2015). PBIAS is determined using equation 7, where 
PBIAS is the deviation of the data analysed, represented as a 
percentage of the mean.
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WILLMOTT’S INDEX OF
AGREEMENT (WI)

Willmott (1984) introduced the agreement
index (WI) as a standard method for
assessing the extent of model prediction
error. It is calculated by dividing the
‘potential error’ by the ‘mean square error’.
It is able to incorporate measurement
uncertainty (Martín, Reyes & Taguas
2017).
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KLING-GUPTA EFFICIENCY 
(KGE)

Unlike NSE, there are no clearly defined
criteria for KGE to define a ‘good’ model.
Therefore, in current research, KGE scores
are interpreted similarly to NSE: negative
scores represent 'poor' model performance,
while positive scores represent 'good' 
model performance (Andersson et al. 2017;
Knoben, Woods & Freer 2018). However, a
recent study (Knoben, Freer & Woods
2019) suggests that all model results
−0.41 ≤ 𝐾𝐾𝐾𝐾𝐾𝐾 ≤ 1 can be considered good
efficiency.

𝐾𝐾𝐾𝐾𝐾𝐾 = 1 −
f(𝑟𝑟 − 1)j + (𝛼𝛼 − 1)j + (𝛽𝛽 − 1)j (6)

PERCENT BIAS (PBIAS)

The percentage bias metric (PBIAS)
quantifies the average probability that the
simulated data is greater or less than the 
observed data. PBIAS is ideally 0.0, with
low values indicating efficient model
simulation. Positive numbers indicate an
overestimation of the model, while negative
values indicate an underestimation of the
model (Moriasi et al. 2015). PBIAS is 
determined using equation 7, where PBIAS
is the deviation of the data analysed,
represented as a percentage of the mean.
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The following table contains the
performance values and ratings for NSE,
WI, KGE, and PBIAS used in this work, as
indicated in Table 2 (Chen et al. 2017;
Knoben, Woods & Freer 2018; Moriasi et
al. 2015).

TABLE 2. Evaluation indicators and associated rating of performance.

Indicator Rating of
Performance Physical Water Quality Variables Chemical Water Quality Variables

NSE

Very good 𝑁𝑁𝐵𝐵𝐾𝐾 > 0.80 𝑁𝑁𝐵𝐵𝐾𝐾 > 0.65
Good 0.70 < 𝑁𝑁𝐵𝐵𝐾𝐾 ≤ 0.80 0.50 < 𝑁𝑁𝐵𝐵𝐾𝐾 ≤ 0.65

Satisfactory 0.45 < 𝑁𝑁𝐵𝐵𝐾𝐾 ≤ 0.70 0.35 < 𝑁𝑁𝐵𝐵𝐾𝐾 ≤ 0.50
Unsatisfactory 𝑁𝑁𝐵𝐵𝐾𝐾 ≤ 0.45 𝑁𝑁𝐵𝐵𝐾𝐾 ≤ 0.35

PBIAS

Very good |𝑃𝑃𝐵𝐵𝑊𝑊𝐵𝐵𝐵𝐵| < 10 |𝑃𝑃𝐵𝐵𝑊𝑊𝐵𝐵𝐵𝐵| < 15
Good 10 ≤ |𝑃𝑃𝐵𝐵𝑊𝑊𝐵𝐵𝐵𝐵| < 15 15 ≤ |𝑃𝑃𝐵𝐵𝑊𝑊𝐵𝐵𝐵𝐵| < 20

Satisfactory 15 ≤ |𝑃𝑃𝐵𝐵𝑊𝑊𝐵𝐵𝐵𝐵| < 20 20 ≤ |𝑃𝑃𝐵𝐵𝑊𝑊𝐵𝐵𝐵𝐵| < 30
Unsatisfactory |𝑃𝑃𝐵𝐵𝑊𝑊𝐵𝐵𝐵𝐵| ≥ 20 |𝑃𝑃𝐵𝐵𝑊𝑊𝐵𝐵𝐵𝐵| ≥ 30

WI Very good 0.75 < 𝑊𝑊𝑊𝑊 ≤ 1.00 0.75 < 𝑊𝑊𝑊𝑊 ≤ 1.00

The following table contains the performance values 
and ratings for NSE, WI, KGE, and PBIAS used in this work, 
as indicated in Table 2 (Chen et al. 2017; Knoben, Woods & 
Freer 2018; Moriasi et al. 2015).

(4)

(5)

(6)

TABLE 2. Evaluation indicators and associated rating of performance.

Indicator Rating of Performance Physical Water Quality Variables Chemical Water Quality Variables
NSE Very good NSE > 0.80 NSE > 0.65

Good 0.70 < NSE ≤ 0.80 0.50 < NSE ≤ 0.65
Satisfactory 0.45 < NSE ≤0.70 0.35 < NSE ≤ 0.50

Unsatisfactory NSE ≤ 0.45 NSE ≤ 0.35
PBIAS Very good |PBIAS| <10 |PBIAS| <15

Good 10 ≤| PBIAS| <15 15 ≤ |PBIAS| <20
Satisfactory 15 ≤ |PBIAS| < 20 20 ≤ |PBIAS| <30

Unsatisfactory |PBIAS| ≥ 20 |PBIAS| ≥ 30
WI Very good 0.75 < WI ≤ 1.00 0.75 < WI ≤ 1.00

Good 0.65 ≤ WI ≤ 0.75 0.65 ≤ WI ≤ 0.75
Satisfactory 0.50 < WI < 0.65 0.50 < WI < 0.65

Unsatisfactory WI ≤ 0.5 WI ≤ 0.5
KGE Satisfactory/Good KGE ≥ -0.41 KGE ≥ -0.41

Unsatisfactory KGE < -0.41  KGE < -0.41

(7)

KGE scores are interpreted similarly to NSE: negative 
scores represent ‘poor’ model performance, while positive 
scores represent ‘good’ model performance (Andersson et 
al. 2017; Knoben, Woods & Freer 2018). However, a 
recent study (Knoben, Freer & Woods 2019) suggests that 
all model results −0.41≤KGE≤1 can be considered good 
efficiency.
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RESULTS AND DISCUSSION

Table 3 lists six water quality parameters with the percentage 
of missing values at each site. The percentage of missing 
values for ammoniacal nitrogen (AN), biological oxygen 
demand (BOD), chemical oxygen demand (COD), dissolved 
oxygen (DO), potential hydrogen (pH) and suspended solids 
(SS) is greater than 20% at stations S01 and S02 and greater 
than 50% at station S03. The missingness maps and patterns 
for the three stations discussed in the previous section are 
shown in Figure 2. 

TABLE 3. Percentage of missing data 

Parameter
% Missing Data

S01 S02 S03

Chemical

AN 27.08 21.25 53.33
BOD 23.75 20.42 52.08
COD 27.50 21.25 52.92
DO 22.92 22.50 50.42
pH 23.33 21.67 50.00

Physical SS 25.00 24.58 51.67

The observed data (available data) is represented by the 
red highlighted area, while the missing data is represented 
by the yellow highlighted area (missing data). The map of 
missing data clearly shows that the parameter of station 
S03 has a high percentage of missing values, more than 
50%, while the parameters of stations S01 and S02 have 
an average missing value of 20%, which is considered a 
moderate percentage of missing values.

In this study, PMM, LRNB, BLR, RF, CART, EMB and   
kNN were compared to determine the optimal imputation 
method for calculating missing water quality data. The 
dataset for this study consisted of six water quality indicators 
and three monitoring stations. It was used to compare 

the accuracy of the different imputation methods and to 
select the optimal method for each parameter. Before each 
analysis, the dataset was min-max normalised to account for 
the different units and magnitudes. 

The most efficient method had the highest NSE and 
the lowest RMSE, MAE and MAPE (Rodríguez et al. 2021; 
Moriasi et al. 2015). Consequently, the most accurate 
method for each parameter was selected and validated 
with the formulas WI, KGE and PBIAS. The results of this 
approach are expressed as time series of water quality with a 
one-month frequency.  The leading model for each variable 
is shown in Tables 4 and 5 respectively, together with the 
values derived from the performance assessors and the 
corresponding score. For the NSE assessment, the imputation 
result is generally considered satisfactory. The water 
quality parameters measured at the three monitoring sites 
provided the best estimate with a ‘very good’ performance 
for all variables assessed. The validation of the imputation 
technique was exceptional and gave ‘very good’ results for 
the assessments WI, PBIAS and KGE.

 Figure 3 shows a boxplot representation of the 
performance of the technique (NSE, WI, PBIAS and KGE). 
NSE > 0.75 identifies 100% of imputed data as ‘very good’ 
and all imputed data have a positive NSE, indicating that 
the methodology outperforms the mean function used as 
an imputer for all imputations. The results of the validation 
were remarkable. In terms of WI-score and PBIAS scores, 
100% of the imputed data are classified as ‘very good’. With 
regard to KGE, all imputations are rated ‘good’. 

kNN outperformed the other methods in most cases 
(14 times), followed by CART (3 times) and BLR (1 time). 

One reason for this is that kNN is the only technique that, 
in addition to imputation, also takes temporal information 
into account by including neighbouring observations. The 
accuracy of the other imputation techniques used is quite 
similar.
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FIGURE 2. Missingness map and pattern at three monitoring stations 

 
TABLE 4. Best imputation methods and corresponding performance evaluator values 

 
PARAMETER STATION METHOD NSE NSE RATING RMSE MAE MAPE 

DO 

S01 BLR 0.98 

Very good 

0.17 0.03 0.01 

S02 CART 0.97 0.44 0.07 0.01 

S03 kNN 0.99 0.16 0.04 0.01 

BOD 

S01 kNN 0.95 

Very good 

1.33 0.29 0.06 

S02 kNN 0.97 2.52 0.59 0.05 

S03 CART 0.98 0.75 0.20 0.04 

COD 

S01 CART 0.93 

Very good 

4.72 1.36 0.07 

S02 kNN 0.96 55.43 9.92 0.07 

S03 kNN 0.94 5.55 1.63 0.05 

SS 

S01 kNN 0.94 

Very good 

93.67 17.85 0.09 

S02 kNN 0.97 68.75 10.55 0.08 

S03 kNN 0.96 37.15 9.6 0.07 

pH 

S01 kNN 0.76 

Very good 

0.15 0.03 0.00 

S02 kNN 1.00 0.12 0.03 0.01 

S03 kNN 0.96 0.07 0.02 0 

AN 

S01 kNN 0.89 

Very good 

0.47 0.13 0.15 

S02 kNN 1.00 0.49 0.14 0.09 

S03 kNN 0.80 0.60 0.17 0.18 
 

TABLE 5. Best imputation methods and corresponding performance validation values 
 

PARAMETER STATION METHOD WI WI 
RATING PBIAS PBIAS  

RATING KGE KGE  
RATING 

DO 

S01 BLR 0.99 Good 0.10 
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FIGURE 2. Missingness map and pattern at three monitoring stations
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TABLE 4. Best imputation methods and corresponding performance evaluator values
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FIGURE 3. Box plots illustrating the performance of model imputation (NSE, WI, KGE, and PBIAS)
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4. The aim of this study to address the 
problem of imputing data in a water 
quality dataset.  

5. Since there is no single best method 
for imputing water quality 
variables, it was very important to 
use a range of techniques. 

6. The statistical and machine learning 
methods used in this study were 
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status (NWQS), which are dissolved oxygen (DO), 
biological oxygen demand (BOD), chemical oxygen 
demand (COD), pH value, ammoniacal-nitrogen (AN) 
and total suspended solid (TSS). 
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COD, pH, TSS and AN at three monitoring stations 
along the Langat River in Selangor, Malaysia. 

4. The aim of this study to address the problem of imputing 
data in a water quality dataset. 

5. Since there is no single best method for imputing water 
quality variables, it was very important to use a range 
of techniques.

6. The statistical and machine learning methods used in 
this study were PMM, LRNB, BLR, RF, CART, EM and 
kNN.

7. Among the implemented methods, kNN was selected as 
the best because it achieves remarkable accuracy with 
an optimised performance of 14 out of 18 for the six 
studied parameters at three monitoring stations. 

8. The results show that the performance of kNN is ‘very 
good’ with an NSE > of 0.75 and the lowest values for 
RMSE, MAE and MAPE. 

9. In addition, all imputed data with WI ≥ 0.94, -0.40           
≤ PBIAS ≤ 5.3 and KGE ≥ 0.87 were also rated as ‘very 
good’.

10. Consequently, this study provides the basis for future 
water quality studies in the study catchment, including 
developing the use of the data now available, so that 
the results of this study can help water managers and 
researchers around the world to improve water quality 
modelling and develop reliable modelling techniques, 
water quality predictions and sensitivity analyses.

11. It is believed that effective water quality data pollution 
control techniques can be improved by incorporating 
geographic information, which has already yielded 
promising results.
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