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ABSTRACT

Defects damage in concrete structures are an important measure of structural integrity and serviceability. In the 
context of investigating the condition of concrete surface that has defects, a visual inspection is usually performed. 
However, this method is subjective, tedious, time-consuming, and complicated, requiring access to many components 
of a large project design. Therefore, a Machine Learning classifier for concrete surface defect classification using the 
Discriminant Analysis Classifier was introduced to more accurately extract the types of concrete surface defects 
information from the digital images. The aim of this research is to increase the efficiency of concrete surface 
defect analysis in terms of quality, time and cost. 200 images were collected, with 50 images for each concrete 
defect (crack, corrosion, spalling, and no defect) serving as control data. The Gray Level Co-Occurrence Matrix 
(GLCM) is used to create an image processing and feature extraction algorithm. This model is trained using 80% of 
the image data and tested using another 20% of the image data. Thus, the model achieved 95% accuracy on the 
training data and 70% on the test data when using Quadratic Discriminant Analysis. These findings is very 
important to help engineers or construction inspectors in inspection activities.
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INTRODUCTION

Engineering constructions, such as reinforced concrete 
(RC), are frequently subjected to various dynamic and 
cyclic stresses, which cause defects and deterioration at 
the microscopic level at the structure’s surface in the long 
run. The cross-sectional areas and stiffness of the structure 
exposed to these stresses will be reduced by initiation of 
surface defects, which eventually lead to material fractures 
(Bernard & Richard 1976; Jacob 1987). Early detection of 
these surface defects enables for the implementation of 
preventative measures to minimize the damage and failure 
(Dhital & Lee 2012). Commonly, surface defect detection 
work is the conducted of using destructive and 
Nondestructive Test (NDT) to classify the types of defects 

and quantify the severity of the damage, i.e., cracks, 
spalling, and rust formation, on the surface of the structure. 
As a result, developing appropriate inspections procedure 
is critical for achieving accurate and reliable surface 
damage diagnostic of the concrete structure’s surface 
condition.

The NDT is an alternative method of inspection and 
maintenance of RC structures to access the types of surface 
damage on RC structures without to disturb physically the 
structures due to its mobility and relatively rapid manner 
execution (Senin et al. 2019). One of the most prominent 
and powerful preliminary NDT approach to identity this 
type of surface damage is by the visual inspection (VI) 
technique. VI can provide a lot of information that can lead 
to a specific diagnosis of the source of the distress. VI 
detection rates tend to vary substantially depending on the 
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application and kind of examination, according to earlier 
studies in other areas. Drury and Fox (1975) claim a 20–
30% error rate, however these values vary greatly between 
applications and contexts. Despite their limited precision 
(up to a few hundredths of a millimeters), these VI 
procedures are time demanding, and only capable of one-
dimensional point wise measurements, limiting them to a 
few discrete parts of the RC structure (Valenca et al. 2019). 
As a result, it is necessary to use a different technique to 
address these challenges.

Currently, there is an increase of interest on the auto-
classification of surface defects on RC structures by using 
machine learning algorithm. Patrik (2013) stated that the 
main advantage of this approach is that it provides more 
accurate results compared to traditional manual approaches. 
The difficulty of defect detection is highly dependent on 
the image size (pixels). The image resolution of newer 
digital cameras is over 10 megapixels. This higher 
resolution allows detailed photographs of RC surfaces to 
be taken. With modern commercial cameras, a large area 
of a concrete surface can be captured in a single shot. A 
long-range image can be used for useful detection of 
surface defect on RC structures in low-cost applications 
(Rodriguez et al. 2016).

This study aims to principally establish an NDT 
method on classifying the types of the surface damage via 
digital image processing (DIP) by using the camera. The 
purpose was to find answers to three major issues about 
the quality of VI of surface damage defect classification 
identification on RC structures using the Discriminant 
Analysis Classifier (DAC):

METHODOLOGY

SURFACE DEFECT TYPES AND DIGITAL DATA 
MANAGEMENT

Two-hundred digital images of three selected types of 
concrete surface defect were collected by a digital camera 
from RC buildings on Pulau Pinang. The digital image of 
the concrete surface defect was then converted to jpg format 
under 227 × 227-pixel resolution, which is the best format 
to represent the surface defects. Cracks, corrosion, and 
spalling were chosen as surface defects categories because 
they are commonly known surface defects in the RC 
structure. Fifty digital images acquired for each of these 
surface defects, including the images for non-defect 
surface. 
The whole digital images data will be divided into two 
portions; with 80 percent of the data being used for 
training and the remaining 20 percent being utilised for 
testing. According to Gholamy et al. (2018), there is no 
established guideline to determine the percentage as the 
training and testing data sets and most of the researchers 
employ 80:20 split between the training and testing 
datasets. As a result, in order to get the optimum model 
performance, this study will split the testing and training 
data in an 80:20 ratio. The images of all surface defect on 
RC structure are shown in Figure 1 until Figure 4.

FEATURE EXTRACTION AND SELECTION 

Gray Level Co-occurrence (GLC) was employed as the 
main digital image processing algorithm to extract all 21 

FIGURE 1. The surface crack defect digital image samples data of the study
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average features in all surface defect images (Table 1). 
Generally, the GLC algorithm characterise an image’s 
texture by detecting how frequently pixel pairs of unique 
values occur in an image and each spatial connection, 
creating twenty-two GLC matrix features, and extract the 
statistical data from that matrix (Priyanka & Kumar, 2020). 

All of these matrix feature’s values will be imported in 
Microsoft Excel and the average values of these matrix for 
each of surface defect classes will be then processed for 
the feature selection stage by MATLAB. The variance 
threshold approach is used to the remove the unwanted 
average GLC matrix values, which is more than 10 percent.

FIGURE 2. The surface corrosion stain defect digital image samples data of the study

FIGURE  3. The surface spalling defect digital image samples data of the study

FIGURE 4. No defect digital image samples data of the study
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TABLE 1. Average values of of twenty-one GLC matrix values feature of surface defect
Features Crack Corrosion Non – Defect Spalling
Autocorrelation F1 29.33798 20.73203 43.41078 26.40678
Contrast F2 0.078087 0.510261 0.05442 0.256915
Correlation F3 0.880701 0.878213 0.74706 0.878656
Correlation 2 F4 0.880701 0.878213 0.74706 0.878656
Cluster Prominence F5 23.83865 212.6452 1.146438 107.6682
Cluster Shade F6 -3.49834 -1.96868 -0.16313 -6.83992
Dissimilarity F7 0.075838 0.405681 0.054251 0.232678
Energy F8 0.599745 0.102009 0.730696 0.211225
Entropy F9 0.92552 2.682914 0.55889 2.037791
Homogeneity F10 0.962437 0.812772 0.972902 0.887354
Homogeneity 3 F11 0.962304 0.807486 0.972892 0.886061
Maximum Probability F12 0.725795 0.19801 0.826159 0.345227
The Sum of Squares F13 29.21007 20.8502 43.2331 26.38443
Sum Average F14 10.71898 8.536983 13.0969 9.914914
Sum Variance F15 99.17844 49.37211 160.5881 72.94863
Sum Entropy F16 0.868534 2.298791 0.52085 1.842669
Difference Variance F17 0.078087 0.510261 0.05442 0.256915
Difference Entropy F18 0.260394 0.762194 0.195763 0.550621
Information Measure of 
Correlation

F19 -0.61792 -0.45089 -0.51489 -0.52912

Information Measure of 
Correlation 2

F20 0.721797 0.874097 0.528805 0.858589

Inverse Difference 
Normalized

F21 0.991598 0.956039 0.993974 0.974407

Inverse Difference Moment 
Normalized

F22 0.998802 0.99235 0.999163 0.996091

CLASSIFICATION OF SURFACE 
DEFECT USING DCA

DCA have been chosen as the intelligence automatic image 
classifier features to discriminate or to separate the classes 
of surface defect groups. In order to perform the surface 
defect classes k separation, a training dataset, X with the 
computed average GLC matrix, the probability density 
function of each surface defect class xk from the training 
set X is estimated. The probability density function can be 
expressed by Equation (1),

(1)

where µk and Ʃ k is the mean and covariance of each class 
k of the surface defect. All of this computation is 
performed by MATLAB software. The automatic 
classification of surface defect k is done based on the 
largest probability for a randomly selected testing data. 

Linear Discriminant Analysis (LDA) and Quadratic 
Discriminant Analysis (QDA) were the Discriminant 
Analysis Classifier algorithm to train the GLC matrix 
datasets. The confusion matrix for LDA and QDA were 
depicted to measure the accuracy of the current approach.

RESULTS AND DISCUSSION

FEATURE SELECTION AND TYPES OF 
CLASSIFIER EFFECT TO THE CLASSIFICATION 

ACCURACY

The variance threshold approach was applied to the 22 
average GLC matrices, and any average GLC matrix value 
that has more than 10 percent variance is removed from 
the original average GLC matrix. Five features, namely 
correlation 2, cluster tone, information measure of 
correlation, information measure of correlation 2 and 
inverse difference moment were eliminated from the 21 
original features. In this paper, it is hypothesized that the 
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accuracy of surface defect classification is higher by using 
only these remaining 18 features selected from 21 than by 
using the entire 22 features. 

Table 2 shows the comparison between the percentage 
classification accuracy of 22 features (complete features 
without selection) and after feature selection (18 features). 
In general, QDA performs better than LDA in classifying 
surface defects, regardless of the number of features used. 
The removal of 5 unnecessary features from the original 
data, leads to increment on the classification 

accuracy by the discriminant analysis classifier by 7.5 
percent (LDA) and 5.6 percent (QDA). The improvement 
in results by removing unnecessary features is consistent 
with the findings of other researchers (Jensen, 2005; 
Rahman et al. 2009). However, when changing the analysis 
from LDA to QDA, a very small percentage improvement 
in classification prediction (0.6 to 2.5 percent) is observed 
regardless of the number of features.

CLASSIFICATION PERFORMANCE 
VALIDATION USING CONFUSION CHART

The performance measurement for classifying each of 
surface defects (i.e., cracks, corrosion, and spalling) were 
validated using the confusion chart as shown in Figure 5 
and Figure 6 as the Truth Positive Rate and False Positive 
Rate. It is worth noting that the Truth Positive Rate (TPR) 
is a parameter that measures the percentage of true positive 

cases that are correctly identified by the algorithm DCA, 
while the False Negative Rate (FNP) is the percentage of 
probability that a true positive case is missed by the 
algorithm DCA.

Both plots show the rows corresponding to the actual 
class of surface defects identified prior to image acquisition, 
while the columns represent the predicted classification 
based on the DCA algorithm. Figure 5 depicted that LDA 
classifier was able to predict the surface crack and corrosion 
with full accuracy, followed by no defect surface (95 
percent) and the lowest prediction accuracy (85 percent) 
for spalling defect.  

Figure 6 shows that QDA has similar accuracy in 
predicting defect-free surface and corrosion class. 
However, QDA has improved its classification prediction 
for the spalling class by 10 percent. Tharwat (2016) explain 
that the possible reason for this increase is that QDA allows 
for different feature covariance matrices, resulting in a 
quadratic decision boundary for classification.  In contrast, 
the classification prediction accuracy for surface cracks 
decreased by 7.5 percent compared to LDA.

From the results obtained, it can be observed that LDA 
and QDA models perform differently in predicting different 
types of defects. The LDA model has shown excellent 
learning capability, as it perfectly predicted both corrosion 
and crack defects. This indicates that the LDA model is a 
reliable approach in predicting these types of defects in 
concrete. However, it appears that the LDA model had 

FIGURE 5. Confusion chart of all surface defects types prediction using LDA
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FIGURE 6. Confusion chart of all surface defects types prediction using QDA

some difficulty in predicting spalling defects, with an 
accuracy rate of 82.5 percent. On the other hand, the QDA 
model performed well in predicting corrosion defects, 
achieving perfect prediction accuracy. However, it showed 
limitations in predicting crack defects, with a false negative 
rate of 7.5 percent. Despite this limitation, the QDA model 
still achieved an impressive true positive rate of 92.5 
percent accuracy in predicting crack defects. Furthermore, 
the QDA model performed better in predicting spalling 
defects than the LDA model, with an accuracy rate of 92.5 
percent.

TABLE 2. Comparison of Classification Accuracy Between 
LDA and QDA

Feature No. LDA (%) QDA (%)
22 86.9 89.4
17 94.4 95.0

Difference 7.5 5.6

Overall, it is evident that different models have varying 
strengths and weaknesses in predicting different types of 
concrete defects. Therefore, it is important to choose the 
most appropriate model for each specific defect type to 
obtain accurate results.

CONCLUSION

The main contribution of this study is to provide an 
automated system for concrete damage classification 
identification using the Discriminant Analysis Classifier. 
The Discriminant analysis had analysed 200 images data 
of 4 types of concrete surface defects. The study has been 
evaluated with 80 percent of the training data and 20 
percent of the testing data. An automated classification 
system has been proposed to reduce the number of features 
and classification accuracy. 

The following findings were highlighted in this study:

1. In general, the performance of the classification 
accuracy of LDA and QDA is satisfactory. However, 
the percentage accuracy between these techniques is 
still slightly different, ranging from 94.375% to 95%. 

2. The reduction of unnecessary features from 22 to 
17 features improves the prediction of classification 
accuracy by 7.5% (LDA) and 5.6% (QDA). However, 
an insignificant improvement was found when the 
QDA classifier was used instead of LDA to predict 
classification. 

3. The QDA classifier was found to improve 
classification prediction for chipping surface defects 
by 10% compared to the LDA classifier and to 
decrease prediction accuracy for surface crack defects 
by 7.5%. Higher order model such QDA classifier 
model able to learn better than LDA classifier model 
in certain concrete defects, such as corrosion defects. 
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