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ABSTRACT

The recently developed second-order accuracy in time finite difference method suitable for computational 
aeroacoustics (CAA) is introduced. Although, it is straight forward to compute the coefficients for finite-difference 
method of any order of accuracy using the Taylor series and to then further optimize them to enhance their wavenumber 
preserving properties, there are difficult questions concerning their numerical stability The goal of this work is to 
develop an effective numerical technique that includes both linear and nonlinear wave propagation in order to solve 
acoustics problems in time and space. It also aims to evaluate the accuracy, effectiveness, and stability of the new 
technique. In 1-D linear and nonlinear computational aeroacoustics, the novel techniques were used. The findings of 
the conventional methods (square wave (FTCS) technique and step wave lax approach) are presented in this paper, 
and it is shown that the FTCS method is typically unstable for hyperbolic situations and cannot be employed. 
Unfortunately, the FTCS equation has very little practical application. It is an unstable method, which can be used 
only (if at all) to study waves for a short fraction of one oscillation period. Nonlinear instability and shock formation 
are thus somewhat controlled by numerical viscosity such as that discussed in connection with Lax method 
equation. The second-order accuracy in time finite difference method is more efficient than the (square wave 
(FTCS), step wave lax) methods and is faster than the step wave lax method.
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INTRODUCTION

Aeroacoustics is a branch of acoustic science that studies 
noise generation and propagation. This has sundry 
applications in the aerodynamics and aircraft industries for 
predicting sound generated by the airframe, cavities, and 
the broadband noise generated by turbomachinery. 
Accurate noise prediction, which comes from an 

understanding of the underlying physics is primary for 
noise reduction (F. Q. Hu et al. 1996). Both computational 
and experimental studies are being conducted to uncover 
these mechanisms. However, experimental studies have 
problems with cost, safety, atmospheric variability, and 
reflection in wind tunnels. On the other hand, improvements 
in computer capability and numerical models promise 
accurate estimates at reasonable costs. This has led to the 
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emergence of a new field: Computational Aeroacoustics 
(CAA) (Calvo, Franco & Rández 2004). CAA is a part of 
Aeroacoustics that focus on predicting the unsteady flow 
development and noise generation over complex 
geometries using high order numerical methods (Bayliss 
et al. 1985). In CAA, the full time-dependent compressible 
Navier-Stokes equations are solved numerically to simulate 
aerodynamic noise generation and propagation. Unlike 
conventional Computational Fluid Dynamics (CFD), any 
problem which CAA seeks to solve is almost by dentation 
time-dependent. This results in flow variables containing 
nonlinear waves across a wide range of frequencies. 
Resolving the highest frequency waves, which have 
extremely short wavelengths, becomes a formidable 
obstacle to accurate numerical simulation (Arguillat et al. 
2010). Additionally, the amplitude of acoustic waves is 
much smaller than the flow, which demands high order 
numerical methods. 

Flow disturbances have a tendency to degrade quickly 
away from a body or their source of origin for basic CFD 
problems. As a result, they barely affect the computational 
domain’s boundaries. Contrarily, acoustic waves degrade 
relatively slowly and have a chance to reflect across the 
barrier into the computational domain, potentially 
contaminating the solution (Bull, M. K. 1996). Therefore, 

at the artificial exterior borders that allow the waves to 
escape smoothly, radiation and outflow boundary 
restrictions must be created. That is why unique CAA 
numerical methods have been under development in recent 
years (Colonius and Lele 2004).

APPLICATION OF AEROACOUSTICS 
NOISE

AEROACOUSTICS NOISE GENERATED BY A 
GENERIC SIDE VIEW CAR MIRROR

Away from a body or their source of creation, flow 
disturbances for ordinary CFD issues often dissipate very 
quickly. Therefore they have limited affect on the boundary 
of the computing domain’s perimeter. The solution may be 
contaminated because acoustic waves, on the other hand, 
degrade very slowly and have a chance to reflect into the 
computational domain at the boundary (Bull, M. K. 1996). 
Therefore, radiation and outflow boundary conditions that 
allow the waves to escape smoothly must be imposed at 
the artificial external borders. In Figure 1 shows the flow 
around the side view car mirror. (Yong-Ju Chu 2018).

FIGURE 1. Flow around side view car mirror
source: Yong-Ju Chu (2018)

AEROACOUSTICS NOISE GENERATED 
BY FAN NOISE

One challenge in the automotive industry is to ensure that 
the noise level in an automotive cooling system or an air 
handling system is low enough for all operating conditions 
(Bogey, C. & Bailly, C. 2004). Thanks to the considerable 

progress made over the last decade on the motor noise, for 
most operating conditions, the blower has now become the 
major noise contributor flow for the cabin noise level for 
this reason, automobile manufacturers are placing 
increased emphasis on the reduction of the cabin noise 
level. This has resulted in more stringent noise requirements 
for the design of air handling systems and other cooling 
systems. 
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FIGURE 2. Fan noise is generated around and behind the 
blades

source: Stéphane et al. (2007)

AEROACOUSTICS NOISE GENERATED BY 
AIRCRAFT

A study by Freund et al. (1998), stated that an aircraft’s 
noise is highly complicated and frequently comes from the 
engine, turbomachinery, fan, and jet exhaust. The engine 
fan and jet provide the propulsive noise, whereas all other 
aircraft structures contribute for the airframe noise. 
According to Curle (1955), there are four different types 
of aircraft noise: jet noise occurs when the exhaust’s high 
velocity is mixed with the ambient air, combustor noise 
which is associated with the rapid oxidation of jet fuel and 
the associated release of energy, turbomachinery noise, 
which is heard when the source and the aircraft are close 
together, and aerodynamic noise, which is caused by the 
rapid air movement over the airframe and control surfaces. 
The greatest noise concern for aviation is still aerodynamic 
noise, but technological advancements in modern aircraft 
have resulted in significant reductions in combustor and 
turbomachinery noise (UK 2002).

FIGURE 3. Breakdown of aircraft noise sources during take-off and landing

In order to reach the stringent requirements of CAA, 
high accuracy numerical method in both space and time 
are necessary to accurately simulate the linear and 
nonlinear propagation of the disturbances. The pure 
propagation of waves through a medium is by dentition 
linear, nonetheless, nonlinear effects do occur in many 
flows in the actual world, including internal thermoacoustic 
cooling fluxes, air turbulence, and sonic booms. There is 
a lack of efficient numerical techniques (Cockburn et al. 
2000). The conventional numerical methods such as lax 
method, determinants of accuracy and stability. The 
objective of this work to construct an efficient numerical 
method for solving the acoustics problems in both time 

and space, to construct an efficient numerical technique 
for solving the acoustics problems and that contains both 
the linear and nonlinear propagation of the wave and to 
analyze the accuracy, efficiency and stability of the new 
method.

METHODOLOGY

In this section we first show the steps of the research 
method and then we selected two problems from the 
Workshop on Benchmark Problems in Computational 
Aeroacoustics (CAA) (Tam 1995). We displayed the 
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derivation and analyze the flux-conservative initial value 
problems advection equation and the methods to solve 
Calvo et al. 2001). The first method is the forward time 
central space square-wave method (FTCS) and the second 
is the step wave lax method (Najafi-Yazdi et al. 2013). 
Following that analyze and derive the new method 
(staggered leapfrog second -order accurate in both time 
and space).

EXPERIMENT DESIGN AND PROCEDURE

1. Benchmark Problems in Computational Aeroacoustics 
(CAA) (Tam 1995), we use two problem as shown below:

a. Problem one

where

 , C = 1

with the initial condition:

b. Problem two

Linear wave equation

where:

 , C = 1

and the initial condition:

The problem is investigated for the frequency of 

ω =  at t = 3200.

For t = 3200s the exact solution is:

2. From (Tam 1995) we take all properties, the values of 
the problem and the boundary condition.

3. Test the problem on the new method and get a new 
scheme.

4. Analysis the Stability (Von Neumann) for new scheme.

5. Compare the accuracy of the scheme with other 
conventional schemes.

METHODS TO SOLVE FLUX-CONSERVATIVE 
INITIAL VALUE PROBLEMS (ADVECTION 

EQUATION) AND VON NEUMANN STABILITY 
ANALYSIS 

1. Forward Time Central Space (FTCS) 

Square-Wave Method

FIGURE 5. The Forward Time Centered Space differencing 
scheme

The forward Euler is a first-order accuracy in .

The central Euler is only first order accurate in .

=
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2. Step Wave Lax Method

FIGURE 6. Representation of the Lax differencing

The FTCS method’s instability can be fixed with a 
straightforward modification made possible by Lax. One 
changes with another  in the time derivative term by its 
average

 

The lax representation step wave method.

The von Neumann stability analysis of two methods above:

FIGURE 7. The von Neumann stability analysis of the lax 
method.

FIGURE 8. The von Neumann stability analysis of the (FTCS) 
method.

1.  Second-Order Accuracy in Time Staggered 
Leapfrog Method

The above representation second accuracy in time finite 
difference methods. 

FIGURE 9. Representation of the second order accuracy in 
time differencing scheme

FIGURE 10. The Von Neumann stability analysis of the 
(FTCS) method
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RESULTS AND DISCUSSION

1. Results of Problem One

1.1 Results of the FTCS differencing method

(a) CFL = 0.01

FIGURE 11. Square-wave (FTCS) method test within the explicit method with CFL = 0.01

(b)  CFL = 0.5

FIGURE 12. Square-wave (FTCS) method test within the explicit method with CFL = 0.5
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(c) CFL = 1

FIGURE 13. Square-wave (FTCS) method test within the explicit method with CFL = 1.

1.2 Results of Lax differencing step wave method

(a) CFL = 1

a) CFL=0.5

FIGURE 14. Step wave test within the Lax method with CFL = 0.5.
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(b) CFL = 1

FIGURE 15. Step wave test within the Lax method with CFL = 1.

(c) CFL = 2

FIGURE 16. Step wave test within the Lax method with CFL = 2.

From the above results and after applying the von Neumann 
stability analysis we get 

The stability condition |ξ(k)| < 1 leads to the 
requirement:  CFL= c∆t∆x≤1. Step-wave Lax differencing 
must operate more quickly than square-wave FTCS. 
According to the aforementioned findings, any CFL values 

below one transform into the precise solution’s diffuser 
solution. Greater than this value 1, however, causes the 
solution to become unstable. When it changed to CFL two, 
it was depicted in the figures. This approach can be summed 
up as follows:

1. If CFL=   the method gets unstable.

2. If CFL= c∆t/∆x<1→ the method gets diffusive (it 
gets worse to get smaller time steps).
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3. If CFL= c∆t/∆x=1→ the method converges to exact result.

1.3 Results of Staggered Leapfrog Differencing Method

(a) CFL = 0.5

FIGURE 17. Staggered leapfrog method for CFL=0.5

(b) CFL = 1

FIGURE 18. Staggered leapfrog method for CFL=1
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(c) CFL = 2

FIGURE 19. Staggered leapfrog method for CFL=2

(d) CFL = 2.2

FIGURE 20. Staggered leapfrog method for CFL = 2.2

Following application of the von Neumann stability 
analysis, which now yields a quadratic equation for ξ(k) 

rather than a linear one, from the results of the staggered 
leapfrog approach shown above.
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Thus, the courant condition is again required for 
stability, in fact |ξ(k)|= 1 (no diffusion) for any c∆t≤∆x. 
The previous method (square wave (FTCS), step wave 
Lax) is expensive and dangerous computationally. 
However, this staggered leapfrog method (second-order 
accurate in both space and time) can often be pushed right 
to their stability limit with correspondingly smaller 
computation times. The staggered leapfrog method is faster 
than square-wave (FTCS) and Lax differencing (step wave) 
method.

CONCLUSION

The main objective of this work was to develop and analyze 
numerical method (The second-order accuracy in time and 
space (staggered leapfrog) method) suitable for 
computational aeroacoustics (CAA). Although, it is straight 
forward to compute the coefficients for finite-difference 
method of any order of accuracy using the Taylor series 
and to then further optimize them to enhance their 
wavenumber preserving properties, there are difficult 
questions concerning their numerical stability. In this work 
show the results of the conventual method (square wave 
(FTCS) method, step wave lax method) and the FTCS 
method is generally unstable for hyperbolic problems and 
cannot usually be used. Unfortunately, the FTCS equation 
has very little practical application. It is an unstable method, 
which can be used only (if at all) to study waves for a short 
fraction of one oscillation period. Numerical viscosity, such 
as that discussed in connection with the Lax method 
equation, is thus somewhat responsible for controlling 
nonlinear instability and shock production. The square 
wave (FTCS) and step wave lax methods are less effective 
than the second-order accuracy in time and space (staggered 
leapfrog) method, which is also fasterThe staggered 
leapfrog approach, which achieves second-order accuracy 
in time and space, prevents significant numerical 
dissipation and mesh drifting (Gottlieb, D., and Turkel, E. 
1976). The leapfrog method typically becomes unstable as 
the gradients are big for equations more complex than our 
simple model equation, especially nonlinear equations. 
Therefore, the accuracy of the stable and unstable methods 
is almost comparable.  
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