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ABSTRACT

Many type irregularities exist in reinforced concrete frame buildings to accommodate the demand from architectural and 
aesthetic aspects. One of it is vertical irregularity setback. Its appearance affected the building seismic performance and 
the damage distribution. Previous researchers proposed equations to correlate between irregularity indices and damage 
index ratio of setback buildings. However, the aspect ratio between span and height were not included in the formula. This 
research presents the influence of span-to-height ratio to damage index ratio of the reinforced concrete buildings with 
setbacks. A set of 2D RC frames having setbacks are evaluated with nonlinear dynamic analyses under three seismic input 
motions. Several span-to-height aspect ratios were applied by changing the inter-story heights. The Park-Ang damage index 
was adopted to evaluate the damage index ratio between tower part and base part to represent the damage distribution and 
the inter-story drifts were observed to represent the building seismic performance. The result showed that under the same 
earthquake motions, the decrease in span-to-height ratio majorly increased the maximum inter-story drifts. The damage 
index ratio values between tower part and base part fluctuated, however the similar pattern of damage distributions between 
tower and base structure were obtained.
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INTRODUCTION

In the recent rapid development of society and technology, 
the demand for the building construction is also rapidly 
growing. Following the enhancement of architectural 
demand and functional demand, the building structure must 
adapt to any kind of demand, one of it to accommodate any 
irregularity, both horizontal and vertical. In terms of vertical 
irregularity, one of the types of it is vertical irregularity 
setback. The setback as vertical irregularity in building 
is generally noted the existence of disruption in strength, 
mass, and stiffness distribution along the height (Mwafy 
& Khalifa 2017; Soni & Mistry 2006). The presence of 
vertical irregularity setback may have considerable effect 
on building responses such as torsional response (Duan & 
Chandler 1995) and damage concentration on the notch area 
(Syamsi, Maulana, Widyantama, Ian, & Lesmana 2021). It 
also has a significant effect if the building is subjected to the 
high seismic loadings (Syamsi et al. 2021).

The seismic performance and damage distribution can 
be used as parameters to determine the effect of the setback 
existence in buildings. In terms of earthquake loadings, 
parameter displacement or inter-story drift can be the one 
representing the seismic performance of building (Maulana, 
Fonseca & Saito 2022). The damage distribution can also 
be represented by the story damage index (Belkacem, 

Bechtoula, Bourahla, & Belkacem 2020), which can be 
numerated by using popular damage indices, such as Park-
Ang damage index (Park & Ang 1985; Park, Ang & Wen 
1985). Many studies have proposed methods to calculate 
the damage degree of the building through the Park-Ang 
damage index, and furthermore predicted the damage indices 
by using some other general parameters, such as geometry 
effect from irregularity indices, developed by Karavasilis 
et al. (Karavasilis, Bazeos & Beskos 2008), which were 
originally proposed by Mazzolani and Piluso (Mazzolani & 
Piluso 1996).

For example, the study by Habibi and Asadi (Habibi & 
Asadi 2017) established formulas to calculate overall Park-
Ang damage index of buildings with setback irregularity 
by using three variables, consisting of the natural period, 
irregularity indices, and overall drifts. This proposal 
can determine the overall damage index with adequate 
precision. However, it can only obtain the overall damage 
index without knowing the damage distribution and still 
needs mode analysis to gain the natural period of the 
building. The other proposal formula to determine the 
damage degree was made Varadharajan et al. (Varadharajan, 
Sehgal & Saini 2013, 2014) by inputting the parameter of 
modal participation factor ratio of regular and irregular 
building, the displacement ductility, and the stiffness ratio 
of structural element members. Although the overall Park-
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Ang damage index can be predicted sufficiently, the mode 
analyses were still needed to be performed and the damage 
distribution along the height could not be directly harnessed. 
Other researchers also conducted the similar study, such as 
Hait et al. (Hait, Sil & Choudhury 2020a) using the seismic 
response buildings parameters, namely inter-story drift, 
maximum joint rotation, and peak top floor displacement. 
Hait et al. (Hait, Sil & Choudhury 2020b) also further their 
study by implementing artificial neural network to determine 
the damage index. Both proposals could forecast the 
damage index decently, but it is only overall damage index 
and only suits for horizonal irregularity, and to calculate the 
equations, dynamic analyses were still needed to retrieve the 
seismic responses. To overcome those limitations, Maulana, 
et al. (Maulana, Enkhtengis & Saito 2021) proposed simpler 
formulas by only considering the irregularity indices to 
retrieve the damage index ratio, a ratio between maximum 
damage index of the tower part to the maximum damage 
index of the base part, specifically for the reinforced concrete 
building with irregularity setback. The idea was tested on 
the experimental shaking table tests by other researchers. 
The fair result was obtained by using the formula. However, 
the consideration of different height or span length cannot 
be accommodated through the irregularity indices entirely, 
and the effect of it has not been studied yet.

In this study, the effect of span-to-height ratio to 
damage index ratio of the reinforced concrete buildings 
with setbacks were observed. Four sets of 2D RC frames 

having setback with stepped type are adopted by following 
the previous research (Maulana et al. 2021). The seismic 
response of the building is evaluated with nonlinear dynamic 
analyses under three different seismic input motions. Seven 
height-to-span ratios were implemented by changing the 
inter-story heights. The Park-Ang damage index was 
applied to evaluate the damage index ratio between tower 
part and base part to represent the damage distribution and 
the inter-story drifts were observed to represent the building 
seismic performance. The effect of span-to-height ratio 
could contribute to better understand on seismic damage 
distribution of vertical irregular buildings.

METHODOLOGY

NUMERICAL SIMULATION METHOD AND MODELLING IDEALIZATION

Nonlinear dynamic analyses of the specimens were 
conducted by using the STERA_3D, a software written 
by Professor Taiki Saito (Saito 2020). Figure 1 shows 
the STERA 3D user interface for building modelling. In 
STERA_3D, the dynamic earthquake response study is 
performed by adopting Newmark-β numerical integration 
method (Newmark 1959). All the details of implemented 
modelling approach are accessible in STERA_3D Technical 
Manual (Saito 2020). The structural elements such as 
beams and columns are modelled with certain idealizations, 
elaborated as follows.

FIGURE 1. STERA_3D interface on setback building model, a tool developed by Saito (Saito 2020)
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The RC beam and column elements are modeled as line 
elements with two nonlinear bending springs at both ends 
and one nonlinear shear spring at the middle as illustrated 
in Figure 2. The end displacement vector is obtained from 
Equation 1 as the sum of the displacement vector of each 

component. The RC column section is modelled by using 
the multi springs model, originally proposed by Lai, Will, 
and Otani in 1984 (Lai, S. -S., Will, G.T. & Otani 1984), as 
shown in Figure 3.

FIGURE 2. Elastic, nonlinear bending, and nonlinear shear springs for elements modelled by STERA_3D (Saito 2020)

FIGURE 3. RC Column section modelling using multi spring models: (a) original column section, and (b) multi-spring model 
idealization (Saito 2020)

PARK-ANG DAMAGE INDEX AND DAMAGE INDEX RATIO

Park and Ang (Park & Ang 1985; Park et al. 1985) proposed 
a damage index, especially for element structures which 
were comprised from the reinforced concrete materials. To 
measure the degree of the damage, damage index can be 
calculated using Equation 1 as follow.
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Where um is the maximum drift response of 
the structural earthquake due to seismic input 
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Where um is the maximum drift response of the 
structural earthquake due to seismic input motions, uu is the 
ultimate drift capacity of the element within the condition 
of monotonic loading, Eh is the total energy dissipated by 
the element, Fy is the yielding force of the element, and β is 
the non-negative parameter depending on the loading effect.

There are five levels of the damage degree based on the 
value of the DI, which is slight damage (DI value is less than 
0.1), minor damage (DI value is less than 0.25), moderate 
damage (DI value is less than 0.4), severe damage (DI value 
is less than 1.0), and collapse state (DI larger than 1.0). 

After calculating the damage index for every element 
with Park-Ang damage index (Park & Ang 1985; Park et 
al.1985) and story damage index proposed by Belkacem et 
al. (Belkacem et al. 2020), the damage index ratio between 
tower part and base part can be calculated by using Equation 
2, which originally proposed by Maulana et al (Maulana et 
al. 2021) as follow.
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Irregularity Indices

The geometry irregularities are accommodated in the 
calculation of geometrical indices 
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, which can be 
calculated based on the indices developed by Karavasilis et 
al. (Karavasilis et al. 2008) as written in Equation 3 and 4 
as follows.
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with 6 m× 6 m panel of x-y direction. The 
compressive concrete strength is determined as 30 
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size is 600 mm × 300 mm with the 6D-35 cm 
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The acceleration raw data was retrieved from PEER 
(PEER 2021) and the earthquake is scaled to have 
Peak Ground Velocity (PGV) of 50 cm/s, 
corresponding the design level earthquake for safety 
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(a) Specimen #3 (b) Specimen #8 (c) Specimen #13 (d) Specimen #18 

 
FIGURE 4. Four specimen of stepped setback buildings, following previous study by Maulana et al. (Maulana et 
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where ns is the number of levels in the frame, nb is the 
number of spans of the base story, Li is the total span of the 
story, and Hi is the inter-story height every bay.

BUILDING SPECIMENS

The specimen in this study follows previous study conducted 
by Maulana et al. (Maulana et al. 2021), However, only 
four specimens are chosen, representing the location of 
the setback in the middle of the building. The reinforced 
concrete building has six story levels, and it comprises of 
two to five spans. In this study, the focus is only for the 
stepped setback type. The specimen illustration is shown 

in Figure 4. The building layout is comprising of structure 
with 5 × 2 bays for six story level buildings with 6 m× 6 m 
panel of x-y direction. The compressive concrete strength is 
determined as 30 MPa, with the column size of 700 mm × 
700 mm with 8D-35mm longitudinal rebars and 2-D13mm 
at 10 cm for the transversal rebar. For the beam, the size is 
600 mm × 300 mm with the 6D-35 cm longitudinal rebars 
and 2-D13mm at 10 cm for the transversal rebar.

There are 7 height-to-span ratio, which refers to the 
same span of 6 m but different height of building from 3 
m to 6 m. The detail of implemented height-to-span ratio is 
presented in Table 1.

INPUT EARTHQUAKE MOTIONS

Following the original proposal by Maulana, et al. (Maulana 
et al. 2021), three input earthquake motions are utilized 
to be loaded in the specimens. The acceleration raw data 
was retrieved from PEER (PEER 2021) and the earthquake 
is scaled to have Peak Ground Velocity (PGV) of 50 cm/s, 
corresponding the design level earthquake for safety limit 
state. Table 2 shows the details of three input earthquakes, 
Figure 5 shows the spectrum response of the acceleration, 
and Figure 6 shows the waveforms of the seismic input 
motions.

FIGURE 4. Four specimen of stepped setback buildings, following previous study by Maulana et al. (Maulana et al. 2021)
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(PEER 2021) and the earthquake is scaled to have 
Peak Ground Velocity (PGV) of 50 cm/s, 
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TABLE 1. Implemented height-to-span ratio for four building specimens 
Specimen Building heights (in m) Height-to-span ratio 
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TABLE 1. Implemented height-to-span ratio for four building specimens

Specimen Building heights (in m) Height-to-span ratio
#3 3.0 0.500
#8 3.5 0.583
#13 4.0 0.667
#18 4.5 0.750

5.0 0.833
5.5 0.917
6.0 1.000
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TABLE 2. Detail of three input earthquakes

No Event Year Station Component Original max. acc. (cm/s²) Scaled Max. Acc. (cm/s²)
1 Imperial Valley 1940 El Centro NS 341.69 510.70
2 Kern County 1952 Taft EW 152.69 496.50
3 Kobe 1995 JMA NS 817.80 449.80

FIGURE 5. Three spectrum response of the accelerations
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RESULTS AND DISCUSSION

NATURAL PERIODS

In this study, the natural period of the first mode of all 
specimens is obtained from STERA_3D software by running 
the mode analysis. The complete results can be observed in 
Figure 7. From the results, it is known that the more bays 
that the specimen has, the smaller natural period of the first 
mode value will be produced. It is because there are more 
elements in the base part and thus, the strength and stiffness 
increase within increasing the panel. It can be seen from 
Specimen #3 that only has two bays in the base part, while 

Specimen #18 has five bays. Also, the increase of the height-
to-span ratio is followed by the increase of the natural period. 
It is because with the same span, the height increased and 
the stiffness is decreasing, therefore the natural period of 
first mode is increasing. These results confirm the theory 
of natural frequency mentioned by Chopra (Chopra 2014) 
and the analysis by Maulana et al. (Maulana, Faturrochman, 
& Saito 2019) that building’s natural period is depending 
on the mass and stiffness. Since the mass is uniform, the 
increase of the height weakened the building stiffness, thus 
the natural period increased along the increase of height-to-
span ratio.

FIGURE 7. Natural period of the first mode of the buildings
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base part, it will be followed by the larger damage in 
the tower part. This result could give the insight that 
height-to-span ratio could affect the value of the 
damage index ratio value in the building with a 
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EFFECT OF HEIGHT-TO-SPAN RATIO TO DAMAGE INDEX RATIO

As explained earlier in Table 1, four specimens are 
subjected to seven different height-to-span ratios, which are 
approached by maintaining the span length and changing 
the inter-story height. By going through this approach, 
the irregularity indices will be the same and not change 
if determined following Equation 3 and 4. By using the 
proposed method by Maulana, et al. (Maulana et al. 2021), 
one damage index ratio can only be obtained for one value 
of irregularity indices. However, as depicted in Figure 8, 
with the same value of irregularity indices but different 
height-to-span ratio, the value of damage index ratio is 
changing. Figure 8 is shown, representing the results from 
the implementation of three input earthquakes and the 
average responses from three input motions is represented 
as straight line. For the specimen 3, the average value of 
damage index ratio fluctuates between 0.9 to 1.2 along with 
the change of the height-to-span ratio. This means that, in 
some case, the tower part suffers more damage than the base 
and the definition of the damage index ratio by only using 
the irregularity index should be improved.

Furthermore, from Figure 9 which illustrates all the 
average results for specimen 3, 8, 13, and 18, there is a major 
trend that can be seen, which is the larger of the height-to-
span ratio, the damage index ratio will increase. In the study 
by Varadharajan et al. (Varadharajan et al. 2013, 2014), 
the global damage index value increased when the column 
stiffness decreased, which confirm the result in this study. In 
this case, the damage distribution definition from Equation 
2 will still suitable since the value of damage index ratio 
is always larger than one, meaning that the tower part will 
receive more damage concentration. Also, with the stronger 
of the base part, it will be followed by the larger damage in 
the tower part. This result could give the insight that height-
to-span ratio could affect the value of the damage index ratio 
value in the building with a vertical irregularity setback.

INTER-STORY DRIFT RESPONSES

Regarding the effect of the span-to-height ratio to the 
average inter-story drift ratio responses, all specimens show 
the similar patterns, as can be seen in Figure 10. Figure 
10 describes the results of average inter-story drift ratio 
for span-to-height ratio of 0.500, 0.750, and 1.000. With 
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the same span-to-height ratio, the specimen that has less 
panel in base part suffered less inter-story drift at the top 
of the setback location. The value of inter-story drift and 
its differences will be more distinct after increasing the 
span-to-length ratio. This result is supported by the Hooke’s 
law, mentioned by Rees (Rees 1997), where the drift of a 

FIGURE 8. The effect of changing height-to-span ratio to the damage index ratio value for specimen #3

structure is affected by force and stiffness. In this case, the 
ratio of stiffness between tower part and base part is more 
recognizable when the base part has a greater number of 
bays compared to the tower part, thus the inter-story drift is 
larger within the increase of span-to-height ratio.
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stiffness. In this case, the ratio of stiffness between 

tower part and base part is more recognizable when 
the base part has a greater number of bays compared 
to the tower part, thus the inter-story drift is larger 
within the increase of span-to-height ratio. 

 

 

FIGURE 8. The effect of changing height-to-span ratio to the damage index ratio value for specimen #3 
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FIGURE 10. Effect of height-to-span ratio to the inter-story drifts value for all specimen
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CONCLUSION 
 
To sum up, the influence of the span-to-height ratio 
to the seismic response and damage distribution is 
observed. Four specimens of 2D frame building 
were subjected to three earthquake motions and the 
inter-story drift ratio and damage index ratio 
response are examined under seven different span-to 
height ratios. 

The main first noticeable differences were in 
the natural period of the first mode. The higher span-
to-height ratio were followed by the higher natural 
period. Although the higher span-to-height ratio 
were made for the specimens, the final definition 
state of damage index ratio for three specimens were 
similar, which the tower part suffered the damage 
distribution more than the lower part, indicated by 
the damage index ratio is larger than one. For the 
inter-story drift response, the consistent pattern was 
obtained, where the inter-story drift was larger 
together with the increase of span-to-height ratio. 

The proposal of damage index ratio which 
only considering the irregularities indices is useful 
for the early predictions, however, accurate damage 
index ratio can be retrieved by considering the value 
of span-to-height ratio. 
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