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ABSTRACT

Impact of COVID-19 pandemic is widespread imposing limitations on the healthcare services all over the world. Due to this 
pandemic, governments around the world have imposed restrictions that limit individual freedom and have enforced social 
distance to prevent the collapse of national health care systems. In such situation, to offer medical care and rehabilitation to 
the patients, Telerehabilitation (TR) is a promising way of delivering healthcare facilities remotely using telecommunication 
and internet. Technological advancement has played the vital role to establish this TR technology to remotely assess patient’s 
physical condition and act accordingly during this pandemic. Likewise, Human Activity Recognition (HAR) is a key part 
of the recovery process for a wide variety of conditions, such as stroke, arthritis, brain injury, musculoskeletal injuries, 
Parkinson’s disease, and others. Different approaches of human activity recognition can be utilized to monitor the health 
and activity levels of such a patient effectively and TR allows to do this remotely. Therefore, in situations where conventional 
care is inadequate, combination of telerehabilitation and HAR approaches can be an effective means of providing treatment 
and these opportunities have become patently apparent during the COVID-19 outbreak. However, this new era of technical 
progress has significant limitations, and in this paper, our main focus is on the challenges of telerehabilitation and the 
various human activity recognition approaches. This study will help researchers identify a good activity detection platform 
for a TR system during and after COVID-19, considering TR and HAR challenges.
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INTRODUCTION

The World Health Organization (WHO) declared the 
coronavirus outbreak a global public health emergency at 
the end of January and confirmed it a pandemic on March 
11, 2020 (Akmam et al. 2021). The World Confederation 
for Physical Therapy suggested to provide only the crucial 
rehabilitation during the pandemic (Turolla et al. 2020). 
Because of such restrictions, Telerehabilitation (TR) can be 
considered as a worthy alternative method of consultation 
and rehabilitation. Figure 1 exhibits weekly confirmed 
COVID-19 cases per million people from January 27, 2020 
to November 21, 2022. 

 

 FIGURE 1. Weekly confirmed COVID-19 cases per million people
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Human activity recognition (HAR), one of the many 
rehabilitation services offered by TR systems, is a core 
part of treatment for medical conditions like parkinson’s, 
stroke, musculoskeletal injuries and so on. HAR intends to 
develop a system that can detect and describe human actions 
by mimicking the human visual system (Abu-Bakar and 
Syed 2019). HAR may be categorized in three main groups, 
namely, sensor-based, vision-based, and multimodal (Ankita 
et al. 2021). Figure 2 outlines several HAR approaches.

FIGURE 2. Various approaches of HAR

With the use of TR, these methods can be used to 
assess various human activities remotely during pandemic. 
However, it is difficult to put into practice as HAR approaches 
aren’t without their deficiencies. Also the TR system have its 
own set of benefits and downsides (Ankita et al. 2021). This 
work is specifically targeted towards the challenges of TR 
and these HAR approaches. The rest of the paper has been 
organized as follows: TR during Covid-19 and various 
HAR approaches have been discussed next two sections. The 
discussion part has focused on overall discussion on 
challenges or limitations related to TR and HAR approaches. 
And finally, this review paper ends with the concluding 
remarks mentioned in the conclusion section.

TELEREHABILITATION AND COVID -19

Rehabilitation is a process of returning patients to 
normal life using training and therapies. And 
rehabilitation using telecommunication and internet is 
known as telerehabilitation or e-rehabilitation. 
Conventional rehabilitation process may expedite the 
spreading of COVID-19, so TR can be considered as a 
good alternative to ensure the health services to patients. 
Chang et al. (2020) mentioned that remote 
rehabilitation can be considered as a useful way for patients 
who needs rehabilitation and care after stroke during 
the COVID-19 pandemic. Rabanifar et al. (2021) pointed 
out the advantages of TR such as less logistical hurdles, 
better patient autonomy, harmony with remote 
monitoring, virus protection, customization options, 
and so on. TR has decreased transportation concern, 
travel and waiting time, travel expense, physical barrier 
and caregiver burdens, staying time in hospital, use of 
emergency medical services and so on (Fiani et al. 2020). 
Many researchers have also given focus on various 
advantages of TR in their researches. Figure 3 depicts the 
basic telerehabilitation architecture.

FIGURE 3. Telerehabilitation System Architecture

Despite the many positive aspects, TR does have a few 
downsides as well. Ciortea et al. (2020) mentioned that 
though the use of TR is expanding, the major obstacles are 
raising patients’ acceptance of the new approach as well as 
their motivation and engagement throughout the program. 
Budgetary limitations, data security and reimbursement 
difficulties, understanding deficiency and discomfort with 
the use of new technology were all cited by Brigo et al. (2020) 
and Rangachari et al. (2020) as significant impediments to 
TR implementation. Zedda et al. (2020) addressed most 
significant TR related challenges which includes adaptability 
to various rehabilitation setups, economic sustainability of 
the suggested solutions, scalability, compliance and patient 
participation. Apart from the numerous advantages, of TR, 
Falvey et al. (2020) identified that cost is the most crucial 
aspect in the development of TR systems. Kairy et al. (2017) 
mentioned that due to a lack of understanding, healthcare 
professionals are less aware of the benefits of TR application 
in real life. Few factors related to TR were mentioned by 
Bahari et al. (2019) such as disappointment and reluctance, 
expense, technological limitations, connectivity issues, less 
planning and training knowledge, lack of awareness, skill 
optimizing and e-healthcare knowledge. Tyagi et al. (2018) 
stated about the advantages of TR such as easy accessibility, 
continuous monitoring of patients etc., but also focused on 
few barriers such as equipment setting problem, physically 
test constraints, connectivity issues, disability along with age 
and sensory impairments. Because of these obstacles, the 
implementation of TR systems to aid in patients’ recoveries 
during the COVID-19 has turned out to be challenging.

Table 1 displays the attitudes and willingness of both 
physiotherapists and the general people toward TR during 
and after the pandemic event. According to the information 
provided articles in table 1, despite the fact that this system 
is afflicted by a great number of obstacles, TR’s popularity 
has not decreased since the outbreak.
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TABLE 1. Perceptions and willingness of physiotherapists and general people towards TR

Author Year Physiotherapists 
(Positive)

General People 
(Positive) Country Total Participants

(Physiotherapists+ General People)

Caroline et al. 2020 - 62%-75% Belgium 200 (0+200)
Almojaibel et al. 2020 79% - Worldwide 222 (222+0)
D’Souza et al. 2021 72.9% - India 118 (118+0)
Dierick et al. 2021 50% 75% Belgium and France 175 (68+107)

Fernández et al. 2022 50% 86% Brazil 1107 (707+400)
Ramanandi 2022 66.84% - India 389 (389+0)

Buabbas et al. 2022 - 93.5% Kuwait 46 (0+46)

HUMAN ACTIVITY RECOGNITION (HAR) APPROCHES

HAR recognizes a variety of human actions including 
walking, running, sitting, sleeping, standing, showering, 
cooking, driving, door opening (Chang et al. 2020 & Minh 
Dang et al. 2020) and specific arm movements such as 
reaching/releasing an object, frontal elevation and elderly 
people’s activity (Demrozi et al. 2020). Based on the types 
of devices and sensors used, its approaches can be divided 
into wearable, visual, and multimodal categories. Different 
sensors and equipment utilized in HAR are shown in Figure 
4. 

FIGURE 4. Sensors and devices used for HAR

WEARABLE SENSORS

Wearable sensors accumulate physical and motion 
information, allowing endless checking of a patient’s state. 
Optical, stretch, pressure, chemical, IMU, bio-potential, and 
other sensors are used in diverse ways in physical and HAR 
solutions (Jalloul and Nahed, 2018). 

Inertial Measurement Unit (IMU): IMUs are made up 
of accelerometers, gyroscopes, and magnetometers which 
are the most widely used and acceptable sensors in HAR. 
Nearly every trendy gadget, including Wii controllers 
and virtual reality (VR) headgear, uses inertial sensors for 
various purpose. Micro-electromechanical system (MEMS) 
technology is the foundation of these sensors’ current 
component. Miniaturization and growth in MEMS have 
lowered sensor size, weights, and costs, benefiting most new 
applications (Tamura 2014 and Sultana et al. 2022). These 
sensors are getting smaller and smaller and can be easily 

integrated into outfits, smart glasses, and other wearables 
(Zhan et al. 2015; Gummeson et al. 2014 & Leonov 2013). 
An upper body activity recognition model was developed by 
Lim et al. (2021) using deep ConvLSTM architecture with 
reduced number of sensors which was recommended as a 
useful way for assessing home-based rehabilitation. Various 
kinematic parameters related to functional movements and 
activities were analyzed by Ponvel et al. (2019) and Zainal 
et al. (2018) suggested a simple, economic and reliable 
system which can be used to get these parameters using IMU 
sensors. 

But, despite these strong advantages, inertial sensors 
pose a number of significant complications. Yang et al. 
(2019) introduced a new wearable device that uses both 
IMU and pressure sensors to improve activity recognition 
accuracy. However, they underlined constraints such 
as air pressure sensor leaking, long-term fall off, and 
incorporating other daily activities like riding an elevator. 
Fu et al. (2021) stated that attention should be paid to fall 
detection, sensor structure optimization, and the use of 
several nodes to recognize more complex motions, such as 
gait identification and step distance measurement. An in-
depth survey was conducted on HAR techniques, datasets, 
and algorithms by Jobanputra et al. (2019). They determined 
that no single strategy is best for distinguishing any activity 
because it depends on several aspects. Multiple sensors 
usage, sensor placement, multiple activity recognition, and 
inaccurate sensor data were recognized as research gaps 
connected to sensors. A new activity recognition algorithm 
based on a head-worn IMU was proposed by Cristiano et 
al. (2019), where authors mentioned that body postures 
identification in real-life situations, elderly people’s head 
acceleration pattern, inclusion of other body movement and 
systems (headphones, headbands, and eyeglasses) all should 
be considered as future research considerations. X. Zhang 
and Zhang (2019) carried out a detailed survey on HAR 
employing several sensors. According to the authors, each 
type of sensor is best suited for a certain metric, and the more 
challenging reliability and accuracy problems may be solved 
using the sensor fusion technique. The drifting problem was 
noted as a serious issue by Elbasiony and Gomaa (2020). 
Seel et al. 2020 noted several IMU-related challenges 
including sensor signal processing challenges, sensor-to-
segment alignment or calibration issues, rigidity of sensor 
connection, magnetic disturbance particularly in indoor 
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environments, signal corruption by errors and measurement 
noise. Pacher et al. (2020) identified four distinct types 
of calibration procedures as well as different lower-body 
segment ideas. However, they concluded that determining 
the appropriate approach for sensor-to-segment alignment 
or calibration is difficult. Rahn et al. (2021) observed an 
overall prediction rate of human activity detection using a 
smartphone and an IMU sensor, but they faced problems 
recognizing a few activities for a few sensor locations. A 
current state-of-the-art in HAR was reviewed by Chang et 
al. (2020) and they identified a few drawbacks of wearable 
sensors, including discomfort for aged, forgetting to wear 
the sensors, deployment issues in large-scale applications 
and restrictions on motions. Reich et al. (2020) stated that 
for best performance, information about specific amount 
and combination of IMUs is not possible. Few researchers 
have reported that wearable sensors have shortcomings such 
as high energy consumption, noise production, limitations 
in large-scale applications, movement limitations, high cost, 
complexity, and fusion difficulties (Atallah et al. 2011). 
Battery life limitations, arbitrary signals associated with 
activities, and other inertial sensor issues were addressed by 
Hassan et al. (2018) & Anwary et al. (2018). In addition, 
a detail understanding of biomechanics is required for the 
study of the performance of human activities, as well as for 
the treatment of rehabilitation patients and the development 
of rehabilitation equipment using any one of the HAR 
approaches (Ramlee et al. 2017 and Ramlee et al. 2018). 
Without this understanding, the outcomes of the IMUs will 
be significantly altered, which might be interpreted as a 
significant problem for these systems.

Smartphone: It is simple to monitor user behaviors 
using integrated sensor data from smartphones, as, at 
present, smart phones have become everyone’s companion. 
It has a variety of sensors such as accelerometer, gyroscope, 
barometer, proximity sensor, and others (Mahanta et al. 
2020). 

However, from a technical standpoint, the smartphone-
based HAR suffers from deficits. Bugdol et al. (2016) aimed 
to reduce the error rate of activities recognition for upstairs 

and downstairs. However, their accuracy for running and 
jogging is poor and they failed to account for semi-complex 
and complicated activities such as cooking, dancing, 
and bus travel. Chen et al. (2020) gave importance on 
complex activities recognition and smartphone orientation. 
Tradeoff between the number of sensors in smartphone and 
performance, location of smartphone and other sensors, 
discomfort and forgetting to keep phone continuously were 
considered as challenges by Antar et al. (2019). The authors 
also mentioned that future research should focus on memory, 
CPU, number of sensors, battery consumption, trade-offs 
between recognition accuracy, precision, detection of the 
most similar activities, and the employment of a group 
of classifier-based technique as they are still regarded as 
challenges. Choudhury et al. (2021) presented a new HAR 
method considering physical properties, such as height and 
weight, but complex activities and other physical properties 
were not considered in this work. A novel approach was 
proposed for HAR by Uddin and Torresen (2019) and they 
found postural transitions as most challenging actions 
while using smartphone sensors. Problems such as cross-
device, cross-locations, and automatic determination of 
the threshold which is important for designing a HAR 
model were mentioned by Deng et al. (2014). Placement 
of sensors on the human body was considered as a critical 
issue by Ustev et al. (2013) since the degree of movement 
in different parts of the body for the same activity varies, 
and it may include different signal information. Concone et 
al. (2017) cited few challenges such as filtering out noise 
data acquired just before or after an action and recognizing 
complex activities made of basic tasks. Problem related 
to recognition of multiple tasks at the same time were 
discussed by Khan et al. (2011), however they stated that 
in the context of multitasking, sensor predicts the dominant 
activity only. According to Ferrari et al. (2021), the increase 
in sensor numbers and types, which allows the availability 
of more data sources, may represent a difficulty in terms of 
heterogeneity, because not all devices and sensors have the 
same requirements. 

TABLE 2.  Wearable sensors and their applications

Wearable sensors
Types Applications

• Bio-potential sensors (Electroencephalography caps, 
Electrocardiography chest strap, Electromyography bands)

• Optical sensors (Glasses, Contact Lenses, Cameras)
• Stretch and Pressure sensors (Textiles, Belts and bras)
• Chemical sensors (Electronic skin, Textiles)
• Inertial Measurement Units (Wristbands, Smart watches, Body fixed 

sensors)

• Activity and fitness monitoring 
• Fall detection
• Seizure and cardiac arrest detection
• Therapeutic exercises
• Treatment efficacy
• Disease progress
• Monitoring of early health signs
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Smart Watch: Sensors in smart watches can offer 
physical, behavioral, and ambient information. They 
have the advantage of mobility, universality, and use of 
several sensors which facilitates multimodal large-scale 
investigations in everyday life. In terms of sensor and 
signal quality, these technologies have yet to catch up to 
medical-grade devices, and there is no universal device 
that can be used for all purposes (Saganowski et al. 2020). 
The accuracy of wearable devices like smart watches are 
inconsistent and difficult to compare and device provides 
different accuracy in measuring different quantities as 
mentioned by Cosoli et al. (2020). In comparison to chest-
strap devices, wrist-worn devices have an issue with 
accuracy and dependability during high-intensity sports, 
according to Seshadri et al. (2019). Wrist-worn devices can 
count steps, but unfortunately their performance is often 
inferior to that of benchmark detectors and errors are there 
at modest walking speeds (Fokkema et al. 2017). Weiss 
et al. (2019) used smartphone and smart watch together 
for best biometric performance. However, they mentioned 
about adding many additional activities, establishing a two-
stage biometric system, feature normalization and selection 
to their proposed system for better outcome. A continuous 
online and offline human activity detection system with 
better accuracy was proposed by Ashry et al. (2020) using 
smart watches where authors pointed to focus on using many 
smart watches to collect dataset of human interactions such 
as handshakes and scrimmages, as well as sporting events 
such as boxing. To detect out-of-distribution of HAR with 
smart watch IMU, a method was proposed by Boyer et al. 
(2021). But there was dataset preparation deficiency. It was 
limited to track shoulder physiotherapy and priority were 
not given to focus on isometric exercises and magnetometer 
data. In order to recognize human behaviors, Mozaffari et 
al. (2020) regarded a smart watch as a new IoT solution, and 
their experiment revealed nearly 99 % accuracy. However, 
data from elders and vulnerable persons participating in 
outdoor and more typical everyday activities were not 
considered which ensures more reliability. Smart watches 
have limited resources in terms of power consumption, 
memory, storage, processing capability, accuracy, and 
there are functional limitation on continuous use, as well 
as diversity in smart watch usage patterns among age 
groups (Zimbelman and Keefe 2021). A real time 3D arm 
motion tracking using smart watch was proposed in (Wei 
et al. 2021), where they mentioned about torso motion as 
a challenge as it may affect the tracking accuracy. While 
proposing a smart watch-based fall detection system by Bi 
et al. (2020), authors failed to properly classify Activities 
of Daily Living (ADLs), particularly sitting and walking. 
A system for identifying pen-holding gesture using smart 
watch was proposed by Mauldin et al. (2018), which is not 
suitable for cursive writing and the system is limited to 
only slow writing right handed people. Table 2 summarizes 
various wearables and their applications.

VISION-BASED RECOGNITION

When compared to the sensor-based technique, the vision-
based approach offers more precise recognition. However, 
vision-based techniques have their own drawbacks, such 
as high cost, complexity, and privacy concerns and this 
technology is not frequently employed in healthcare 
monitoring systems (Ranasinghe et al. 2016). Prarthana and 
Prasad (2020) mentioned about various techniques involved 
in vision-based activity recognition. In addition, they 
mentioned some shortcomings of the vision-based system 
such as concurrent and interleaved activity recognition 
problem, ambiguity in interpretation, difficulty in detection 
of different motion patterns of different subjects at different 
time, classification algorithm challenge to recognize the 
motion during the transition period between two activities, 
and complex activities recognition problem. Zakaria et al. 
(2022) mentioned about the data acquisition problem and 
Abu-Bakar and Syed (2019) recorded problems related to 
RGB or color-based images such as changes in illumination, 
background clutter, pose variability, and appearance 
(texture) dependency which can be eliminated by using 
RGB-D and skeleton based cameras. But RGB-D cameras 
such as Kinect have significant drawbacks, such as a higher 
complexity, cost, etc. (Chen et al. 2020). Some vision based 
HAR related problems or challenges such as same working 
pattern, inter class variability and similarity, change in 
illumination, shadow effect, partial or full occlusion, self-
occlusion, scaling, bootstrapping, camera jitter and automatic 
adjustment, noisy frame in video, camouflage, movement of 
objects or human being in background were recognized by 
D’Sa and Prasad (2019). The lighting of the surroundings 
may have an impact on vision-based approaches, which in 
turn restricts the application scenarios, particularly in the 
mobile context. Additionally, this method requires a camera, 
which can sometimes be expensive (Naosekpam et al. 2019). 
Anthropometric variations, image-quality, frame-rate issues, 
multi-view variations, poor weather condition, insufficient 
data, camera motion, illumination variations, dynamic 
and cluttered backgrounds were mentioned as challenges 
in vision based HAR (Jegham et al. 2020). S. Zhang et 
al. (2017) emphasized on the significance of input image 
quality, input information balance, algorithm efficiency and 
its recognition rate, as well as combining various datasets 
and the use of LSTM with ConvNets architecture for activity 
video analysis. H. B. Zhang et al. (2019) mentioned about 
many confounding issues of vision based HAR, such as 
the diversity and complexity of body postures, occlusion, 
and background clutter for human action recognition, deep 
learning challenges for multimodal, interaction recognition 
problems, and fast action detection in the spatiotemporal 
dimension. Lighting variation, occlusion, benchmark 
dataset unavailability, cost, similarity between classes, and 
distinction between voluntary and involuntary activities 
were listed as challenging issues of vision based HAR by 
Beddiar et al. (2020). Colorimetric segmentation, which 
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might cause human body parts to be confused with scene 
objects, was addressed by Xu and Lee (2015). Collings 
et al. (2015) and Hu et al. (2004) discussed issues related 
to people’s appearance or outerwear that obstruct the 
correct operation of HAR recognition as well as the scale 
variation problem. Akmam et al. (2021) mentioned about 
data acquisition as one of the main motion analysis research 
challenges. The difficulty of equipment integration at home 
for tracking, which is perceived as a violation of intimacy 
and privacy, was discussed by Bhardwaj and Singh (2016).

DISCUSSION

From the literature review, it is evident that the use of 
telerehabilitation technologies come with a number of 
advantages, but also suffers from significant drawbacks. 
Sensor-based techniques offer a variety of benefits, including 
minimalism, easy installation, more flexible, low cost, 
light weight, and it provides detail of human activity and 
behaviors and has no issue related to privacy. Vision-based 
solutions have several advantages, such as it can record a 
large screen with a single camera and supplant multiple 
sensory devices with a single camera, high accuracy and so 

on and these systems do not require intervention or physical 
contact. These approaches, however, also have a number of 
shortcomings. A summary of challenges related to the TR 
and various approaches of HAR, mentioned in the above 
literature survey, has been listed in table 3. 

Based on the information presented here, it is plausible 
to assert that telerehabilitation (TR), despite its many 
disadvantages, has the potential to be a useful alternative for 
receiving rehabilitation remotely and also the analysis of the 
patient’s activity can be carried out remotely employing this 
TR in conjunction with any of the available HAR approaches. 
But, it is challenging to arrange and set up the system’s 
equipment in the case of vision-based system designs, and 
also the need for professionals to operate the system remotely 
at home has made this approach more challenging. There 
are also some severe issues with the camera based system, 
including the violation of patient privacy, and the high cost 
of systems. Nonvisual sensor approaches do not have these 
issues that are associated with vision-based systems, and as 
a result, they perform significantly better than that of vision-
based HAR technologies. Despite this, one should pay 
attention to the problems that are associated with wearable 
devices so that it can be incorporated with TR for providing 
rehabilitation remotely with more effectiveness. 

TABLE 3. Challenges of TR, and various approaches of HAR

Challenges

TR

Implementation and maintenance cost, technology and equipment adaptation and understanding for both patient and 
healthcare professionals, communication barriers, face-to-face contact, patient participation, equipment, training, exercise 
limitation and lack of awareness.

W
ea

ra
bl

es

IM
U

Long-term activity monitoring, quantity and position of sensors, battery life, signal corruption by arbitrary signals/noise/
errors, large-scale applications and movement limitations, sensor fusion, aged people’s adaptability, calibration, drifting, 
accuracy and complex activities detection.

Sm
ar

t-
ph

on
e Semi-complex and complex activity detection, quantity and selection of smartphone sensors, smartphone location and 

orientation, continuous use, battery consumption, memory, similar activity detection, noise and recognition of multiple 
tasks at the same time, wrong activity detection due to location variation.

Sm
ar

t 
W

at
ch No universal device, accuracy and dependability, measurement errors, limited resources in terms of power consumption, 

memory, storage and processing capability, continuous use, diversity in smart watch usage patterns among age groups, 
torso motion and challenges with simple activity recognition issues.

V
is

io
n 

B
as

ed

Concurrent and interleaved activity recognition, interpretation ambiguity, difficulty in different motion pattern detection 
of different subjects at different time, classification algorithm challenge during transition period between two activities, 
complex activities recognition, illumination, background clutter, pose variability, higher equipment complexity and cost, 
inter and intra class variability  and similarity, partial/full/self-occlusion, shadow effect, camera jitter, camera motion 
and automatic adjustment, noisy video frame and frame rate, camouflage, background object or human movement, 
anthropometric variations, image-quality, multi-view variations, fast action detection, colorimetric segmentation, 
outerwear, equipment integration problem and violation of intimacy and privacy.
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Also the survey results will assist the researchers to 
identify a suitable detection platform for the TR system 
during and after the COVID-19 crisis, based on the need 
and the various obstacles associated with TR and HAR 
techniques.

CONCLUSION

In this study, the necessity and limitations of a TR system 
and various Human Activity Recognition (HAR) approaches 
during this COVID-19 pandemic situation have been analyzed 
and here TR has been regarded the only alternative approach 
to provide remote healthcare services with technical support. 
Various approaches of Human Activity Recognition (HAR) 
systems for TR have been investigated. The limitations of 
wearable sensors, specially IMU, smartphone, smart watch 
and vision-based activity detection systems, have also been 
highlighted where wearable technology has shown to be a 
better approach for providing people with support services, 
considering some critical limitations of vision-based 
systems such as privacy issue.
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