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ABSTRACT

Additive manufacturing (AM) is an effective technology for repairing and restoring automotive components. However, 
the effectiveness of additive manufacturing technology in repair and restoration is highly influenced by several factors 
related to components and process. The objective of this paper is to improve the decision-making in repair and 
restoration of a turbocharger with AM. In this article, a Fuzzy-Genetic approach was presented as a decision-
making tool for repairing a remanufacturable component. Fuzzy logic (FL) is deployed as the method to model the 
design parameters of a turbocharger, such as design complexity, failure mode, damage size, disassembleability, 
preprocessing, temperature, durability, pressure ratio and mass flow rate to model the relationship between the inputs 
and outputs using Mamdani model with their membership functions. Genetic algorithm optimization method was 
used to optimize the cost of the repairing process once the decision on whether the turbocharger was repairable was 
determined by the Fuzzy system. The FL approach applied rules affecting the process, the robustness and accuracy of 
the model increases with a higher number of rules. The work focuses on the dataset related to design information, 
which represents as a knowledge base for decision parameters on design optimization to automate repair process 
during remanufacturing. The results showed the effects of the design parameters on repairing and replacement 
decisions, and how the fuzzy model related the inputs to the outputs based on the generated rules. In conclusion, FGA 
method can be used to improve the repair and restoration process of a turbocharger through AM technology.

Keywords:  Fuzzy-GA; turbocharger; additive manufacturing; hybrid method. 

INTRODUCTION

Additive manufacturing (AM) is the technology used to 
rebuild manufacturing materials by adding material layer-
by-layer to repair the damaged parts. This term includes 
several other technologies referred to as 3D Printing, Direct 
Digital Manufacturing (DDM), layered manufacturing, 
additive fabrication, and Rapid Prototyping (RP) (Gibson 
et al. 2015). For many years, several concepts have been 
engaged to decrease and limit the consumption of natural 
resources, including the circular economy concept. AM 

uses far less energy than traditional machining, and 
personnel and tools that correspond to the circular economy 
(Gohari et al.2019; Aziz et al. 2021; Seharing et al.2020). 
The circular economy aims to keep products and 
components at their highest utility and value in their 
lifecycle. Consequently, the remanufacturing process, 
which is one of the most promising product end-of-life 
(EoL) recovery options, is capable of increasing the 
longevity of a product that has expired (Kotis. 2021; Jose 
et al. 2020; Andrew et al. 2013). Therefore, remanufacturing 
is applied to restore EoL components back to conditions 
that are closer to their original conditions. Moreover, the 
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remanufactured components could function just as well as 
they did when first manufactured. To date, the repair 
process in remanufacturing is highly dependent on skilled 
workers who should be able to decide the appropriate 
restoration techniques, resulting in high time consumption 
and costs in the long term. With the advent of the additive 
manufacturing technology, the repair and restoration 
process can now be automated (Wakiru et al.2017).

AM is considered as a new technology for repairing 
and restoring materials, significantly impacting the circular 
economy strategies. However, there are some constraints 
in AM repair process due to the geometrical complexity 
that may lead to several efforts in the redesign of repair 
process using AM (Sotomayor et al.2021). Therefore, many 
researchers have been addressing the need to redesign 
products in order to overcome and solve design related 
problems to support AM repair and replacement at the end 
of their useful life by using a good design and optimization 
method (Silva et al. 2020). Moreover, the aim of the 
modeling and optimization method is to facilitate the 
recovery process of EoL components, leading to product 
longevity using AM (Rahito et al. 2019). 

The optimization process requires setting the inputs 
or specifications of a component to determine the best 
solution to a design or problem, and using a mathematical 
function to maximize or minimize the output (Hadi & Ali. 
2020). The input information is the number of parameters 
(decision variables) and the output information or results 
are whether the material needs a repair or replace process 
(Den et al. 2017). Then, the optimization algorithm is 
applied by researchers and engineers from various fields, 
such as energy, electrical engineering, control engineering, 
mechanical engineering and others, in order to optimize 
the repair process based on the objective function expressed 
by that material (Afrinaldi et al. 2016).

Artificial intelligence (AI) provides a promising 
approach in scaling up the repair process using AM 
technology. The AM technology provides an adaptive 
slicing algorithm that determines the layer width and 
thickness of the material based on the minimum value of 
the deviation between its stepped approximation and the 
computer added design (CAD) model (Wang et al. 2020). 
Meanwhile, knowledge-based and expert systems tools 
can be applied in decision-making in order to develop a 
sophisticated system to integrate AI in AM design (Leo et 
al. 2018). Artificial intelligence (AI) techniques that can 
assist the nature and process of decision-making during 
repair can be used to incorporate intelligent systems into 
AM-based repair. The incorporation of intelligent systems 
in AM repair is anticipated to improve the efficiency of 
resource use and repair during remanufacturing (Yusoh et 
al. 2021).

In this paper, the Fuzzy-Genetic Algorithm (FGA) 
approach was used to model the design parameters of a 
remanufacturable component, which in this case, was a 
turbocharger, as inputs and to relate them to the outputs 
(repair and replacement of the components parts) using the 
rules and facts applied to the FL inference engine. 
Subsequently, the repair process was modeled and 
optimized after the decision was made by the Fuzzy model. 
The design parameters selected for the modeling process 
were as follows: design complexity, failure mode, damage 
severity, preprocessing, mass flow rate, pressure ratio, 
temperature and durability (Fegade et al. 2015). Each 
parameter was set to a membership function, which was 
represented as a range of values (e.g., low, middle and high) 
to the Fuzzy model. This information was represented as 
a knowledge base to the inference engine of the Fuzzy 
logic system to find the best decision of the designed model. 
Eventually, the genetic algorithm was used to obtain the 
best cost for the repair process.

During the repair process, there are decisions 
parameters that must be considered to improve the design 
of the product in order to return to its original state with 
the same or higher quality. These parameters influence the 
decision on whether the component needs repair or 
replacement. Consequently, the process of decision making 
prior to repair and replacement can be modeled using 
fuzzy-based systems that have the ability to realize an 
input–output relation as a synthesis of multiple simple 
inputs–output. The multiple-objectives, simultaneous 
optimization is essential to be the survival of the cost 
function (fittest) by using the genetic algorithm (GA) that 
has two computational elements that work together as the 
Fuzzy logic (FL), and is applicable to many hard 
optimization problems, like optimization of linear and 
nonlinear functions. The fusion of FL system and GA 
allows the modeling of real-world problems. Fuzzy-
Genetic Algorithm (FGA) is defined as an ordering 
sequence of instructions in which some of the instructions 
or algorithm components are designed with the use of 
Fuzzy logic-based tools (Saini et al.2004).

This paper is organized as follows: Section 2 
(Methodology) provides a brief introduction of the case 
example, namely the turbocharger design and parameters 
addressed in the proposed FGA model. The simulation 
results of the Fuzzy-based model and GA as a hybrid 
method are presented in Section 3 (Results). In Section 4 
(Discussion), details on the implementation of the FGA 
hybrid method and the impact of the input parameters on 
decision making and optimization are presented. The paper 
provides a conclusion of the research findings and 
suggestions for future work in Section 5.
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METHODOLOGY

In this section, the methodology of the paper is presented 
and discussed. The development of the FGA model is 
explained step-by-step to show the principal operation, 
followed by the decision on whether the turbocharger 
component needs repair or replacement, and to optimize 
the repair process using GA.

TURBOCHARGER

For the purpose of this study, a turbocharger was selected 
as a case example. Turbochargers are commonly repaired 
during remanufacturing as they are of high value. A 
turbocharger is a compressor used to raise the mass flow 
rate of air in order to increase the power of the engine. In 
addition, it differs from a typical compressor as it is usually 
driven by a turbine, using the input air to increase its 
pressure and yet feeding more air into the cylinders to 
increase the power of the engine (Chen et al. 2012). A 
turbocharger normally consists of three parts: the turbine 
housing, turbine wheel and compressor side. The turbine 
housing is made to withstand highly exhausted temperature 
using cast iron. The turbine wheel is made from cast nickel 
to support high temperature and pressure. Meanwhile, the 
compressor side is divided into two parts, the cover and 
the compressor wheel, which are made from different 
aluminum alloys or aluminum only (Herzwan et al. 2019). 

During its useful life cycle, a turbocharger is 
continuously subjected to pressure, temperature and air 
flow rate (Fegade et al. 2015). There are also other 
parameters related to the turbocharger design: design 

complexity, durability and disassembleability. On the other 
hand, there are parameters that do not necessarily affect 
materials longevity, such as preprocessing, failure mode 
and damage size. Table 1 shows the turbocharger’s design 
parameters, which are the inputs to the FL model. The input 
variables are defined as follows:

1.	 Design complexity is the structure complexity of the 
component to be repaired.

2.	 Failure mode is any change in shape, size, or material 
properties.

3.	 Disassembly is the ability to break down a component 
into separate parts.

4.	 Damage size is the percentage of damage on the 
component to be repaired.

5.	 Preprocessing is the ability to prepare the component 
by brushing and cleaning it.

6.	 Durability is the ability of a material to be structurally 
serviceable and to withstand against pressure and damage.

7.	 Pressure ratio is the ratio of the pressure that a material 
can withstand.

8.	 Mass flow rate is the flow percentage that the material 
can handle without causing damage.

9.	 Temperature is the degree of temperature that a material 
can withstand (Fegade et al. 2015).

TABLE 1. Design parameters of the turbocharger

Input variables Range 
Design complexity Simple: 0%-50%, medium: 25%-75%, complex: 50%-100%

Failure mode True: 0%-75%, False: 25%-100%
Disassembling True: 0%-75%, False: 25%-100%
Damage size Min_d: 0%-50%, partially: 25%-75%, max_d: 50%-100%
Preprocessing True: 0%-75%, False: 25%-100%

Durability Weak: 0%-50%, medium: 25%-75%, strength: 50%-100%
Pressure ratio Low:3-3.5, middle:3.25-3.75, high: 3.5-4
Mass flow rate Low: 60-70, middle:65-75, high: 70-80
Temperature Low :900-975, middle:950-1000, high:975-1000

Each input-output parameter was set at either three 
ranges: low, middle and high or true and false. The purpose 
was to determine which of these ranges were real data in 

order to decide if the component could be repaired or 
replaced. All of these turbocharger design parameters were 
considered in order to test the effectiveness of the FGA 
model.
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FUZZY LOGIC SYSTEM

FL is a method of solving uncertain problems by translating 
its knowledge to the computer with values between zero 
and one (Kamble & Rewaskar 2018). The FL system 
consists of four main parts: fuzzifier, rules, inference 
engine, and defuzzifier (Figure 1). FL is very flexible and 
versatile. It has an intelligent strategy, an application-
appropriate interface, an aggregate of several control 
algorithms, and a straightforward computing and learning 
system (Maher et al.2023). 

First of all, the design parameters (inputs) were defined 
as linguistic variables and terms. Next, the membership 
function for each parameter was constructed depending on 
actual knowledge. Then, the Fuzzy inference engine was 
used to assign the possible rules for the input parameters to 
cover approximately all possibilities (knowledge base) of 
the input effects. Finally, the Fuzzy system converted the 
crisp values into Fuzzy values using the input membership 
functions (Fuzzification) as shown in Figure 2.

FIGURE 1. Fuzzy logic system (Africa et al. 2020)

Thereafter, Mamdani model was used to evaluate the 
rules in the rule base and sum up the results. Eventually, 
the Fuzzy values were changed to non-Fuzzy values 

through the defuzzification process in order to make the 
best decision whether it was to repair or replace (output 
variables) as shown in Table 2 (Africa et al. 2020).

FIGURE 2. Matlab Fuzzy logic rule viewer
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TABLE 2. Output variables

Output 
variables Range

Repair True: 0%-60%, False: 50%-100%
Replacement True: 0%-60%, False: 50%-100%

GENETIC ALGORITHM

Genetic algorithm (GA) is an optimization method based 
on heuristic search invented by Charles Darwin’s theory 
of natural selection (Katoch et al.2020). GA process is 
inspired by the natural selection process: the qualified 
individuals are selected to produce better offspring for the 
next generation. GA was applied to optimize the repair 
process using the Fuzzy model on design settings, such as 
rules, method, inputs and outputs. Consequently, GA is a 
search algorithm used in artificial intelligence to find the 
optimum parameters (Leirmo et al. 2019). GA, like other 
optimization algorithms, has optimization settings, such 
as number of populations, selection, crossover, and 

mutation. These settings are represented using a string of 
alphabets, meaning that these strings are encoded to the 
values of 1s and 0s (Castillo et al. 2020). In GA, every 
chromosome gives a possible solution. Therefore, the 
number of populations is a combination of chromosomes. 
In addition, the objective function represents each 
individual chromosome in the population and the chosen 
objective function is the one converged to zero. Moreover, 
the best individuals are isolated to reproduce the offspring. 
Therefore, the produced offspring will have the best 
features of both parents called a mutation. Table 3 includes 
the GA phases used to optimize the repair process after the 
decision on repair is made by the Fuzzy model 
(Andriushchenko et al. 2021).

TABLE 3. GA optimization phases

No. Phases Description

1 Initialization
In this phase, the optimization settings are initialized, including the number of 

population (chromosomes), iterations, crossover percent, mutation percent, …, etc. 
as shown in Table (3) related to turbocharger.

2 Objective function 
(fitness) selection

A function that helps the selection of the individuals to produce  
the next generation as selected for turbocharger in Eq (1).

3 Selection (pairing) Is the key phase used to select the best region that gives the best solution.

4 Mating Is the process of creating new offspring from the parent individuals selected in the 
pairing phase as shown in Table (5) for turbocharger.

5 Crossover

In this phase, a random number is selected in the encoded chromosomes during 
mating process to generate new offspring. In addition, there are three types of 

crossover: single point crossover, two-point crossover, uniform crossover. This can 
be seen in Table (4) for turbocharger.

6 Mutation In this phase, some of the chromosomes have bits that are flipped in order to create 
the diversity in the population and it is a criterion to stop the convergence.

7 Convergence Every optimization algorithm has a criterion to stop iteration, such as the best 
solution and the end of number of iterations.

In the next section, the hybrid method of FGA is 
introduced and its implementation in repair and replacement 
of a turbocharger using additive manufacturing is 
discussed.

FUZZY-GENETIC ALGORITHM

In this section, the FGA is introduced to demonstrate its 
principal operation in the application of repair using 

additive manufacturing. The Fuzzy part was used to model 
the relationship between the design parameters (inputs) 
and the outputs (repair and replace) in order to make a 
decision whether the turbocharger needed to be repaired 
or replaced. Thereby, if the decision is replacement, then 
the damaged part of the turbocharger will be replaced. Else, 
the turbocharger needs to be repaired. Then, the repair 
process was initiated by using the following objective 
function used to minimize the whole cost of the repair 
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operation, including the material cost, labors cost and 
operation cost. It also depended on the volume support, 
volume of the part (turbocharger) and height (Liu et al. 
2019):

(1)

where Vsupport (φ) can be found by subtracting Vpart (φ) 
from its bounding-box volume and optionally multiplying 
the result by a factor lower than 1.

where CAM is the cost (objective) function of the 
turbocharger; Vpart (φ) is the volume of the part 
(turbocharger); Vsupport (φ) is the volume support; and h(φ) 
is the height.

In this work, a Fuzzy model identified the relationship 
between the inputs and outputs with the aid of GA. The 
following is the procedure of the FGA:

1.	 Step 1: Initialization of the turbocharger design      
parameters (inputs) to FL model.

2.	 Step 2:  Assign membership functions to the inputs and 
outputs.

3.	 Step 3:  Assign Fuzzy model type (Mamdani).

4.	 Step 4: Write the rules in the Fuzzy Inference 
System (FIS) to describe the decision-making model.

5.	 Step 5: Export the FIS results to the Genetic 
Algorithm.

6.	 Step 6: Use the FIS parameters and initialize the 
GA optimization settings.

7.	 Step 7: Define the objective function (equation 
1).

8.	 Step 8: Implement the GA optimization using the 
Fuzzy model outstep 9puts.

9.	 Step 9:  Record the results from the Fuzzy model and 
Genetic Algorithm.

Figure 3 shows the general flow chart for the FGA 
method adopted in this work.

FIGURE 3. General flow chart of the FGA hybrid approach
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RESULTS

In the fuzzy model, the effects of the design parameters 
are interpreted into rules in the FIS to obtain the best 
decision by relating the inputs to the repair output. 
Consequently, the results of the FGA hybrid method have 
shown the effectiveness of its implementation of repairing 
and replacing turbocharger using AM technology. The 
followings are the simulation results of both repair and 
replacement using Fuzzy model and the repair process 
using GA.

REPAIR

Figure 4(a) shows the effects of both design complexity 
and damage size together on the repair decision-making. 
The magnitude of the damage that requires a 50% more 
extensive repair increases as part complexity increases. 
Meanwhile, Figure 4(b), shows the when the durability is 
low the turbocharger does not need to be repaired whatever 
the design complexity value is. If the turbocharger’s 
durability is lower than 40%, no repairs are necessary, 
durability of turbocharger is good. Figure 4(c) explains 
that if the mass flow rate through the turbocharger is higher 
than 68 kg/sec and the design is complicated, then the 

turbocharger will need to be repaired. Figure 4(d) shows 
the durability and damage size of the turbocharger. If they 
are above 30%, then the turbocharger will need to be 
repaired. The functional parts are not affected by the defect. 
Figure 4(e) shows that no matter the pressure ratio on the 
turbocharger, if the damage size is lower than 35%, then 
the turbocharger will not need to be repaired. Else, it will 
be repaired. Consequently, Figure 4(f) illustrates the 
temperature impact on the damage size turbocharger. There 
is no need to repair a turbocharger if the temperature and 
damage level are less than 250% and 20%, respectively. 
Then if this is above 300℃, then the turbocharger will need 
to be repaired. 

On the other hand, Figure 5(a) shows that if the 
complexity of the design has increased the turbocharger 
need to be replaced. Figure 5(b) views the impact of the 
durability and complexity of the turbocharger on the repair 
action. Figure 5(c) explains mass flow rate and design 
complexity to the replace decision.  Figure 5(d) presents 
the durability and the damage size effects on the replace 
decision. Figure 5(e) shows the pressure ration and damage 
size impacts on taking replace decision. Figure 5(f) presents 
that whenever the temperature increased with the damage 
size  the replace decision should be taken to replace the 
turbocharger .

FIGURE 4. The relationship between input parameters with repair. (a) Design complexity and damage size. (b) Durability and 
design complexity. (c) Mass flow rate and design complexity. (d) Durability and damage size. (e) Pressure ratio and damage size. 

(f) Temperature and damage size
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REPLACE 

Figure 5(a) views the design complexity and the damage 
size of the turbocharger that impacts the replace decision 
after the value of 50% and 70%, respectively. In addition, 
Figure 5(b) shows the durability with the complexity of 
the turbocharger design. If they are below 50%, then the 
turbocharger will need to be replaced. Figure 5(c) illustrates 
the effects of both mass flow rate and design complexity 
factors on decision-making for replacement, with a 50% 
influence on replacement when both the mass flow rate and 

design complexity are increased. Meanwhile, Figure 5(d) 
views the impact of the durability and the damage size, if 
the damage size increase above 35% the turbocharger on 
the replace action.  Figure 5(e) explains that when the 
pressure ratio and the damage size of the turbocharger 
increase, the replace action will be the choice is 50% of 
the Fuzzy model. Moreover, the effects of both damage 
size and the temperature together on the replace decision-
making as shown in Figure 5(f). The fuzzy model in Figures 
4 and 5 shows the effect of parameter ratios on the repair 
and replacement process of turbochargers and when to 
make the decision to repair or replace.

FIGURE 5. Relationship between input parameters and replacement. (a) Design complexity and damage size. (b) Durability and 
design complexity. (c) Mass flow rate and design complexity. (d) Durability and damage size. (e) Pressure ratio and damage size. 

(f) Temperature and damage size.

Next, the rules and settings of the FIS are used to 
trigger the GA optimization method for repair process in 
order to optimize the minimum cost for the overall process.

GA RESULTS FOR REPAIR PROCESS

After the decision is made using Fuzzy model and the 
decision is to repair the turbocharger, then the FIS settings 
are used as inputs to the GA in order to optimize this 

process. After many tests, the GA had to be set up by 
initializing the optimization settings as shown in Table 4.

Table 5 shows samples of the crossover before the 
mutation of the GA after using FIS file settings as input to 
the GA file. These columns are samples of the crossover 
resulted in the GA as a preparation setup to the next step. 
 Table 6 shows a sample of parents and offspring after
 the mutation phase in the GA to produce new generation.
 In this step the parents are selected to produce the next
.generation  represented by the offspring
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TABLE 4. GA optimization settings

Iterations CrossPercent MutatPercent Dimension VarMin VarMax No. of Pop.
10 70 20 30 1 30 100

TABLE 5. The samples crossover population array of the GA

Column 1 Column 2 Column 3 Column 4 Column 5 Column 6 Column 7
34.543324 3.413486 33.434573 1.2343415 82.743469 53.53346 62.85734
4.38349 73.723332 45.62734 13.7224 85.70341 35.56324 24.07341
23.5322 4.45454 44.9544 3.52234 59.44234 43.98234 34.0417
5.693332 4.83993 23.3443 3.586585 3.44545 36.5344 1.34775
0.93196 43.8377 4.83993 24.1555 2.9749 29.221 27.14909
40.4739 2.34605 42.9761 26.7861 13.05913 12.2256 12.73323
0.93196 42.9761 29.2208 26.7860 12.2256 22.3656 23.7597

TABLE 6. Samples of parents and offspring of GA

Parents
Parent1 4.9801 4.7842 4.6702 3.9882 5.1474 3.7481 3.9884
Parent2 5.3997    5.6471    3.6161    4.4657    4.7605    7.9381    3.9776

Offspring
Offspring1 5.3531 5.5513 3.7331 4.4127 4.8035 7.4731 3.9788
Offspring2 5.0463 4.9204 4.5038 4.0636 5.0863 4.4097 3.9867

Table 7 views a sample of the top population and the 
best population. The top population is the best population 
in each column while the best population is the best 
amongst the bests (minimum value) in that column. In this 
step, best population have been selected from each iteration 
and yet the best one will be selected among them. 

Eventually, Figure 7 shows the cost convergence of the 
objective function in equation (1). Obviously, it indicated 
that the repair process had been successively optimized 
because after 10 iterations, the cost converged from almost 
3000 and continued to be minimized to the lowest possible 
value.

TABLE 7. The top and best population in GA

Best population

0.93196 0.345455 5.6672 1.251499 0.22345 2.9749 3.351494
Top population

2.35149 7.34342 5.6672 1.35149 11.349396 50.6672 6.32349
1.3515 1.34939 50.6676 3.351499 0.22345 50.6672 3.351494
2.34605 4.4739 27.14909 4.1555 13.05913 2.9749 25.3656
0.93196 42.9761 29.221 26.7861 12.2256 4.83993 35.7597
4.33454 0.345455 50.6676 1.251499 0.343467 50.6672 8.33294
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FIGURE 7. Cost convergence of the objective function

DISCUSSION

In the simulation results, the efficiency of the FGA hybrid 
method for repairing and replacing turbocharger using AM 
technology has been achieved. The Fuzzy model used the 
rules in FIS to obtain the relationship between each 
parameter input and the corresponding output. Thereby, 
these results showed the accuracy of the Fuzzy logic-based 
modeling to make the best decision on whether the 
turbocharger needed to be repaired or replaced. In the 
previous section, the results showed that there were some 
parameters that were more effective in turbocharger 
longevity than others, such as design complexity, damage 
size, durability, pressure ratio, mass flow rate and 
temperature. Figure 4(b) and Figure 5(b) have shown the 
high influence of both durability and design complexity 
on repair and replace process. Figure 4(d) and Figure 5(d) 
have shown the high influence of both durability and 
damage size on the repair and replace. Figure 4(e) and 
Figure 5(e) have shown the influence of both pressure ratio 
and damage size on the repair and replace. Figure 4(c) and 
Figure 5(c) have illustrated the influence of both mass flow 
rate and design complexity on the repair and replace. Figure 
4(f) and Figure 5(f) have presented the influence of both 
temperature and damage size on the repair and replace. 
The mentioned figures proved the priorities or the 
dominance of these parameters over the others.

However, there are other parameters which have less 
impact on the decisions to repair or replace the turbocharger, 
such as preprocessing, disassembleability and failure 
modes, which may be effective in other components. 
However, the selected objective function is applicable to 
other components with modifications to the Fuzzy input 
parameters (Andriushchenko et al. 2021). In general, the 

results have indicated the effectiveness of the FGA hybrid 
method in the decision-making for turbocharger repair or 
replacement.

CONCLUSION

This paper presents and discusses the application and 
efficiency of the FGA hybrid method for decision-making 
in repair and replacement of a turbocharger using AM. The 
design parameters that have been chosen in this work are 
not the only influential parameters on turbocharger; 
therefore, the work can be extended using other parameters 
and materials. The function is not limited with the one used 
in this work. It can also be any mathematical equation 
derived using the material characteristics that need to be 
remanufactured. Fuzzy logic was used to model the relation 
between the design parameters as input, and repair and 
replacement as outputs. Moreover, it can be used as a 
controller with GA as a hybrid method to control the 
process in AM technology. In conclusion, the results 
showed the successful implementation of the FGA method 
in repairing and replacing turbocharger through AM 
technology.
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