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ABSTRACT

In a bid to minimize the adverse effects of agricultural waste materials in the environment and also encourage for its 
optimal usage, this study aims at developing model constants for optimizing the California Bearing Ratio (CBR) of Lateritic 
Soils stabilized with Rice Husk Ash (RHA) using Scheffe’s method. The study practically involved sampling of the materials, 
laboratory testing and model formulation. The natural soil was subjected to standardized laboratory testing to determine 
its index and Engineering properties. The scheffe’s method provided mix ratios for the three mix components (lateritic soil, 
RHA and water) involved in the mix design. The method also employs the use of second-degree polynomials to generate the 
model constants. The CBR of the soil was the primary property of the soil considered in the study therefore, a CBR test was 
conducted on the natural soil and modified soil. The optimization technique carried out gave an optimal mix observed to 
be of mix ratio 1: 1.70: 0.25 for lateritic soil, RHA and water with a CBR value of 30%. The model formulated was further 
subjected to validation using the F-test and T-test statistical method and it was found adequate at a confidence level of 95%. 
Hence, the null hypothesis (H0) was adopted. The formulated model being adequate can be used exclusively to predict the 
CBR of Lateritic soil Stabilized with Rice Husk Ash within the same locality.
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INTRODUCTION

In a country faced with growing need for infrastructural 
development, Nigeria has seen its Engineering construction 
activities heightened across different states. These 
construction activities involving housing, roads, bridges 
are usually accompanied with various challenges of which 
Engineers are obligated to proffer professional solutions. A 
seemingly reoccurring challenge encountered in the civil 
engineering space is with weak soils. 

Soil stabilization has been the conventional solution 
to this problem, with the cost of stabilization considerably 
high, engineers has sought to research on other methods 
or materials suitable for soil stabilization hence, extensive 
research has been conducted and are still ongoing on 
various industrial and agricultural waste materials suitable 
for stabilization of weak soils with intent to reducing cost 
of the construction process and by extension reducing the 
adverse effect of these waste materials on the environment. 
Soil stabilization is simply a method of improving the 
engineering properties of a soil. Stabilization can be 
achieved through physical mixing of the natural soil and 
stabilizing materials to achieve a homogeneous mix or by 
adding stabilizing material to an un-disturbed soil deposit 
and obtaining an interaction by letting it permeate through 
the soil voids, Abood et al. (2007). 

This study considered the use of Rice Husk Ash (RHA) 
which is an agricultural waste material from Rice Milling, 
in the stabilization of lateritic soil. Research on RHA such 
Rathan et al (2016), Srinivas (2017), Ayegbokiki et al 
(2018) and Pornkasem et al (2018) has also enabled for its 
classification as a pozzolana. In ASTM (1976), it defined 
pozzolana as a siliceous or siliceous and aluminous material 
which in itself possesses little or no cementious value but 
will, in finely divided form and in the presence of moisture, 
chemically react with calcium hydroxide at ordinary 
temperatures to form compounds possessing cementitious 
properties.

Furthermore, stabilization procedures requires for 
blending of the soil and stabilizing material, as such, these 
material are to be adequately proportioned in other to 
obtain an effective blend of both materials. The scheffe’s 
optimization method essentially provides an effective mix 
design approach for blending various materials together 
and also provides models for prediction of a desired soil 
property based on a mix proportion.

STUDY OBJECTIVES

1. Sampling of Lateritic soil and Rice Husk Ash.
2. Classification of the soil based on its Engineering 

properties.
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3. Determination of the California Bearing Ratio of the 
Lateritic soil.

4. Stabilization of the lateritic soil with proportions of 
Rice Husk Ash (RHA).

5. Formulation of model constants for optimizing the 
California Bearing Ratio of the lateritic soil.

6. Validation of the model (test for adequacy) using a 
Statistical Test method.

Uwaezuoke and Onyia, (2018) developed models 
using scheffe’s method for the optimization of lateritic 
soils stabilised with quarry dust. The study expressed the 
behaviour of the various mix components in a simplex 
lattice. The optimal mix proportion obtained from the model 
was 1:2.75:0.135 (lateritic soil: Quarry dust: Water) with a 
CBR value of 18.2% which indicated an increase of 56.9% 
in the CBR value of the original lateritic soil. The model 
prediction was also compared to the experimental results 
and it was concluded to be adequate at 5% significance level.

Oguaghamba et al. (2019) investigated the Expansive 
soil sub-grade of Imo-Clay Shale formation traversing 
Amuro-Okigwe section of Owerri-Okigwe road identified 
for its intermittent flexible pavement failure. Samples of 
this sub-grade were collected and mixed with MIPA (Male 
Inflorescence of Oil Palm Ash) at varying proportions 
in line with the Scheffe’s model approach to improve the 
natural engineering properties of the soil. Hence, models 
for the maximum dry density (MDD) and California bearing 
ratio (CBR) were developed. The models showed good 
correlations with the experimental results in the control 
tests, as they possess less than 3% differences. In the CBR 
results, 10.5% MIPA content in the soil gave the greatest 
strength (CBR value) of 8.13% 

Nwaobakata and Ohwerhi (2020) investigated on the 
effect of meta-kaolin as a pozzolona on concrete materials. 
Apparently, this study tested the efficacy of this pozzolan 
on stabilization processes. This research study was thus 
aimed at evaluating and predicting the CBR of meta-kaolin 
stabilized lateritic soil. The Scheffe’s simplex theory was 
used in the development of mix design and optimization 
model development. The CBR test of the modified soil 
sample was determined and compared with the unmodified 
counterpart. Results revealed that the meta-kaolin improved 
the properties of the lateritic soil. The CBR optimization 
model developed in this study also proved adequate at 5% 
level of significance from the F-statistics carried out and 
can be used reliably in the prediction of the CBR given any 
arbitrary mix ratio and vice versa. 

This study basically applied the scheffe’s method for 
developing optimization model constants for lateritic soils 
stabilized with RHA. Other literatures which employed 
Scheffe’s method of optimization in determining the 
properties of soils stabilised with different waste materials 
are; Okonkwo (2015), Attah and Okafor (2020). 

METHODOLOGY

Sampling of the lateritic soil was done at a depth of 1.2m 
within the premises of the Institute of Management and 
Technology (IMT), Enugu, Enugu State. The soil sample was 
carefully inserted into nylon bags to prevent loss of moisture 
and was subsequently taken to the Civil Engineering 
laboratory in the Enugu State University of Science and 
Technology (ESUT). The Rice Husk was sourced from a 
local rice milling station in Umuomaku, Orumba south, 
Anambra State. This husk was incinerated to obtain the 
by-product known as Rice Husk Ash (RHA). Standardized 
laboratory test as per BS 1377 were conducted on the natural 
soil to ascertain its index and engineering properties. 

Similarly, soil classification was done as per American 
Association of State Highway and Transport Officials 
(AASHTO) and the Unified Soil Classification System 
(USCS). Natural moisture content test, Atterberg limits 
test, Specific gravity test, Compaction test and California 
bearing ratio (CBR) test were all conducted on the natural 
soil. A further CBR test was conducted on the modified soil 
which was used for the optimization technique.

LABORATORY PROCEDURES

Liquid Limit

The liquid limit of a soil is the moisture content expressed 
as a percentage by weight of the oven dried. In other words 
the moisture content above which the soil behaves like a 
viscous liquid. The Cassagrande apparatus was used for 
the determination of liquid limit as recommended in BS 
1377: Part 2: 1990. The soil was sieved with 425µm sieve 
and water added in successive stages. The liquid limit is the 
water content at which 25 blows close a groove of about 
13mm length.

Plastic Limit

This is the boundary between the plastic state and the semi-
solid state. The sample was sieved through 425µm sieve and 
water was added to about 20g of the filtrate soil in order to 
mould it. The moulded soil was broken into smaller samples 
and each of them rolled on a glass plate using the fingers to 
a thread of 3mm diameter. The plastic limit is described as 
the water content when a thread of soil being rolled shear at 
3mm diameter.

Standard Proctor Compaction

This test is to determine the maximum dry density and 
the optimum moisture content relative to a compactive 
effort. This test established the optimum moisture content 
to be used for some other performance test like California 
bearing ratio which requires compaction. As specified by BS 
1377:1990 (Standard Proctor) was adopted. A cylindrical 
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metal mould of about 1000cm3 volume and a rammer of 
2.5kg weight with a height drop of 300mm was used as the 
given compactive effort. Twenty-five (25) blows were given 
on each layer of three (3) and moisture content samples were 
taken from the top and bottom of the mould. The optimum 
moisture content was taken as the moisture content at which 
the maximum dry density was attained.

California Bearing Ratio

In the test as given in BS 1377: Part 2: 1990, a specimen 
is compacted into the CBR mould. The specimens were 
prepared in 3 (three) layers and rammered with each layer 
receiving 61 (sixty-one) blows. The load required to cause a 
circular, 49.65mm in diameter, to penetrate the specimen at a 
specified rate of 1.25mm per minute is then measured. From 
the test results, the CBR value is calculated. This is done by 
expressing the corrected values of forces on the plunger for 
a given penetration as a percentage of a standard force of 
value 0.590kN. The 2.5mm and 5.0mm penetration caused 
by 13.24KN and 19.96KN loads respectively were used in 
comparing the loads that caused the same penetration on the 
specimens. 

Scheffe’s Method

The Scheffe’s optimization method was employed in this 
study to formulate model constants for predicting the CBR 
of the lateritic soil stabilized with RHA. The method simply 
involves representing the various mix components present 
in the mix design on a simplex. Onyelowe et al 2018, 
described a simplex as a structural representational shape 
of a line or planes joining assumed positions of constituent 
materials (atoms) of a mixture. Scheffe 1963 described the 
factor space as having a simplex with (q-1) where q is the 
number of components in the mixture which subsequently 
determines the geometry of the simplex. Hence, a mix 
design having two mix components will have its geometry 
as a straight line, a three mix component will be an 
equilateral triangle while a  four  component mix design will 
have its geometry as a tetrahedron. For emphasis, one of the 
limitations observed in the scheffe’s method is the fact that 
it does not consider more than one property of the soil at a 
time.

q = 2 →Straight Line

q = 3 →Equilateral Triangle

q = 4 →Tetrahedron

This work essentially involved a three mix component 
(lateritic soil, Rice husk ash and Water). Therefore, its 
simplex is an equilateral triangle of which each individual 
component is represented at the vertex of the triangle and a 
blend of two components is represented at the line joining 
two vertex as shown in figure 1.                                                              

FIGURE 1.  A Simplex Triangle

The components are denoted as follows;

Z1 = Proportion of the Lateritic Soil
Z2 = Proportion of the Rice Husk Ash
Z3 = Proportion of Water
Z12 = Proportion of (Soil & Rice Husk Ash)
Z13 = Proportion of (Soil & Water)
Z23 = Proportion of (Rice Husk Ash & Water)

Also, the number of responses or observation is deduced 
from the equation given by Scheffe 1958 as;
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Where,  

N = Number of Observations Required 

q = Number of Mixture Components 

n = Degree of the Polynomials  

Hence, given a three component mix in this study 
and subsequently employing Eqn. 1. We have that; 

Where, 

N = Number of Observations Required
q = Number of Mixture Components
n = Degree of the Polynomials 

Hence, given a three component mix in this study and 
subsequently employing Eqn. 1. We have that;

Jurnal Kejuruteraan 35(3) 2023: xxx-xxx 
https://doi.org/10.17576/jkukm-2023-35(3)-19 

 
 

N = ()#*%&)!
*!()%&)!

 = +!
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 = 6 

Therefore, the number of responses or observation 
required is six. 

Model Formulation 

Scheffe uses polynomials of the second degree to 
adequately describe the responses of the property or 
characteristics of a mixture to the difference in 
proportions of its mix components. A polynomial of 
n degree in q variables has Cn q+n coefficient (Scheffe 
1963). If a mixture has a total of q components and 
Zi is the proportion of the ith component in the 
mixture such that Zi ≥ 0 (i = 1, 2, ---q), then the 
summation of the component proportion is a whole 
unity, i.e.  

Z1+ Z2+ Z3 = 1 𝑜𝑜𝑜𝑜 ΣZ𝑖𝑖−1 = 0   (2) 

 There are two basic components involved 
in Scheffe’s design mix that aided for the 
formulation of the model. The components which 
are; Pseudo and Real Components are denoted by “Z 
and X” respectively throughout this study. The 
relationship between “Z and X” as expressed by 
Scheffe is given as; 

[X] = [A] [Z]     (3) 

Where; 

[X] Represents Real Mix Ratio Matrix 

[A] Represents Coefficient of the Matrix 

[Z] Represents Pseudo Mix Ratio Matrix  

The response of the system denoted or represented 
by “Y” is obtained using the equation of 
polynomials as shown below; 

Y = b0+ΣbiZi+ΣbijZiZj+ΣbijkZiZjZk+…e  (4) 

Considering a three pseudo component mix with two 
degrees, the response ‘Y’ is of the form; 

Y = b0 + ΣbiZi+ ΣbijZiZj       (5) 

The general polynomial equation for a ternary 
system is given as; 

𝑌𝑌	 = 𝑏𝑏0+𝑏𝑏1Z1 +𝑏𝑏2Z2+𝑏𝑏3Z3 + 𝑏𝑏11Z12+ 𝑏𝑏12Z1Z2 

+𝑏𝑏13Z1Z3+ 𝑏𝑏22Z22+ 𝑏𝑏23Z2Z3 +𝑏𝑏33Z32   (6) 

Multiplying Eqn. 2 by b0; 

b0 = b0 Z1+ b0 Z2+ b0 Z3      (7) 

b0 = b0 (Z1+ Z2+Z3) 

Furthermore, multiplying Eqn. 2 by Z1, Z2 and Z3 
successively and re-arranging gives; 

Z12= Z1− Z1Z2− Z1Z3	⟹   Z1 = Z12+ Z1Z2 + Z1Z3 

Z22= Z2− Z1Z2− Z2Z3	⟹	Z2 = Z22+ Z1Z2 + Z2Z3        (8) 

Z32= Z3− Z1Z3− Z2Z3 ⟹	Z3 = Z32+ Z1Z3 + Z2Z3  

Substituting Eqn. 7 and Eqn. 8 into Eqn. 6 gives; 

Y = (𝑏𝑏0+𝑏𝑏1+𝑏𝑏11)Z1 + (𝑏𝑏0+𝑏𝑏2+𝑏𝑏22)Z2 + (𝑏𝑏0+𝑏𝑏3+𝑏𝑏33)Z3 

+(𝑏𝑏12−𝑏𝑏11−𝑏𝑏22)Z1Z2+(𝑏𝑏13−𝑏𝑏11−𝑏𝑏33)Z1Z3+(𝑏𝑏23−𝑏𝑏22− 
b33)Z2Z3      (9) 

Let,  

βi = 𝑏𝑏0 + 𝑏𝑏1+ 𝑏𝑏11          (10) 

βij = 𝑏𝑏ij– 𝑏𝑏ii − 𝑏𝑏jj           (11) 

Re-writing Eqn. 9 to arrive at a reduced second 
degree polynomial with three variables; 

Y = β1Z1+ β2Z2+ β3Z3+ β12Z1Z2+ β13Z1Z3+ β23Z2Z3

     (12)     

 Therefore, Eqn.12 is the model by 
Scheffe’s method of simplex lattice design used in 
this study for predicting the CBR values of the 
lateritic soil at various mix proportions. The 
coefficient of the second degree polynomial is also 
obtained when the lattice coordinates of the pseudo 
components in the simplex triangle is known. 
Considering Figure 1, it is deduced that at any vertex 
of the triangle, only one component is present with 
the boundary lines having binary components. 
Hence, Z1, Z1 and Z3 have coordinates as follows; 

Z1 = (1, 0, 0)  

Z2 = (0, 1, 0)  

Z3 = (0, 0, 1) 

Determination of the Coefficients of the Model 

Substituting the above lattice coordinate into Eqn. 
12 gives the coefficient of the second degree 
polynomial as; 

β1 = Y1 

β2 = Y2                (13) 

β3 = Y3 

Also,  

β12 = 4Y12 – 2Y1 – 2Y2 

β13 = 4Y13 – 2Y1 – 2Y3   (14) 

β23 = 4Y23 – 2Y2 – 2Y3 

Therefore, Eqn. 13 and Eqn. 14 represents the 
coefficients of the second degree polynomial. 

Transformation Matrix 

The model usually being expressed in pseudo 
components as seen in Eqn. 12 and having its 

Therefore, the number of responses or observation required 
is six.

Model Formulation
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Z1+ Z2+ Z3 = 1 𝑜𝑟 ΣZ𝑖−1 = 0

There are two basic components involved in Scheffe’s 
design mix that aided for the formulation of the model. The 
components which are; Pseudo and Real Components are 
denoted by “Z and X” respectively throughout this study. 
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The relationship between “Z and X” as expressed by Scheffe 
is given as;

[X] = [A] [Z]

Where;

[X] Represents Real Mix Ratio Matrix
[A] Represents Coefficient of the Matrix
[Z] Represents Pseudo Mix Ratio Matrix 

The response of the system denoted or represented by “Y” is 
obtained using the equation of polynomials as shown below;

Y = b0+ΣbiZi+ΣbijZiZj+ΣbijkZiZjZk+…e

Considering a three pseudo component mix with two 
degrees, the response ‘Y’ is of the form;

Y = b0 + ΣbiZi+ ΣbijZiZj 

The general polynomial equation for a ternary system is 
given as;

𝑌 = 𝑏0+𝑏1Z1 +𝑏2Z2+𝑏3Z3 + 𝑏11Z1
2+ 𝑏12Z1Z2 +𝑏13Z1Z3+ 

𝑏22Z2
2+𝑏23Z2Z3 +𝑏33Z3

2 

Multiplying Eqn. 2 by b0;

b0 = b0 Z1+ b0 Z2+ b0 Z3   
b0 = b0 (Z1+ Z2+Z3)

Furthermore, multiplying Eqn. 2 by Z1, Z2 and Z3 successively 
and re-arranging gives;

Z1
2= Z1− Z1Z2− Z1Z3   Z1 = Z1

2+ Z1Z2 + Z1Z3
Z2

2= Z2− Z1Z2− Z2Z3Z2 = Z2
2+ Z1Z2 + Z2Z3 

Z3
2= Z3− Z1Z3− Z2Z3 Z3 = Z3

2+ Z1Z3 + Z2Z3 

Substituting Eqn. 7 and Eqn. 8 into Eqn. 6 gives;

Y = (𝑏0+𝑏1+𝑏11)Z1 + (𝑏0+𝑏2+𝑏22)Z2 + (𝑏0+𝑏3+𝑏33)Z3 +(𝑏12−
𝑏11−𝑏22)Z1Z2+(𝑏13−𝑏11−𝑏33)Z1Z3+(𝑏23−𝑏22− b33)Z2Z3 

Let, 

βi = 𝑏0 + 𝑏1+ 𝑏11 
βij = 𝑏ij– 𝑏ii − 𝑏jj  

Re-writing Eqn. 9 to arrive at a reduced second degree 
polynomial with three variables;

Y = β1Z1+ β2Z2+ β3Z3+ β12Z1Z2+ β13Z1Z3+ β23Z2Z3    

Therefore, Eqn.12 is the model by Scheffe’s method of 
simplex lattice design used in this study for predicting the 
CBR values of the lateritic soil at various mix proportions. 
The coefficient of the second degree polynomial is also 
obtained when the lattice coordinates of the pseudo 
components in the simplex triangle is known. Considering 
Figure 1, it is deduced that at any vertex of the triangle, only 
one component is present with the boundary lines having 
binary components. Hence, Z1, Z1 and Z3 have coordinates 
as follows;

Z1 = (1, 0, 0) 
Z2 = (0, 1, 0) 
Z3 = (0, 0, 1)

Determination of the Coefficients of the Model

Substituting the above lattice coordinate into Eqn. 12 gives 
the coefficient of the second degree polynomial as;

β1 = Y1
β2 = Y2
β3 = Y3

Also, 

β12 = 4Y12 – 2Y1 – 2Y2
β13 = 4Y13 – 2Y1 – 2Y3
β23 = 4Y23 – 2Y2 – 2Y3

Therefore, Eqn. 13 and Eqn. 14 represents the coefficients 
of the second degree polynomial.

Transformation Matrix

The model usually being expressed in pseudo components 
as seen in Eqn. 12 and having its relationship between the 
real components and pseudo components as stated in Eqn. 
3, the value for the matrix [A] is deduced from the first three 
mix ratios representing values for the matrix [X], of which 
are;

X1 = [1 :1.50 : 0.10]
X2 = [1 :1.65 : 0.15]
X3 = [1 :1.70 : 0.25]

The corresponding pseudo mix ratios are of an identity 
matrix form thus;

Z1 = [1: 0: 0]
Z2= [0: 1: 0]
Z3 = [0: 0: 1]

An expanded form of Eqn. 3 can now be written as;
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Z1 = [1: 0: 0] 
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Z3 = [0: 0: 1] 

An expanded form of Eqn. 3 can now be written as; 

4
𝑋𝑋&
𝑋𝑋*
𝑋𝑋 )

6=4
𝑎𝑎&& 𝑎𝑎&* 𝑎𝑎&)
𝑎𝑎*& 𝑎𝑎** 𝑎𝑎*)
𝑎𝑎)& 𝑎𝑎)* 𝑎𝑎))

6 4
𝑍𝑍&
𝑍𝑍*
𝑍𝑍)
6     (15) 

Therefore, the values of the real and pseudo mix 
ratios are substituted into Eqn. 15 at each run and the 
resulting equation is solved. 

For the first run, the matrix is of the form; 

4
1
1.50
0.10

6=4
𝑎𝑎&& 𝑎𝑎&* 𝑎𝑎&)
𝑎𝑎*& 𝑎𝑎** 𝑎𝑎*)
𝑎𝑎)& 𝑎𝑎)* 𝑎𝑎))

6 4
1
0
0
6    (16) 

Solving Eqn.16 gives the following coefficients of 
matrix A 

a11 = 1 

a21 = 1.50 

a31 =0.10  

For the second run, the matrix is of the form; 

4
1
1.65
0.15

6=4
𝑎𝑎&& 𝑎𝑎&* 𝑎𝑎&)
𝑎𝑎*& 𝑎𝑎** 𝑎𝑎*)
𝑎𝑎)& 𝑎𝑎)* 𝑎𝑎))

6 4
0
1
0
6   (17) 

Solving Eqn. 17 gives the following coefficients of 
matrix A 

a12 = 1 

a22 = 1.65 

a32 =0.15 

For the third run, the matrix is of the form; 

4
1
1.70
0.25

6=4
𝑎𝑎&& 𝑎𝑎&* 𝑎𝑎&)
𝑎𝑎*& 𝑎𝑎** 𝑎𝑎*)
𝑎𝑎)& 𝑎𝑎)* 𝑎𝑎))

6 4
0
0
1
6     (18) 

Solving Eqn.18 gives the following coefficients of 
matrix A 

a13 = 1 

a23 = 1.70  

a33 =0.25 

Therefore, assembling the coefficients obtained thus 
from Eqn.16 to Eqn.18 yields the following 
coefficient matrix, A; 

A=4
1 1 1
1.50 1.65 1.70
0.10 0.15 0.25

6     (19) 

Value Computation for Actual Components 

The values of the actual components (Xi) of the 
mixture are computed through the product of the 
values from matrix A and values from matrix Z. 

For A12, substituting the values of Zi yields; 

4
𝑋𝑋&
𝑋𝑋*
𝑋𝑋 )

6=4
1 1 1
1.50 1.65 1.70
0.10 0.15 0.25

6 4
0.5
0.5
0
6     (20) 

Solving Eqn. 20 gives the values of the real 
components; 

X1 = 1 

X2 =1.575 

X3 = 0.125 

For A13, substituting the values of Zi yields; 

4
𝑋𝑋&
𝑋𝑋*
𝑋𝑋 )

6=4
1 1 1
1.50 1.65 1.70
0.10 0.15 0.25

6 4
0.5
0
0.5
6    (21) 

Solving Eqn. 21 gives the values of the real 
components; 

X1 = 1 

X2 = 1.60 

X3 = 0.175 

For A23, substituting the values of Zi yields; 

4
𝑋𝑋&
𝑋𝑋*
𝑋𝑋 )

6=4
1 1 1
1.50 1.65 1.70
0.10 0.15 0.25

6 4
0
0.5
0.5
6   (22) 

Solving Eqn. 22 gives the values of the real 
components; 

X1 = 1 

X2 = 1.675 

X3 = 0.20 

Therefore, the values of the real and pseudo mix ratios 
are substituted into Eqn. 15 at each run and the resulting 
equation is solved.

For the first run, the matrix is of the form;
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Therefore, the values of the real and pseudo mix 
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1
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4
1
1.65
0.15
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6 4
0
1
0
6   (17) 

Solving Eqn. 17 gives the following coefficients of 
matrix A 

a12 = 1 

a22 = 1.65 

a32 =0.15 

For the third run, the matrix is of the form; 

4
1
1.70
0.25

6=4
𝑎𝑎&& 𝑎𝑎&* 𝑎𝑎&)
𝑎𝑎*& 𝑎𝑎** 𝑎𝑎*)
𝑎𝑎)& 𝑎𝑎)* 𝑎𝑎))

6 4
0
0
1
6     (18) 

Solving Eqn.18 gives the following coefficients of 
matrix A 

a13 = 1 

a23 = 1.70  

a33 =0.25 

Therefore, assembling the coefficients obtained thus 
from Eqn.16 to Eqn.18 yields the following 
coefficient matrix, A; 

A=4
1 1 1
1.50 1.65 1.70
0.10 0.15 0.25

6     (19) 

Value Computation for Actual Components 

The values of the actual components (Xi) of the 
mixture are computed through the product of the 
values from matrix A and values from matrix Z. 

For A12, substituting the values of Zi yields; 

4
𝑋𝑋&
𝑋𝑋*
𝑋𝑋 )

6=4
1 1 1
1.50 1.65 1.70
0.10 0.15 0.25

6 4
0.5
0.5
0
6     (20) 

Solving Eqn. 20 gives the values of the real 
components; 

X1 = 1 

X2 =1.575 

X3 = 0.125 

For A13, substituting the values of Zi yields; 

4
𝑋𝑋&
𝑋𝑋*
𝑋𝑋 )

6=4
1 1 1
1.50 1.65 1.70
0.10 0.15 0.25

6 4
0.5
0
0.5
6    (21) 

Solving Eqn. 21 gives the values of the real 
components; 

X1 = 1 

X2 = 1.60 

X3 = 0.175 

For A23, substituting the values of Zi yields; 

4
𝑋𝑋&
𝑋𝑋*
𝑋𝑋 )

6=4
1 1 1
1.50 1.65 1.70
0.10 0.15 0.25

6 4
0
0.5
0.5
6   (22) 

Solving Eqn. 22 gives the values of the real 
components; 

X1 = 1 

X2 = 1.675 

X3 = 0.20 

Solving Eqn.16 gives the following coefficients of matrix A

a11 = 1
a21 = 1.50
a31 =0.10 

For the second run, the matrix is of the form;
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4
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1
1.70
0.25

6=4
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matrix A 
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from Eqn.16 to Eqn.18 yields the following 
coefficient matrix, A; 

A=4
1 1 1
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6     (19) 

Value Computation for Actual Components 

The values of the actual components (Xi) of the 
mixture are computed through the product of the 
values from matrix A and values from matrix Z. 

For A12, substituting the values of Zi yields; 

4
𝑋𝑋&
𝑋𝑋*
𝑋𝑋 )

6=4
1 1 1
1.50 1.65 1.70
0.10 0.15 0.25

6 4
0.5
0.5
0
6     (20) 

Solving Eqn. 20 gives the values of the real 
components; 

X1 = 1 

X2 =1.575 

X3 = 0.125 

For A13, substituting the values of Zi yields; 

4
𝑋𝑋&
𝑋𝑋*
𝑋𝑋 )

6=4
1 1 1
1.50 1.65 1.70
0.10 0.15 0.25

6 4
0.5
0
0.5
6    (21) 

Solving Eqn. 21 gives the values of the real 
components; 

X1 = 1 

X2 = 1.60 

X3 = 0.175 

For A23, substituting the values of Zi yields; 

4
𝑋𝑋&
𝑋𝑋*
𝑋𝑋 )

6=4
1 1 1
1.50 1.65 1.70
0.10 0.15 0.25

6 4
0
0.5
0.5
6   (22) 

Solving Eqn. 22 gives the values of the real 
components; 

X1 = 1 

X2 = 1.675 

X3 = 0.20 

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)
(11)

(12)

(13)

(14)

(15)

(16)

(17)
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Solving Eqn. 17 gives the following coefficients of matrix A

a12 = 1
a22 = 1.65
a32 =0.15

For the third run, the matrix is of the form;
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Value Computation for Actual Components 

The values of the actual components (Xi) of the 
mixture are computed through the product of the 
values from matrix A and values from matrix Z. 
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4
𝑋𝑋&
𝑋𝑋*
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6=4
1 1 1
1.50 1.65 1.70
0.10 0.15 0.25
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6     (20) 

Solving Eqn. 20 gives the values of the real 
components; 

X1 = 1 

X2 =1.575 

X3 = 0.125 

For A13, substituting the values of Zi yields; 

4
𝑋𝑋&
𝑋𝑋*
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6=4
1 1 1
1.50 1.65 1.70
0.10 0.15 0.25

6 4
0.5
0
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6    (21) 

Solving Eqn. 21 gives the values of the real 
components; 

X1 = 1 

X2 = 1.60 

X3 = 0.175 

For A23, substituting the values of Zi yields; 

4
𝑋𝑋&
𝑋𝑋*
𝑋𝑋 )

6=4
1 1 1
1.50 1.65 1.70
0.10 0.15 0.25

6 4
0
0.5
0.5
6   (22) 

Solving Eqn. 22 gives the values of the real 
components; 

X1 = 1 

X2 = 1.675 

X3 = 0.20 

Solving Eqn.18 gives the following coefficients of matrix A

a13 = 1
a23 = 1.70
a33 =0.25

Therefore, assembling the coefficients obtained thus from 
Eqn.16 to Eqn.18 yields the following coefficient matrix, A;
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mixture are computed through the product of the 
values from matrix A and values from matrix Z. 

For A12, substituting the values of Zi yields; 

4
𝑋𝑋&
𝑋𝑋*
𝑋𝑋 )

6=4
1 1 1
1.50 1.65 1.70
0.10 0.15 0.25

6 4
0.5
0.5
0
6     (20) 

Solving Eqn. 20 gives the values of the real 
components; 

X1 = 1 

X2 =1.575 

X3 = 0.125 

For A13, substituting the values of Zi yields; 

4
𝑋𝑋&
𝑋𝑋*
𝑋𝑋 )

6=4
1 1 1
1.50 1.65 1.70
0.10 0.15 0.25

6 4
0.5
0
0.5
6    (21) 

Solving Eqn. 21 gives the values of the real 
components; 

X1 = 1 

X2 = 1.60 

X3 = 0.175 

For A23, substituting the values of Zi yields; 

4
𝑋𝑋&
𝑋𝑋*
𝑋𝑋 )

6=4
1 1 1
1.50 1.65 1.70
0.10 0.15 0.25

6 4
0
0.5
0.5
6   (22) 

Solving Eqn. 22 gives the values of the real 
components; 

X1 = 1 

X2 = 1.675 

X3 = 0.20 

Value Computation for Actual Components

The values of the actual components (Xi) of the mixture are 
computed through the product of the values from matrix A 
and values from matrix Z.

For A12, substituting the values of Zi yields;
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relationship between the real components and 
pseudo components as stated in Eqn. 3, the value for 
the matrix [A] is deduced from the first three mix 
ratios representing values for the matrix [X], of 
which are; 

X1 = [1 :1.50 : 0.10] 

X2 = [1 :1.65 : 0.15] 

X3 = [1 :1.70 : 0.25] 

The corresponding pseudo mix ratios are of an 
identity matrix form thus; 

 

Z1 = [1: 0: 0] 

Z2= [0: 1: 0] 

Z3 = [0: 0: 1] 

An expanded form of Eqn. 3 can now be written as; 

4
𝑋𝑋&
𝑋𝑋*
𝑋𝑋 )

6=4
𝑎𝑎&& 𝑎𝑎&* 𝑎𝑎&)
𝑎𝑎*& 𝑎𝑎** 𝑎𝑎*)
𝑎𝑎)& 𝑎𝑎)* 𝑎𝑎))

6 4
𝑍𝑍&
𝑍𝑍*
𝑍𝑍)
6     (15) 

Therefore, the values of the real and pseudo mix 
ratios are substituted into Eqn. 15 at each run and the 
resulting equation is solved. 

For the first run, the matrix is of the form; 

4
1
1.50
0.10

6=4
𝑎𝑎&& 𝑎𝑎&* 𝑎𝑎&)
𝑎𝑎*& 𝑎𝑎** 𝑎𝑎*)
𝑎𝑎)& 𝑎𝑎)* 𝑎𝑎))

6 4
1
0
0
6    (16) 

Solving Eqn.16 gives the following coefficients of 
matrix A 

a11 = 1 

a21 = 1.50 

a31 =0.10  

For the second run, the matrix is of the form; 

4
1
1.65
0.15

6=4
𝑎𝑎&& 𝑎𝑎&* 𝑎𝑎&)
𝑎𝑎*& 𝑎𝑎** 𝑎𝑎*)
𝑎𝑎)& 𝑎𝑎)* 𝑎𝑎))

6 4
0
1
0
6   (17) 

Solving Eqn. 17 gives the following coefficients of 
matrix A 

a12 = 1 

a22 = 1.65 

a32 =0.15 

For the third run, the matrix is of the form; 

4
1
1.70
0.25

6=4
𝑎𝑎&& 𝑎𝑎&* 𝑎𝑎&)
𝑎𝑎*& 𝑎𝑎** 𝑎𝑎*)
𝑎𝑎)& 𝑎𝑎)* 𝑎𝑎))

6 4
0
0
1
6     (18) 

Solving Eqn.18 gives the following coefficients of 
matrix A 

a13 = 1 

a23 = 1.70  

a33 =0.25 

Therefore, assembling the coefficients obtained thus 
from Eqn.16 to Eqn.18 yields the following 
coefficient matrix, A; 

A=4
1 1 1
1.50 1.65 1.70
0.10 0.15 0.25

6     (19) 

Value Computation for Actual Components 

The values of the actual components (Xi) of the 
mixture are computed through the product of the 
values from matrix A and values from matrix Z. 

For A12, substituting the values of Zi yields; 

4
𝑋𝑋&
𝑋𝑋*
𝑋𝑋 )

6=4
1 1 1
1.50 1.65 1.70
0.10 0.15 0.25

6 4
0.5
0.5
0
6     (20) 

Solving Eqn. 20 gives the values of the real 
components; 

X1 = 1 

X2 =1.575 

X3 = 0.125 

For A13, substituting the values of Zi yields; 

4
𝑋𝑋&
𝑋𝑋*
𝑋𝑋 )

6=4
1 1 1
1.50 1.65 1.70
0.10 0.15 0.25

6 4
0.5
0
0.5
6    (21) 

Solving Eqn. 21 gives the values of the real 
components; 

X1 = 1 

X2 = 1.60 

X3 = 0.175 

For A23, substituting the values of Zi yields; 

4
𝑋𝑋&
𝑋𝑋*
𝑋𝑋 )

6=4
1 1 1
1.50 1.65 1.70
0.10 0.15 0.25

6 4
0
0.5
0.5
6   (22) 

Solving Eqn. 22 gives the values of the real 
components; 

X1 = 1 

X2 = 1.675 

X3 = 0.20 

Solving Eqn. 20 gives the values of the real components;

X1 = 1
X2 =1.575
X3 = 0.125

For A13, substituting the values of Zi yields;
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relationship between the real components and 
pseudo components as stated in Eqn. 3, the value for 
the matrix [A] is deduced from the first three mix 
ratios representing values for the matrix [X], of 
which are; 

X1 = [1 :1.50 : 0.10] 

X2 = [1 :1.65 : 0.15] 

X3 = [1 :1.70 : 0.25] 

The corresponding pseudo mix ratios are of an 
identity matrix form thus; 

 

Z1 = [1: 0: 0] 

Z2= [0: 1: 0] 

Z3 = [0: 0: 1] 

An expanded form of Eqn. 3 can now be written as; 

4
𝑋𝑋&
𝑋𝑋*
𝑋𝑋 )

6=4
𝑎𝑎&& 𝑎𝑎&* 𝑎𝑎&)
𝑎𝑎*& 𝑎𝑎** 𝑎𝑎*)
𝑎𝑎)& 𝑎𝑎)* 𝑎𝑎))

6 4
𝑍𝑍&
𝑍𝑍*
𝑍𝑍)
6     (15) 

Therefore, the values of the real and pseudo mix 
ratios are substituted into Eqn. 15 at each run and the 
resulting equation is solved. 

For the first run, the matrix is of the form; 

4
1
1.50
0.10

6=4
𝑎𝑎&& 𝑎𝑎&* 𝑎𝑎&)
𝑎𝑎*& 𝑎𝑎** 𝑎𝑎*)
𝑎𝑎)& 𝑎𝑎)* 𝑎𝑎))

6 4
1
0
0
6    (16) 

Solving Eqn.16 gives the following coefficients of 
matrix A 

a11 = 1 

a21 = 1.50 

a31 =0.10  

For the second run, the matrix is of the form; 

4
1
1.65
0.15

6=4
𝑎𝑎&& 𝑎𝑎&* 𝑎𝑎&)
𝑎𝑎*& 𝑎𝑎** 𝑎𝑎*)
𝑎𝑎)& 𝑎𝑎)* 𝑎𝑎))

6 4
0
1
0
6   (17) 

Solving Eqn. 17 gives the following coefficients of 
matrix A 

a12 = 1 

a22 = 1.65 

a32 =0.15 

For the third run, the matrix is of the form; 

4
1
1.70
0.25

6=4
𝑎𝑎&& 𝑎𝑎&* 𝑎𝑎&)
𝑎𝑎*& 𝑎𝑎** 𝑎𝑎*)
𝑎𝑎)& 𝑎𝑎)* 𝑎𝑎))

6 4
0
0
1
6     (18) 

Solving Eqn.18 gives the following coefficients of 
matrix A 

a13 = 1 

a23 = 1.70  

a33 =0.25 

Therefore, assembling the coefficients obtained thus 
from Eqn.16 to Eqn.18 yields the following 
coefficient matrix, A; 

A=4
1 1 1
1.50 1.65 1.70
0.10 0.15 0.25

6     (19) 

Value Computation for Actual Components 

The values of the actual components (Xi) of the 
mixture are computed through the product of the 
values from matrix A and values from matrix Z. 

For A12, substituting the values of Zi yields; 

4
𝑋𝑋&
𝑋𝑋*
𝑋𝑋 )

6=4
1 1 1
1.50 1.65 1.70
0.10 0.15 0.25

6 4
0.5
0.5
0
6     (20) 

Solving Eqn. 20 gives the values of the real 
components; 

X1 = 1 

X2 =1.575 

X3 = 0.125 

For A13, substituting the values of Zi yields; 

4
𝑋𝑋&
𝑋𝑋*
𝑋𝑋 )

6=4
1 1 1
1.50 1.65 1.70
0.10 0.15 0.25

6 4
0.5
0
0.5
6    (21) 

Solving Eqn. 21 gives the values of the real 
components; 

X1 = 1 

X2 = 1.60 

X3 = 0.175 

For A23, substituting the values of Zi yields; 

4
𝑋𝑋&
𝑋𝑋*
𝑋𝑋 )

6=4
1 1 1
1.50 1.65 1.70
0.10 0.15 0.25

6 4
0
0.5
0.5
6   (22) 

Solving Eqn. 22 gives the values of the real 
components; 

X1 = 1 

X2 = 1.675 

X3 = 0.20 

Solving Eqn. 21 gives the values of the real components;

X1 = 1
X2 = 1.60
X3 = 0.175

For A23, substituting the values of Zi yields;
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relationship between the real components and 
pseudo components as stated in Eqn. 3, the value for 
the matrix [A] is deduced from the first three mix 
ratios representing values for the matrix [X], of 
which are; 

X1 = [1 :1.50 : 0.10] 

X2 = [1 :1.65 : 0.15] 

X3 = [1 :1.70 : 0.25] 

The corresponding pseudo mix ratios are of an 
identity matrix form thus; 

 

Z1 = [1: 0: 0] 

Z2= [0: 1: 0] 

Z3 = [0: 0: 1] 

An expanded form of Eqn. 3 can now be written as; 

4
𝑋𝑋&
𝑋𝑋*
𝑋𝑋 )

6=4
𝑎𝑎&& 𝑎𝑎&* 𝑎𝑎&)
𝑎𝑎*& 𝑎𝑎** 𝑎𝑎*)
𝑎𝑎)& 𝑎𝑎)* 𝑎𝑎))

6 4
𝑍𝑍&
𝑍𝑍*
𝑍𝑍)
6     (15) 

Therefore, the values of the real and pseudo mix 
ratios are substituted into Eqn. 15 at each run and the 
resulting equation is solved. 

For the first run, the matrix is of the form; 

4
1
1.50
0.10

6=4
𝑎𝑎&& 𝑎𝑎&* 𝑎𝑎&)
𝑎𝑎*& 𝑎𝑎** 𝑎𝑎*)
𝑎𝑎)& 𝑎𝑎)* 𝑎𝑎))

6 4
1
0
0
6    (16) 

Solving Eqn.16 gives the following coefficients of 
matrix A 

a11 = 1 

a21 = 1.50 

a31 =0.10  

For the second run, the matrix is of the form; 

4
1
1.65
0.15

6=4
𝑎𝑎&& 𝑎𝑎&* 𝑎𝑎&)
𝑎𝑎*& 𝑎𝑎** 𝑎𝑎*)
𝑎𝑎)& 𝑎𝑎)* 𝑎𝑎))

6 4
0
1
0
6   (17) 

Solving Eqn. 17 gives the following coefficients of 
matrix A 

a12 = 1 

a22 = 1.65 

a32 =0.15 

For the third run, the matrix is of the form; 

4
1
1.70
0.25

6=4
𝑎𝑎&& 𝑎𝑎&* 𝑎𝑎&)
𝑎𝑎*& 𝑎𝑎** 𝑎𝑎*)
𝑎𝑎)& 𝑎𝑎)* 𝑎𝑎))

6 4
0
0
1
6     (18) 

Solving Eqn.18 gives the following coefficients of 
matrix A 

a13 = 1 

a23 = 1.70  

a33 =0.25 

Therefore, assembling the coefficients obtained thus 
from Eqn.16 to Eqn.18 yields the following 
coefficient matrix, A; 

A=4
1 1 1
1.50 1.65 1.70
0.10 0.15 0.25

6     (19) 

Value Computation for Actual Components 

The values of the actual components (Xi) of the 
mixture are computed through the product of the 
values from matrix A and values from matrix Z. 

For A12, substituting the values of Zi yields; 

4
𝑋𝑋&
𝑋𝑋*
𝑋𝑋 )

6=4
1 1 1
1.50 1.65 1.70
0.10 0.15 0.25

6 4
0.5
0.5
0
6     (20) 

Solving Eqn. 20 gives the values of the real 
components; 

X1 = 1 

X2 =1.575 

X3 = 0.125 

For A13, substituting the values of Zi yields; 

4
𝑋𝑋&
𝑋𝑋*
𝑋𝑋 )

6=4
1 1 1
1.50 1.65 1.70
0.10 0.15 0.25

6 4
0.5
0
0.5
6    (21) 

Solving Eqn. 21 gives the values of the real 
components; 

X1 = 1 

X2 = 1.60 

X3 = 0.175 

For A23, substituting the values of Zi yields; 

4
𝑋𝑋&
𝑋𝑋*
𝑋𝑋 )

6=4
1 1 1
1.50 1.65 1.70
0.10 0.15 0.25

6 4
0
0.5
0.5
6   (22) 

Solving Eqn. 22 gives the values of the real 
components; 

X1 = 1 

X2 = 1.675 

X3 = 0.20 

Solving Eqn. 22 gives the values of the real components;

X1 = 1
X2 = 1.675
X3 = 0.20

The values of the actual and pseudo components of the mix 
design at different experimental points or runs as determined 
above are presented in Table 1.

(18)

(19)

(20)

TABLE 1.  Mix Design for Trial Points

(21)

(22)

Runs
Actual Components

Responses
Pseudo Components

X1
Soil

X2
RHA

X3
Water

Z1
Soil

Z2
RHA

Z3
Water

1
2
3
4
5
6

1
1
1
1
1
1

1.50
1.65
1.70
1.575
1.60
1.675

0.10
0.15
0.25
0.125
0.175
0.20

Y1
Y2
Y3
Y12
Y13
Y23

1
0
0

0.5
0.5
0

0
1
0

0.5
0

0.5

0
0
1
0

0.5
0.5

Value Computation for Control Points

The mixture proportions for the six control points presenting 
real components and pseudo components are generated as 
follows; the control points are denoted as C1, C2, C3, C12, 
C13, and C23.

For control point C1;
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TABLE 1.  Mix Design for Trial Points 

Runs Actual Components Responses Pseudo Components 
X1 
Soil 

X2 
RHA 

X3 
Water 

Z1 
Soil 

Z2 
RHA 

Z3 
Water 

 
1 
2 
3 
4 
5 
6 

 
1 
1 
1 
1 
1 
1 

 
1.50 
1.65 
1.70 

1.575 
1.60 

1.675 

 
0.10 
0.15 
0.25 

0.125 
0.175 
0.20 

 
Y1 
Y2 
Y3 
Y12 
Y13 
Y23 

 
1 
0 
0 

0.5 
0.5 
0 

 
0 
1 
0 

0.5 
0 

0.5 

 
0 
0 
1 
0 

0.5 
0.5 

 

Value Computation for Control Points 

The mixture proportions for the six control points 
presenting real components and pseudo components 
are generated as follows; the control points are 
denoted as C1, C2, C3, C12, C13, and C23. 

For control point C1; 

4
𝑋𝑋&
𝑋𝑋*
𝑋𝑋 )

6=4
1 1 1
1.50 1.65 1.70
0.10 0.15 0.25

6 4
0.5
0.25
0.25

6   (23) 

Solving Eqn. 23 gives the values for C1 as; 

X1 = 1 

X2 = 1.5875 

X3 = 0.15 

For control point C2; 

4
𝑋𝑋&
𝑋𝑋*
𝑋𝑋 )

6=4
1 1 1
1.50 1.65 1.70
0.10 0.15 0.25

6 4
0.25
0.5
0.25

6   (24) 

Solving Eqn. 24 gives the values for C2 as; 

X1 = 1 

X2 = 1.625 

X3 = 0.1625 

For control point C3; 

4
𝑋𝑋&
𝑋𝑋*
𝑋𝑋 )

6=4
1 1 1
1.50 1.65 1.70
0.10 0.15 0.25

6 4
0.25
0.25
0.5

6   (25) 

Solving Eqn. 25 gives the values for C3 as; 

X1 = 1 

X2 = 1.6375 

X3 = 0.1875 

 

 

For control point C12; 

4
𝑋𝑋&
𝑋𝑋*
𝑋𝑋 )

6=4
1 1 1
1.50 1.65 1.70
0.10 0.15 0.25

6 4
0.6
0.2
0.2
6  (26) 

Solving Eqn. 26 gives the values for C12 as; 

X1 = 1 

X2 = 1.57 

X3 = 0.14 

For control point C13; 

4
𝑋𝑋&
𝑋𝑋*
𝑋𝑋 )

6=4
1 1 1
1.50 1.65 1.70
0.10 0.15 0.25

6 4
0.2
0.6
0.2
6  (27) 

Solving Eqn. 27 gives the values for C13 as; 

X1 = 1 

X2 = 1.63 

X3 = 0.16 

For control point C23; 

4
𝑋𝑋&
𝑋𝑋*
𝑋𝑋 )

6=4
1 1 1
1.50 1.65 1.70
0.10 0.15 0.25

6 4
0.2
0.2
0.6
6  (28) 

Solving Eqn. 23 gives the values for C1 as;

X1 = 1
X2 = 1.5875
X3 = 0.15

For control point C2;
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TABLE 1.  Mix Design for Trial Points 

Runs Actual Components Responses Pseudo Components 
X1 
Soil 

X2 
RHA 

X3 
Water 

Z1 
Soil 

Z2 
RHA 

Z3 
Water 

 
1 
2 
3 
4 
5 
6 

 
1 
1 
1 
1 
1 
1 

 
1.50 
1.65 
1.70 

1.575 
1.60 

1.675 

 
0.10 
0.15 
0.25 

0.125 
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0.20 
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Y2 
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0.5 
0 
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0 
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0 
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0 
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0 
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0.5 

 

Value Computation for Control Points 

The mixture proportions for the six control points 
presenting real components and pseudo components 
are generated as follows; the control points are 
denoted as C1, C2, C3, C12, C13, and C23. 

For control point C1; 

4
𝑋𝑋&
𝑋𝑋*
𝑋𝑋 )

6=4
1 1 1
1.50 1.65 1.70
0.10 0.15 0.25

6 4
0.5
0.25
0.25

6   (23) 

Solving Eqn. 23 gives the values for C1 as; 

X1 = 1 

X2 = 1.5875 

X3 = 0.15 

For control point C2; 

4
𝑋𝑋&
𝑋𝑋*
𝑋𝑋 )

6=4
1 1 1
1.50 1.65 1.70
0.10 0.15 0.25

6 4
0.25
0.5
0.25

6   (24) 

Solving Eqn. 24 gives the values for C2 as; 

X1 = 1 

X2 = 1.625 

X3 = 0.1625 

For control point C3; 

4
𝑋𝑋&
𝑋𝑋*
𝑋𝑋 )

6=4
1 1 1
1.50 1.65 1.70
0.10 0.15 0.25

6 4
0.25
0.25
0.5

6   (25) 

Solving Eqn. 25 gives the values for C3 as; 

X1 = 1 

X2 = 1.6375 

X3 = 0.1875 

 

 

For control point C12; 

4
𝑋𝑋&
𝑋𝑋*
𝑋𝑋 )

6=4
1 1 1
1.50 1.65 1.70
0.10 0.15 0.25

6 4
0.6
0.2
0.2
6  (26) 

Solving Eqn. 26 gives the values for C12 as; 

X1 = 1 

X2 = 1.57 

X3 = 0.14 

For control point C13; 

4
𝑋𝑋&
𝑋𝑋*
𝑋𝑋 )

6=4
1 1 1
1.50 1.65 1.70
0.10 0.15 0.25

6 4
0.2
0.6
0.2
6  (27) 

Solving Eqn. 27 gives the values for C13 as; 

X1 = 1 

X2 = 1.63 

X3 = 0.16 

For control point C23; 

4
𝑋𝑋&
𝑋𝑋*
𝑋𝑋 )

6=4
1 1 1
1.50 1.65 1.70
0.10 0.15 0.25

6 4
0.2
0.2
0.6
6  (28) 

Solving Eqn. 24 gives the values for C2 as;

X1 = 1
X2 = 1.625
X3 = 0.1625

For control point C3;
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TABLE 1.  Mix Design for Trial Points 

Runs Actual Components Responses Pseudo Components 
X1 
Soil 

X2 
RHA 

X3 
Water 

Z1 
Soil 

Z2 
RHA 

Z3 
Water 

 
1 
2 
3 
4 
5 
6 

 
1 
1 
1 
1 
1 
1 

 
1.50 
1.65 
1.70 

1.575 
1.60 

1.675 

 
0.10 
0.15 
0.25 

0.125 
0.175 
0.20 

 
Y1 
Y2 
Y3 
Y12 
Y13 
Y23 

 
1 
0 
0 

0.5 
0.5 
0 

 
0 
1 
0 

0.5 
0 

0.5 

 
0 
0 
1 
0 

0.5 
0.5 

 

Value Computation for Control Points 

The mixture proportions for the six control points 
presenting real components and pseudo components 
are generated as follows; the control points are 
denoted as C1, C2, C3, C12, C13, and C23. 

For control point C1; 

4
𝑋𝑋&
𝑋𝑋*
𝑋𝑋 )

6=4
1 1 1
1.50 1.65 1.70
0.10 0.15 0.25

6 4
0.5
0.25
0.25

6   (23) 

Solving Eqn. 23 gives the values for C1 as; 

X1 = 1 

X2 = 1.5875 

X3 = 0.15 

For control point C2; 

4
𝑋𝑋&
𝑋𝑋*
𝑋𝑋 )

6=4
1 1 1
1.50 1.65 1.70
0.10 0.15 0.25

6 4
0.25
0.5
0.25

6   (24) 

Solving Eqn. 24 gives the values for C2 as; 

X1 = 1 

X2 = 1.625 

X3 = 0.1625 

For control point C3; 

4
𝑋𝑋&
𝑋𝑋*
𝑋𝑋 )

6=4
1 1 1
1.50 1.65 1.70
0.10 0.15 0.25

6 4
0.25
0.25
0.5

6   (25) 

Solving Eqn. 25 gives the values for C3 as; 

X1 = 1 

X2 = 1.6375 

X3 = 0.1875 

 

 

For control point C12; 

4
𝑋𝑋&
𝑋𝑋*
𝑋𝑋 )

6=4
1 1 1
1.50 1.65 1.70
0.10 0.15 0.25

6 4
0.6
0.2
0.2
6  (26) 

Solving Eqn. 26 gives the values for C12 as; 

X1 = 1 

X2 = 1.57 

X3 = 0.14 

For control point C13; 

4
𝑋𝑋&
𝑋𝑋*
𝑋𝑋 )

6=4
1 1 1
1.50 1.65 1.70
0.10 0.15 0.25

6 4
0.2
0.6
0.2
6  (27) 

Solving Eqn. 27 gives the values for C13 as; 

X1 = 1 

X2 = 1.63 

X3 = 0.16 

For control point C23; 

4
𝑋𝑋&
𝑋𝑋*
𝑋𝑋 )

6=4
1 1 1
1.50 1.65 1.70
0.10 0.15 0.25

6 4
0.2
0.2
0.6
6  (28) 

(23)

(24)

(25)
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Solving Eqn. 25 gives the values for C3 as;

X1 = 1
X2 = 1.6375
X3 = 0.1875

For control point C12;
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TABLE 1.  Mix Design for Trial Points 

Runs Actual Components Responses Pseudo Components 
X1 
Soil 

X2 
RHA 

X3 
Water 

Z1 
Soil 

Z2 
RHA 

Z3 
Water 

 
1 
2 
3 
4 
5 
6 

 
1 
1 
1 
1 
1 
1 

 
1.50 
1.65 
1.70 

1.575 
1.60 

1.675 

 
0.10 
0.15 
0.25 

0.125 
0.175 
0.20 

 
Y1 
Y2 
Y3 
Y12 
Y13 
Y23 

 
1 
0 
0 

0.5 
0.5 
0 

 
0 
1 
0 

0.5 
0 

0.5 

 
0 
0 
1 
0 

0.5 
0.5 

 

Value Computation for Control Points 

The mixture proportions for the six control points 
presenting real components and pseudo components 
are generated as follows; the control points are 
denoted as C1, C2, C3, C12, C13, and C23. 

For control point C1; 

4
𝑋𝑋&
𝑋𝑋*
𝑋𝑋 )

6=4
1 1 1
1.50 1.65 1.70
0.10 0.15 0.25

6 4
0.5
0.25
0.25

6   (23) 

Solving Eqn. 23 gives the values for C1 as; 

X1 = 1 

X2 = 1.5875 

X3 = 0.15 

For control point C2; 

4
𝑋𝑋&
𝑋𝑋*
𝑋𝑋 )

6=4
1 1 1
1.50 1.65 1.70
0.10 0.15 0.25

6 4
0.25
0.5
0.25

6   (24) 

Solving Eqn. 24 gives the values for C2 as; 

X1 = 1 

X2 = 1.625 

X3 = 0.1625 

For control point C3; 

4
𝑋𝑋&
𝑋𝑋*
𝑋𝑋 )

6=4
1 1 1
1.50 1.65 1.70
0.10 0.15 0.25

6 4
0.25
0.25
0.5

6   (25) 

Solving Eqn. 25 gives the values for C3 as; 

X1 = 1 

X2 = 1.6375 

X3 = 0.1875 

 

 

For control point C12; 

4
𝑋𝑋&
𝑋𝑋*
𝑋𝑋 )

6=4
1 1 1
1.50 1.65 1.70
0.10 0.15 0.25

6 4
0.6
0.2
0.2
6  (26) 

Solving Eqn. 26 gives the values for C12 as; 

X1 = 1 

X2 = 1.57 

X3 = 0.14 

For control point C13; 

4
𝑋𝑋&
𝑋𝑋*
𝑋𝑋 )

6=4
1 1 1
1.50 1.65 1.70
0.10 0.15 0.25

6 4
0.2
0.6
0.2
6  (27) 

Solving Eqn. 27 gives the values for C13 as; 

X1 = 1 

X2 = 1.63 

X3 = 0.16 

For control point C23; 

4
𝑋𝑋&
𝑋𝑋*
𝑋𝑋 )

6=4
1 1 1
1.50 1.65 1.70
0.10 0.15 0.25

6 4
0.2
0.2
0.6
6  (28) 

Solving Eqn. 26 gives the values for C12 as;

X1 = 1
X2 = 1.57
X3 = 0.14

For control point C13;
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TABLE 1.  Mix Design for Trial Points 

Runs Actual Components Responses Pseudo Components 
X1 
Soil 

X2 
RHA 

X3 
Water 

Z1 
Soil 

Z2 
RHA 

Z3 
Water 

 
1 
2 
3 
4 
5 
6 

 
1 
1 
1 
1 
1 
1 

 
1.50 
1.65 
1.70 

1.575 
1.60 

1.675 

 
0.10 
0.15 
0.25 

0.125 
0.175 
0.20 

 
Y1 
Y2 
Y3 
Y12 
Y13 
Y23 

 
1 
0 
0 

0.5 
0.5 
0 

 
0 
1 
0 

0.5 
0 

0.5 

 
0 
0 
1 
0 

0.5 
0.5 

 

Value Computation for Control Points 

The mixture proportions for the six control points 
presenting real components and pseudo components 
are generated as follows; the control points are 
denoted as C1, C2, C3, C12, C13, and C23. 

For control point C1; 

4
𝑋𝑋&
𝑋𝑋*
𝑋𝑋 )

6=4
1 1 1
1.50 1.65 1.70
0.10 0.15 0.25

6 4
0.5
0.25
0.25

6   (23) 

Solving Eqn. 23 gives the values for C1 as; 

X1 = 1 

X2 = 1.5875 

X3 = 0.15 

For control point C2; 

4
𝑋𝑋&
𝑋𝑋*
𝑋𝑋 )

6=4
1 1 1
1.50 1.65 1.70
0.10 0.15 0.25

6 4
0.25
0.5
0.25

6   (24) 

Solving Eqn. 24 gives the values for C2 as; 

X1 = 1 

X2 = 1.625 

X3 = 0.1625 

For control point C3; 

4
𝑋𝑋&
𝑋𝑋*
𝑋𝑋 )

6=4
1 1 1
1.50 1.65 1.70
0.10 0.15 0.25

6 4
0.25
0.25
0.5

6   (25) 

Solving Eqn. 25 gives the values for C3 as; 

X1 = 1 

X2 = 1.6375 

X3 = 0.1875 

 

 

For control point C12; 

4
𝑋𝑋&
𝑋𝑋*
𝑋𝑋 )

6=4
1 1 1
1.50 1.65 1.70
0.10 0.15 0.25

6 4
0.6
0.2
0.2
6  (26) 

Solving Eqn. 26 gives the values for C12 as; 

X1 = 1 

X2 = 1.57 

X3 = 0.14 

For control point C13; 

4
𝑋𝑋&
𝑋𝑋*
𝑋𝑋 )

6=4
1 1 1
1.50 1.65 1.70
0.10 0.15 0.25

6 4
0.2
0.6
0.2
6  (27) 

Solving Eqn. 27 gives the values for C13 as; 

X1 = 1 

X2 = 1.63 

X3 = 0.16 

For control point C23; 

4
𝑋𝑋&
𝑋𝑋*
𝑋𝑋 )

6=4
1 1 1
1.50 1.65 1.70
0.10 0.15 0.25

6 4
0.2
0.2
0.6
6  (28) 

Solving Eqn. 27 gives the values for C13 as;

X1 = 1
X2 = 1.63
X3 = 0.16

For control point C23;
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TABLE 1.  Mix Design for Trial Points 

Runs Actual Components Responses Pseudo Components 
X1 
Soil 

X2 
RHA 

X3 
Water 

Z1 
Soil 

Z2 
RHA 

Z3 
Water 

 
1 
2 
3 
4 
5 
6 

 
1 
1 
1 
1 
1 
1 

 
1.50 
1.65 
1.70 

1.575 
1.60 

1.675 

 
0.10 
0.15 
0.25 

0.125 
0.175 
0.20 

 
Y1 
Y2 
Y3 
Y12 
Y13 
Y23 

 
1 
0 
0 

0.5 
0.5 
0 

 
0 
1 
0 

0.5 
0 

0.5 

 
0 
0 
1 
0 

0.5 
0.5 

 

Value Computation for Control Points 

The mixture proportions for the six control points 
presenting real components and pseudo components 
are generated as follows; the control points are 
denoted as C1, C2, C3, C12, C13, and C23. 

For control point C1; 

4
𝑋𝑋&
𝑋𝑋*
𝑋𝑋 )

6=4
1 1 1
1.50 1.65 1.70
0.10 0.15 0.25

6 4
0.5
0.25
0.25

6   (23) 

Solving Eqn. 23 gives the values for C1 as; 

X1 = 1 

X2 = 1.5875 

X3 = 0.15 

For control point C2; 

4
𝑋𝑋&
𝑋𝑋*
𝑋𝑋 )

6=4
1 1 1
1.50 1.65 1.70
0.10 0.15 0.25

6 4
0.25
0.5
0.25

6   (24) 

Solving Eqn. 24 gives the values for C2 as; 

X1 = 1 

X2 = 1.625 

X3 = 0.1625 

For control point C3; 

4
𝑋𝑋&
𝑋𝑋*
𝑋𝑋 )

6=4
1 1 1
1.50 1.65 1.70
0.10 0.15 0.25

6 4
0.25
0.25
0.5

6   (25) 

Solving Eqn. 25 gives the values for C3 as; 

X1 = 1 

X2 = 1.6375 

X3 = 0.1875 

 

 

For control point C12; 

4
𝑋𝑋&
𝑋𝑋*
𝑋𝑋 )

6=4
1 1 1
1.50 1.65 1.70
0.10 0.15 0.25

6 4
0.6
0.2
0.2
6  (26) 

Solving Eqn. 26 gives the values for C12 as; 

X1 = 1 

X2 = 1.57 

X3 = 0.14 

For control point C13; 

4
𝑋𝑋&
𝑋𝑋*
𝑋𝑋 )

6=4
1 1 1
1.50 1.65 1.70
0.10 0.15 0.25

6 4
0.2
0.6
0.2
6  (27) 

Solving Eqn. 27 gives the values for C13 as; 

X1 = 1 

X2 = 1.63 

X3 = 0.16 

For control point C23; 

4
𝑋𝑋&
𝑋𝑋*
𝑋𝑋 )

6=4
1 1 1
1.50 1.65 1.70
0.10 0.15 0.25

6 4
0.2
0.2
0.6
6  (28) 

Solving Eqn. 28 gives the values for C23 as;

X1 = 1
X2 = 1.65
X3 = 0.20

The values for the real and its corresponding pseudo 
components generated for the control points which are used 
to validate the formulated models are presented in Table 2.

(26)

(27)

(28)

TABLE 2. Mix Design for Control Points

Runs
Actual Components

Responses
Pseudo Components

X1
Soil

X2
RHA

X3
Water

Z1
Soil

Z2
RHA

Z3
Water

1
2
3
4
5
6

1
1
1
1
1
1

1.5875
1.625
1.6375
1.57
1.63
1.65

0.15
0.1625
0.1875
0.14
0.16
0.20

C1
C2
C3
C12
C13
C23

0.5
0.25
0.25
0.2
0.2
0.6

0.25
0.5
0.25
0.2
0.6
0.2

0.25
0.25
0.5
0.6
0.2
0.2

Model Validation

Models generated through mathematical process are usually 
subjected to validation techniques, these techniques are 
mostly statistical approach employed to test the adequacy 
and accuracy of the model in prediction or representation 
of a system. The validation techniques employed in this 
study are the ‘Fisher’s Test (F-test) and Student T-test’. The 
validation also encapsulated two hypothesis.

Null Hypothesis (H0): There is no significant difference 
between the experimental values and the predicted values 
from the model. 

Alternate Hypothesis (H1): There is a significant difference 
between the experimental values and the predicted values 
from the model.

Fisher’s Test (F-test)

The Fisher’s test statistically compares the variance of 
two distribution. This test gives off a value known as the 
F-statistics. The F-statistics is given as the ratio of variance 
between the model’s predicted values and the empirical 
values. Also, the model developed is declared adequate and 
the null hypothesis accepted if the calculated F-statistics 

is less than the F-critical at a confidence level of 95%. 
Otherwise, the alternate hypothesis is accepted and the 
model is considered inadequate. The computation of the 
various values associated with the F-test were automated 
and was carried out using Microsoft Excel Software version 
2013. The output of the F-test is outlined in Table 6.

Student T-test

The T-test is a popular statistical techniques used to 
ascertain if the mean difference between two groups is 
statistically significant. Null hypothesis stated that both 
means are statistically equal, whereas alternative hypothesis 
stated that both means are not statistically equal i.e., they are 
statistically different from each other. The Paired Sample 
T-test was employed in this work for the model validation. 
The outcome of the T-test produces the T-Statistics also 
known as T-stat. This calculated T-Stat is then compared 
against a value obtained from a critical value table called the 
T-Distribution Table. This comparison helps to determine 
the effect of chance alone on the difference, and whether 
the difference is outside that chance range. In this study, 
the T-test was automated by the use of Microsoft Excel 
Software version 2013.
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RESULTS AND DISCUSSION

The relevant index and engineering properties of the 
natural lateritic soil and the RHA treated soil at various mix 
proportions used to perform the optimization technique and 
model formulation were evaluated.

NATURAL SOIL

The soil, upon visual observation was considered to have 
a reddish brown colouration which indicates the presence 
of aluminium oxides which in actuality is predominant 
in all lateritic soil. The natural moisture content and 

specific gravity computed was found to be 7.73% and 2.83 
respectively, whilst the liquid limit deduced from the graph 
and plastic limit were observed to be relatively low, having 
values of 29% and 19.16% respectively with a plasticity 
index of 9.84% which further gives an indication of low 
clay presence. 

Moreover, considering the particle size distribution and 
Atterberg limits, the soil was classified based on AASHTO 
and (USCS) as A-2-4 and CL respectively. The soil also has 
an optimum moisture content of 11.19% with a maximum 
dry density of 1889kg/m3. The CBR value computed was 
found to be 14.78%. An overview, outlining the different 
properties of the natural soil is shown in Table 3.

TABLE 3. Index properties of the soil

Properties Results
Colour
% passing sieve No 200
Liquid limit (%)
Plastic limit (%)
Plasticity index (%)
Specific Gravity
Natural Moisture Content (%)
AASHTO
USCS
Maximum Dry Density (kg/m3)
Optimum Moisture Content (%)
CBR Value

Reddish-Brown
0

29.00
19.16
9.84
2.83
7.73

A-2-4
CL

1889
11.19
14.78

MODIFIED SOIL

The mix ratios used for the stabilization and optimization 
technique are duly derived using the scheffe’s simplex lattice 
design technique. The lateritic soil was mixed using the 
generated mix ratios and therefore subjected to California 
Bearing Ratio test as per BS 1377. The experimental results 
of the test showing the CBR values of the now modified soil, 
its corresponding mix components (Real and Pseudo) and 
mix ratios for the Trial mix and Control points is presented 
in Table 4 and Table 5 respectively. 

SCHEFFE’S OPTIMIZATION

The model formulated by Scheffe’s method used for 
predicting the CBR values of the soil stabilized with 
proportions of RHA is given in Eqn 12. Also, values for 
coefficients of the model are computed using Eqn 13 and 
Eqn 14 such that;

β1 = Y1 = 21
β2 = Y2 = 19
β3 = Y3 = 30 
β12 = 4Y12 – 2Y1 – 2Y2 
     = 4 x 18 – 2 x 21 – 2 x 19 = -8
β13 = 4Y13 – 2Y1 – 2Y3 
     = 4 x 18 – 2 x 21 – 2 x 30 = -30
β23 = 4Y23 – 2Y2 – 2Y3 
     = 4 x 20 – 2 x 19 – 2 x 30 = -18
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TABLE 4. California Bearing Ratio Experimental Values for Trial Mix

Runs
Actual Components

Responses CBR
Values (%)

Pseudo Components
X1 

Soil

X2

RHA

X3

Water

Z1

Soil

Z2

RHA

Z3

Water

1
2
3
4
5
6

1
1
1
1
1
1

1.50
1.65
1.70
1.575
1.60
1.675

0.10
0.15
0.25
0.125
0.175
0.20

Y1
Y2
Y3
Y12
Y13
Y23

21
19
30
18
18
20

1
0
0

0.5
0.5
0

0
1
0

0.5
0

0.5

0
0
1
0

0.5
0.5

TABLE 5. California Bearing Ratio Experimental Values for Control Mix

Runs
Actual Components

Responses CBR
Values (%)

Pseudo Components
X1

Soil

X2

RHA

X3

Water

Z1

Soil

Z2

RHA

Z3

Water

1
2
3
4
5
6

1
1
1
1
1
1

1.5875
1.625
1.6375
1.65
1.63
1.57

0.15
0.1625
0.1875

0.2
0.16
0.14

C1
C2
C3
C12
C13
C23

18
17
18
16
19
20

0.5
0.25
0.25
0.2
0.2
0.6

0.25
0.5
0.25
0.2
0.6
0.2

0.25
0.25
0.5
0.6
0.2
0.2

TABLE 6. Values for the Coefficients of the Model

β1 β2 β3 β12 β13 β23

21 19 30 -8 -30 -18

Furthermore, substituting the above values of the various 
model coefficients into the polynomial equation (Eqn.12), 
the optimization model for predicting the California bearing 
ratio of lateritic soil stabilized with rice husk ash is arrived 
at as;

Y=21Z1+19Z2+30Z3-8Z1Z2-30Z1Z3-18Z2Z3

The equation (Eqn 29) can be employed to predict the 
California bearing ratio of lateritic soil stabilized with rice 

(29)

TABLE 7. California Bearing Ratio Model Values for Trial Mix

husk given any mix proportion within the same locality. 
This equation provides a futuristic, time and cost-effective 
approach to Engineers seeking to ascertain the CBR property 
of the same soil given same stabilizing agent.

The CBR values for the trial mix and control points 
in the sixth columns of Table 7 and Table 8 respectively 
is obtained by substituting the values for each pseudo 
component (Z1, Z2, and Z3) into Eqn 29.

Runs
Actual Components

Responses CBR
Values (%)

Pseudo Components
X1

Soil

X2

RHA

X3

Water

Z1

Soil

Z2

RHA

Z3

Water

1 1 1.50 0.10 Y1 21 1 0 0
2 1 1.65 0.15 Y2 19 0 1 0
3 1 1.70 0.25 Y3 30 0 0 1
4 1 1.575 0.125 Y12 18 0.5 0.5 0
5 1 1.60 0.175 Y13 18 0.5 0 0.5
6 1 1.675 0.20 Y23 20 0 0.5 0.5
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TABLE 8. California Bearing Ratio Model Values for Control Point

Runs
Actual Components

Responses CBR
Values (%)

Pseudo Components
X1

Soil

X2

RHA

X3

Water

Z1

Soil

Z2

RHA

Z3

Water

1 1 1.5875 0.15 C1 16.875 0.5 0.25 0.25
2 1 1.625 0.1625 C2 17.125 0.25 0.5 0.25
3 1 1.6375 0.1875 C3 18.5 0.25 0.25 0.5
4 1 1.65 0.2 C12 19.92 0.2 0.2 0.6
5 1 1.63 0.16 C13 17.28 0.2 0.6 0.2
6 1 1.57 0.14 C23 17.12 0.6 0.2 0.2

VALIDATION ANALYSIS

The validation involved six control points which were 
used to verify the adequacy of the generated model. Table 
9 and Table 10 gives a view of the results from the f-test 
and the student t-test which were automatically computed 
using Microsoft Excel program. It shows the variance of the 
experimental and model values, mean and probability value 
(p-value). Also, the f-statistics value which is the ratio of the 
both variance (experimental and model) is shown in Table 
9 as 1.422. This value being less than the f-critical value 
of approximately 5.05 affirms that there is no significant 
difference between the experimental values of the California 

bearing ratio and the model predicted values. Therefore, the 
null hypothesis was accepted and the model is adequate.

MANUAL CHECK

In order to further verify the accuracy of the F-test 
results computed by Microsoft Excel software, a manual 
computation was also carried out. The average mean values 
for the experimental and model responses were calculated. 
The variance for each responses (experiment and model) are 
also computed. The F-statistics value obtained is compared 
to the F-critical value corresponding to a degree of freedom 
value of five (5) obtained from an F-test distribution table in 
order to ascertain which value is greater or lesser.

TABLE 9. F-Test Two-Sample for Variances

Description
Responses

Experiment Model
Mean

Variance
Observations

Df
F

P(F<=f) one-tail
F Critical one-tail

18
2
6
5

1.422802304
0.354116816
5.050329058

17.80333333
1.405676667

6
5
 

TABLE 10. T-test: Paired Two Sample for Means

Description
Responses

Experiment Model
Mean

Variance
Observations

Pearson Correlation
Hypothesized Mean Difference

Df
t Stat

P(T<=t) one-tail
t Critical one-tail
P(T<=t) two-tail
t Critical two-tail

18
2
6

-0.649486553
0
5

0.20386668
0.423247774
2.015048373
0.846495549
2.570581836

17.80333333
1.405676667

6
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TABLE 11. Values for Manual Statistical F-test Computation

Response YE YM YE - YEA YM -YMA (YE - YEA)2 (YM - YMA)2

C1
C2
C3
C12
C13
C23

18
17
18
16
19
20

16.875
17.125
18.5
19.92
17.28
17.12

0
-1
0
-2
1
2

-0.92833
-0.67833
0.696667
2.116667
-0.52333
-0.68333

0
1
0
4
1
4

0.861802778
0.460136111
0.485344444
4.480277778
0.273877778
0.466944444

∑ = 108 ∑ = 106.82 ∑ = 10 ∑ = 7.028383333
YEA = 18 YMA = 17.80333

From Table 11 Where,

YE = Experimental Values
YM = Model Values
YEA = Average Experimental Value
YMA = Average Model Value

Mathematically, the F-test is given as;
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The value of Variance, S2 for the Experimental 
values is obtained from the expression thus as; 

S2 = ∑(DE	%	DEF)
B

G%&
                        (31) 

Where, 

N = 6 (Number of Observation or runs), 

S2 = &H
I%&

 = 2 

Also, the value of Variance, S2 for the Model values 
is obtained from the expression thus as; 

S2 = ∑(DJ	%	DJF)
B

G%&
                          (32) 

S2 = K.H*L)L))))
I%&

 = 1.405676667 

Since, Experimental variance is greater than Model 
variance. Therefore, the value of “F” is given as; 

F = *
&.+HMIKIIIK

 = 1.4228023  

The Manual calculation gives a value for F-statistics 
corresponding to the F-Statistics values computed 
by the software, hence, the Microsoft Excel value is 
accurate and valid. 
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Df 
t Stat 
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18 
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 ∑ = 108 ∑ = 106.82  ∑ = 10 ∑ = 7.028383333 

YEA = 18 YMA = 17.80333  

Where;

S1
2 = Greater value of both Variances

S2
2 = Lesser value of both Variances

The value of Variance, S2 for the Experimental values is 
obtained from the expression thus as;
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Since, Experimental variance is greater than Model variance. 
Therefore, the value of “F” is given as;
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(31)

(32)

CONCLUSION

1. In line with all Engineering standards and empirical 
procedures employed in the optimization of the 
California bearing ratio of lateritic soil stabilized with 
rice husk ash, the following conclusions were drawn.

2. The optimal mix was observed to be of ratio 1: 1.70: 
0.25 for lateritic soil, rice husk and water with a CBR 
value of 30%.

3. The optimization model developed for the CBR of Rice 
Husk Ash stabilized lateritic soil can be employed 
reliably in the prediction of the CBR given any arbitrary 
mix ratio and vice versa.

4. The F-test and T-test employed in verifying the 
adequacy of the model at a 0.05% probability confirmed 
the adequacy of the model.

RECOMMENDATION

In line with different property variation present in soils, 
the results and observations from this study are exclusively 
limited to future works to be conducted within the same 
locality. More so, to reduce the impact of agricultural 
wastes in the environments, extensive studies should also 
be conducted on other available agricultural waste materials 
such as (bean husk, bone ash, coconut husk) to mention 
a few, so as to encourage its optimal usage in pavement 
construction. 

Furthermore, other properties of the soil from this 
work such as the unconfined compressive strength, swelling 
potentials, shear strength, should be determined as this study 
only considered the California Bearing Ratio. In addition, 
available optimization techniques such as the Classical 
Optimization method should also be considered for use and 
its flexibility in incorporating more than one soil property at 
a time should also be exploited. 

Contribution to Knowledge

Model constants for predicting the California Bearing 
Ratio of lateritic soil stabilized with Rice Husk Ash was 
developed for soils in this locality using scheffe’s method 
for the first time. These model when applied would save 
other researchers, young Engineers and road contractors 
from rigorous and time consuming efforts.
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