
199

Jurnal Kejuruteraan 36(1) 2024: 199-209 
https://doi.org/10.17576/jkukm-2024-36(1)-19

General Exact Analytical Expressions for Rotation and Displacement of a 
Timoshenko Beam Under Variable Loads with Validation 

Hafeezullah Channaa, Muhammad Mujtaba Shaikha* & Kamran Malikb

aDepartment of Basic Science and Related Studies, Mehran University of Engineering and Technology, Jamshoro, 
Sindh 76020, Pakistan

bDepartment of Mathematics, Government College University, Hyderabad, Sindh, Pakistan

*Corresponding author:  Mujtaba.shaikh@faculty.muet.edu.pk

Received 29 October 2023, Received in revised form 30 November 2023
Accepted 30 December 2023, Available online 30 January 2024

ABSTRACT

The researchers involved in the field of applied mathematics mostly project the efficient and viable solutions of those 
problems in which have practical applications in science and engineering. The Timoshenko beam model (TBM) 
is described by a system of ordinary differential equations where the expressions of rotation and displacement of the 
beam are ultimately required. Most of the work on analytical solutions of beam problems in literature focuses the 
elastic and Euler-Bernoulli beams, whereas for the TBM the numerical solutions are usually preferred. The analytical 
expressions for the TBM exist for only very basic load cases and are also not general for any load function. In this 
paper, we attempt to suggest a novel protocol based on expressing a load function by a polynomial or its power series 
development, and then use it to develop general analytical expressions for the rotation and displacement of a fixed 
TBM which is not load specific. The proposed general equations can provide ease of access and handling for the 
practitioners working in applied mathematics, structural engineering and mechanical vibrations as the developed 
equations can be used with only constant inputs to tailor particular expressions of rotation and displacement 
profiles of a fixed TBM under any variable load. For performance evaluations of the proposed general equations, 
we have also obtained particular expressions for some important variable loads, like: linearly varying loads 
((LVLs): triangular and trapezoidal and quadratically varying loads (QVLs): parabolic/square and circular 
loads. Finally, the proposed protocol for generalization has been validated for fixed elastic beams under 
uniformly distributed loads (UDLs), and the results match exactly with those expressions available in literature. The 
contributions of this study, on one hand provide ready, direct and exact general expressions for the rotation and 
displacement profiles of a fixed TBM, while on the other hand the solution of such problem is achieved with quite 
negligible computational overhead, execution time and software implementations.    

Keywords:  Linearly varying loads; quadratically varying loads; Fixed Timoshenko Beam Model; general 
analytical expressions; rotation; deflection; variable load

devised a new beam theory at the turn of the twentieth 
century (Shaikh and Cheng, 2012). This idea is known as 
the Timoshenko beam (TB) theory after his name. The TB 
model took into account shear deformation as well as 
rotational inertia. 

As a result, TB defines the behavior of a variety of 
beams, including short beams, composite sandwiched 
beams, and beams that can be driven at high frequencies 
as a result, the wavelength of excitation shortens and 

INTRODUCTION

Beam theory play very important role in our daily life 
applications. Beams are elements which resist an applied 
load. So many engineers and scientists have worked on 
this theory and evolved different techniques to find out 
deflections and rotations in a beam subjected to distinct 
loads. Stephen Timoshenko, a Ukrainian-born scientist, 
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approaches the beam thickness. Researchers commonly 
employ a numerical approximation of the TB model as a 
starting point to acquire a better understanding of the 
Reissner-Mindlin problem, which is more complex. When 
these problems are handled using the finite difference 
method or normal Galerkin finite methods, a negative 
behavior known as locking phenomenon occurs 
(Timoshenko 1921). Small parameters cause this locking 
phenomena, and academics have proposed many strategies 
that should be uniform in terms of small parameters. For 
example, Loula, Hughes and Franca (1987) suggested a 
formulation that is linked to Petrov-Galerkin, while, Cheng, 
Han and Huang (1997), Cheng and Xue (2002), and Arnold 
(1981) proposed a mixed formulation that uses decreased 
integration to produce approximations. For the TB model, 
the authors suggested finite difference techniques in Arnold 
(1981). Cheng and Xue (2002) discussed the usage of the 
least-squares finite element approach. Arnold (1981) also, 
looked at the finite element method’s p and h-p versions 
for the TB model. Researchers have also discovered a 
precise analytical solution to the Timoshenko beam 
problem for both uniform and continuous loads by Malik, 
Shaikh and Shaikh (2021a). It is imperative to mention 
some types of beam to tailor the discussion towards 
Timoshenko beam. In the following sub-sections, beams 
are classified on the basis of whether they are supported at 
ends or elsewhere. Beam which is fixed at one end and free 
at other end is called a Cantilever beam. A beam which is 
supported freely at the both ends is called simply supported 
beam. When the end portions of a beam are extended 
beyond the support then it is called over hanging beam. A 
beam whose both ends are fixed is called fixed beam. A 
beam which is provided more than two supports is said to 
be a continuous beam. These types are graphically 
summarized in Figure 1 (Website Link-I, 2023a). Similarly, 
the type of applied loads have influence on the rotation and 
displacement profiles of a beam. A point load, also known 
as a concentrated load, acts at a single point only on the 
beam. A uniformly or constantly distributed load (UDL) 
is one that is spread along the length of a beam in such a 
way that the rate of loading remains constant throughout 
the beam’s distribution length. A uniformly changing load 
or variable load (UVL) is one that is spread along the span 
of the beam in such a way that the rate of loading does not 
remain constant from point to point throughout the beam’s 
distribution length. Further in these loads, we have linearly 
varying loads (LVL), which are triangular and trapezoidal. 
Also, the parabolic/square load and circular load, both also 
known as quadratically varying (QVL), are uniformly 
varying loads. Figure 2 shows concentrated load, UDL, 
UVL (triangular) (Website Link-II, 2023b).

FIGURE 1. Types of beams due to placement of supports 
(Website Link-I, 2023a)

FIGURE 2. Types of loads (Website Link-II, 2023b)

The well-known Euler-Bernoulli beam (EBB) theory 
is particular case of TB theory for finding load-carrying 
and deflection characters of a beam. In EBB model, the 
beam has no change in angle of cross section about neutral 
line before and after deflection. The Timoshenko beam 
(TB) study was enlarged by S. Timoshenko and P. Ehrenfest 
early 20th century (Loula, Hughes and Franca, 1987). TB 
model includes both shear deformation as well as rotational 
bending effects. In the case of TB model, beam is thick 
and angle of cross section about neutral line will change 
after deflection.

In TB theory, shear deformations are considered, 
whereas in EBB theory such deformations are not 
considered. In TB theory, the plane sections remain plane, 
but they are no longer normal to the longitudinal axis. In 
EBBs, the plane sections remain normal and parallel to the 
longitudinal axis. The TB model is better for beams with 
a low aspect ratio. In Figure 3 (Hibbeler, 2004; Hibbeler, 
2005; Website Link-III, 2023c) the EBB and TB are 
compared. In EBB area of cross section and the neutral 
axis always form 900 angle and there is no rotation when 
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the beam is subjected to loads. On the other hand in TB, 
when load is applied then besides examining the deflection 
and slope of bending, due to shear deformation in the beam 
we also consider rotation profile.

FIGURE 3. Comparison of EBB and TB (Website Link-III, 
2023c)

There have been enormous works in the past on TBM. 
We include opinions of different scholars about solution 
of TB equations by using different numerical schemes to 
find the approximate rotation and deflection. But, it is 
observed that fewer have solved TBM analytically.

Shaikh and Cheng (2012) solved TB problem along 
with boundary conditions numerically by two non-standard 
finite difference schemes and locking phenomena was 
overcome due to uniform meshes. The solutions by 
approximate schemes matched quite well with the exact 
solutions. Malik,  Shaikh and Shaikh (2021a) developed 
analytical technique, solved TB problem including 
boundary conditions independent of locking phenomena, 
while two loads were taken, first constant and other one 
variable. The results were validated with the previous 
studies on the similar cases. Malik, Shaikh and Shaikh 
(2021b) proposed and applied finite difference scheme to 
obtain numerical solution of Timoshenko beam under 
constant as well as variable load without facing locking 
phenomena and discretized system into algebraic sum. The 
results were obtained using MATLAB and agreed with the 
previous attempts on the similar cases.

Li (1990) considered a discretization of TB problem 
through the use of p and h-p versions of finite element 
method and error was reduced while locking phenomena 
vanished as the thickness of beam decreased. Chen et al. 
(2021) proposed an effective computational method to 
solve Timoshenko beam problem under complex load. This 
method was a modification of inverse finite element method 
and showed more accurate results when tested on a thin-
walled aluminum beam under four different loads.

Mansoori, Torabi and Totonch (2020) founded 
different characters of beams using numerical schemes. 
Solved simply supported TB model under uniform load 
using FEM. Friedman and Kosmatka (1993), based on 

Hamilton’s principle, created stiffness, mass and force 
matrices for a simple two-node system Element of a TB. 
The transverse and rotational displacements were 
represented by Lagrange polynomials, which were made 
interdependent by requiring them to fulfil Timoshenko’s 
beam theory’s two homogeneous differential equations. A 
short beam’s displacement can be reliably predicted using 
the current element. According to numerical results, it 
predicts shear and moment resultants as well as natural 
frequencies better than existing finite elements when 
subjected to any sophisticated distributed stress using only 
one element. Wang (1995) provided the deflection and 
stress-resultant relationships for single-span TB and EBB 
beams under any transverse loading condition. These 
connections made it easier for engineers to calculate the 
deflection and stress resultants using the well-known EBB 
solutions. Thus, without the requirement for a more 
extensive f1exural-shear-deformation analysis, the 
influence of transverse shearing strain on the deflection 
and stress resultants may be easily accommodated. 

Jelenić, Gordan and Edita (2011) established a method 
to find out exact solution of TB model using Lagrange’s 
interpolation polynomial with finite possible nodal points. 
With sufficient internal nodes it was possible to get exact 
solution. Ghannadiasl, Amin and Mofid (2015) used the 
dynamic green function to show the free vibration of an 
elastically constrained Timoshenko beam on a partly 
Winkler basis. For modelling beam structures with diverse 
boundary conditions, an accurate and direct modelling 
technique was presented. Due to the Green function results 
were precise in closed forms. So this technique was more 
efficient and accurate. Davis, Henshell and Warburton 
(1972) derived stiffness matrices and consistent mass 
matrices. They performed tests of convergence for both 
simply supported beam and cantilever beam. When correct 
value of shear coefficient was used solution converged onto 
the exact solution. They also calculated accurate 
frequencies for the portal frame. It was concluded that 
Bernoulli-Euler and TB theories were unsatisfactory when 
depth and distance between leg joints had a same order. 
Wang (2008) based on Eringen’s nonlocal elasticity theory 
and the Timoshenko beam theory, presented a variation 
consistent derivation of the governing equations and 
boundary conditions for beam bending. When dealing with 
micro and nano beams that are short and stubby, this 
nonlocal Timoshenko theory accounts for both the scale 
effect and the effect of transverse shear.

In summary, it has been observed that most of the 
recent work on the TB model was done numerically using 
the finite difference and finite element methods which are 
time consuming and computationally lengthy procedures. 
Whereas, a little focus was devoted on the analytical 
solutions of the TB model. The work of Malik, Shaikh and 
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Shaikh (2021a) was devoted to analytical solution of the 
TB model, but the attempts were load specific for a few 
types of loads. Hence, to the best of knowledge acquired 
through the literature survey, there has not been any attempt 
to derive general analytical solution for the deflection and 
rotation profile of the TB model which is valid any type of 
load.

Since, most of analytical work has been carried on EB 
beam theory and exact solutions which are load specific 
are only available for EB beam theory. Also, several authors 
have focused on numerical schemes for the solution of TB 
model. No one has obtained direct solutions in generalised 
form in case of TB model which are not load specific, rather 
all attempts have been load specific. So that’s why, in this 
work, the general analytical solution of the TB model is 
focused and for a fixed case initially which will not be load 
specific. The proposed protocol is based on generalized 
form of applied load. We can determine rotation and 
deflection parameters without locking phenomena at once, 
and then just by some simplifications rather than applying 
techniques of integration or any other transformations at 
all each time, the results can be directly obtained.
 DIFFERENTIAL EQUATION MODEL OF THE 
FIXED TBM

The ordinary differential equations which represent 
mathematical model of the Timoshenko beam problem 
(Shaikh and Cheng, 2012) while, , L being the 
length of the beam is described using the equations (1)-(4).

(1)

(2)

(3)

(4)

Where,  is applied load, is bending moment, 
is shear force,   is rotation of cross section,   

is deflection of beam and k is correction factor for shear, 
G is the shear modulus, A is the cross-section area, EI is 
flexural rigidity, E is Young’s modulus and I is second 
moment of intertia. If the beam is fixed at both ends, then 
the boundary conditions can be given as:

These mean that there is no deflection and rotation at both 
ends of the beam due to fixed supports.

Substituting in system of equations (1)-(4), to 
overcome the difficulties of unit system and conversion, 
the relations:

we have system of ordinary differential equations in 
non-dimensionalized form, which is given in equations 
(5)-(7) as:

(5)

(6)

(7)

Where , ande  is a parameter depending 
on the physical constants in the actual model. Thus, 
controlling , we can get the dimensionalized solutions 
through (5)-(7). The boundary conditions can now be stated 
as:

EXACT SOLUTION OF TBM UNDER SPECIFIC 
LOADS

The existing approach for finding exact load specific 
solution of the TB model in non-dimensionalized form as 
in (5)-(7) was usually obtained in literature and focused in 
texts. The idea is to consider specific varying load function 

 and then successively integrate the equations (6)-(7) 
and use through forward substitution successively. Thus, 
in this way one can get in the end rotation and deflection 
profiles:  and . 

We consider four specific loads here: triangular, 
trapezoidal, parabolic/square and circular. These loads are 
mathematically described as follows:

Triangular load: ( ) 100If x x=

Trapezoidal load: ( ) 10 100IIf x x= +

Parabolic/square load: 2( ) 100IIIf x x=

Circular load: ( ) 100(4 )(4 )IVf x x x= − +
Where we consider: 0 1x≤ ≤ .
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For formal solution, for example we work out with 
the parabolic load. Substituting the parabolic load in (5), 
we have: , and integrating throughout with 
regards to the space variable  leads to:

(8)

Using (8) in (6), and integrating twice with respect to 
leads to:

(9)

Using in (9) gives: , so we have:

(10)

Using  in (10) leads to:

(11)

Using (10) and (8) in (7) gives:

Integrating this with respect to  we have:

(12)

Using in (12) we get , so (12) becomes:

(13)

Using  in (13) we have:

(14)

Solving (11) and (14) simultaneously, we obtain: 

Finally using these constants in (10) and (13), we have 
the rotation and deflection profiles when the fixed TB is 
subjected to a parabolic load. Which are given in (15) and 
(16), respectively.  

(15)

(16)

The rotation and deflection profiles in other types of 
loads can be obtain in the same way. These are mentioned 
in Table 1.

TABLE 1. Exact expressions for rotation and displacement of fixed TB with L=1 under various load cases I-IV

Load case Rotation profile Displacement profile 

I
  

II
 

 

 

 

III
  

 

continue ...
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IV
 

 

 

 

... cont.

PROPOSED PROTOCOL FOR GENERALIZATION

Looking at the most widely used cases of loads as discussed 
mathematically, we arrive at the observation that in real 
the load functions are usually single-piece polynomial 
functions. Also, the load functions are always thoroughly 
or sectionally continuous and integrable as demanded by 
the model (5)-(7) to accommodate integrations. Even if the 
load functions are not polynomials, these can be expressed 
in power series development about , which is also 
the Machlaurin’s series. Hence, we can safely consider a 
generalized expression of the load function which becomes 
cross grounds to the developed general analytical 
expressions for the rotation and deflection profiles of a 
fixed TBM in this study. We assume the following 
expression of a generalized polynomial load functions:

(17)

Equation (17) can also be used when the load function 
is not expressed mathematically but in form of experimental 
or sampled points through measurements. In such cases, 
the data can be interpolated first, leading to a polynomial 
again in form of (17) to accommodate general solutions. 
In the case of piece-wise load functions, the proposed 
protocol can be used in each individual piece, and finally 
the full resolution profiles can be analyzed altogether. 
Using (17) in the fixed TBM (5)-(7) can carrying out 
integrations in the similar way, we claim the following 
general analytical expressions for the rotation and 
deflection profiles of a fixed TBM which are not load 
specific, but these are adaptable for any load function. The 
expressions are given in (18) and (19) with specific form 
of constants in (20) and (21).

(18)

(19)

(20)

(21)

It should be noted that the main objective of this study 
was to attain general analytical solution for the rotation 

and displacement profiles of a fixed TB which is not load 
specific. So, through (18)-(21) we conclude with the 
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general analytical expressions for the rotation and 
displacement of the fixed TB model.  Therefore, finally we 
can further analyze the behavior of beam under different 
types of loads using proposed general equations with less 
computational efforts by considering different values of  
which is sole dependent parameter of the problem. It should 
also be noted that in the above equations:

are co-efficient of applied load. 
and are arbitary constants of solution. 

is length of beam. is degree of applied load 
polynomial function.

Therefore, we can easily get direct exact solution of 
any fixed TB which is subject to any polynomial load 
without having to repeat the integrations and all the process 
again and again as discussed in previous section for 
parabolic load. 

PARTICULAR EXPRESSIONS, DISCUSSION 
AND VALIDATION

In this section, we have displayed displacement and 
rotation parameters of Timoshenko beam under four 
different types of loads by choosing five different values 
of , which is sole dependent parameter of the problem. 
Also, it is shown that the particular rotation and 
displacement profiles attained from our proposed general 
analytical solution for the three varying cases of loads 
match with those discussed in before using conventional 
technique. In the last, we also discuss validation of the 
proposed approach used to derive general analytical 
solution of the TB model on a fixed elastic beam with 
uniformly distributed or constant load, as in literature.  

For the purpose of verification, we specify the 
conditions for different load cases in Table 2.

TABLE 2. Specific constants for different loads 
Load case

Triangular

Trapezoidal

Parabolic

Circular

The specific values in Table 2 used in general equations 
(18)-(21) successfully lead to the same particular 
expressions described in Table 1 for a fixed TBM under 
four considered loads. 

To analyze the behavior of particular solutions in 
relation to different load functions and the physical 
parameter , we display the particular expressions of the 
rotation and displacement of the considered fixed TBM 
with unit length. In addition two graphs, one using plot 
command for the rotation and other by using semilogy 
command for the deflection in more detail using MATLAB 
have been presented for each load function. Figures 3, 5, 
7, 9 represent he rotations in the fixed TBM for triangular, 
trapezoidal, parabolic and circular loads, respectively. 
Figures 4, 6, 8, 10 represent he deflections in the fixed 
TBM for triangular, trapezoidal, parabolic and circular 
loads, respectively. The effect of  has been analyzed in 
each figure. It is, in general, observed that increasing , 
both deflection and rotation also increase. In view of figures 
3, 4 we observe that the beam is subject to slight rotations 
in the range: -0.5 to 0.6 for all values of , whereas 
deflection profile exhibits positive values always. However, 
for higher values of , the deflection of the beam becomes 
unstable due to higher magnitude displacements. The 
maximum deflection occurs between 0.5 and 0.7 in the 
fixed TBM under triangular load.  In view of figures 5, 6 
we observe that the beam is subject to slight rotations in 
the range: -0.5 to 0.62 for all values of , whereas deflection 
profile exhibits positive values always. However, for higher 
values of , the deflection of the beam becomes unstable 
due to higher magnitude displacements. The maximum 
deflection occurs between 0.5 and 0.7 in the fixed TBM 
under trapezoidal load. The deflection tends to 80000 for 

, indicating a sufficiently critical and sensitive case.
In view of figures 7, 8 we observe that the beam is 

subject to slight rotations in the range: -0.3 to 0.4 for all 
values of , whereas deflection profile exhibits positive 
values always. Since the load is sqaure, so deflections are 
mostly higher around the right end of the beam. However, 
for higher values of , the deflection of the beam becomes 
unstable due to higher magnitude displacements. The 
maximum deflection occurs around 0.6 in the fixed TBM 
under parabolic load. The deflection in this case is also 
sensitive to the values of parameter  In view of figures 
9, 10 we observe that the beam is subject to quite higher 
rotations in the range: -13 to 13 for all values of , whereas 
deflection profile exhibits positive values always. The 
rotations for all considered values of the parameter  are 
very close to each other as apparent from figure 9. Since 
the load is circular, so deflection is highest at the middle 
of the beam as expected. In reference to all figures 3-10, 
we observe the sensitivity of the TBM for values of 
parameter . For larger values of , the fixed TBM is subject 
to unstable regimes which confirms the practically adopted 
standard to keep  to at most 1.  
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FIGURE 3.  of TBM for triangular load function

FIGURE 4.  of TBM for triangular load function

FIGURE 5.  of TBM for trapezoidal load function

FIGURE 6.  of TBM for trapezoidal load function 

FIGURE 7.  of TBM for parabolic load function

FIGURE 8.  of TBM for parabolic load function

FIGURE 9.  of TBM for circular load function

FIGURE 10.  of TBM for circular load function
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VALIDATION

It is evident from the literature review presented in the 
introduction of this paper that most of the work was devoted 
to the existence and uniqueness of the solutions of the 
differential equation models of elastic beams, like the 
Euler-Bernoulli beams. However, for the case of TBM the 
particular expressions of the solution are mostly validated 
through the corresponding cases with elastic beams. We 
note that in the absence of shear deformation, the governing 
equations of the TBM reduce to that of elastic beams. For 
the purpose of verification of the proposed protocol in this 
study, we apply the generalized load function to attain the 
generalized expressions of the delfection and slope of an 
elastic beam model and compare the particular expressions 
for the case of UDL with those available in standard texts. 
The elastic beam differential equations are:  

(22)

(23)

(24)

Where f is the applied load, M is bending moment, s 
is the slope of bending, EI is flexural rigidity and v is the 
deflection in the elastic beam. For the fixed case the 
displacement and the slope are zero at both ends of the 
beam. It is imperative to understand that the rotation effect 
of TBM is not considered in (22)-(24). Using The 
generalized load function as devised earlier for the TBM, 
we tailor the equations (22)-(24) towards the general 
analytical expressions of the deflection and bending slopes, 
which are given in (25)-(26). The corresponding 
coefficients are mentioned in (27)-(28).

(25)

(26)

(27)

(28)

In the case of a UDL, say when  any constant 
for all portions of the beam i.e. , then using 

 and all other constants zeros, we have 
from equations (25)-(28):  
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(29)

(30)

For maximum deflection , and solving: 

It simplifies to:

So, critical points are:

The double derivative test produces:

Which is sufficient to show that the maximum deflection 
occurs at  , which is:

(31)

Finally, from the equations (29)-(31), we conclude 
that these match exactly with those in the standard texts in 
Structural engineering and literature on elastic beams. This 
also deduces the validity of the proposed protocol used 
here for generalization and hence the results for the fixed 
TBM have been validated through the results on elastic 
beams.  

CONCLUSION

In this study, the fixed TBM was considered and an attempt 
was made to get its general analytical solution which hold 
for all cases of practical load functions. For the purpose of 
generalization, a polynomial load function expressed as a 
Machlaurin’s power series was considered. The successive 
integrations of the TBM with generalized load function 
lead us to derive equations of rotation and deflection for a 
fixed TBM. The claimed expressions lead to the particular 
expressions, and this was verified for four load functions: 
triangular, trapezoidal, parabolic and circular. Finally, 
sensitivity analysis was discussed for the rotation and 
deflection of a fixed TBM against the solely depend 
parameter in the non-dimensionalized form. For higher 
values of the parameter, the beam deflections were too 
higher to consider for stable regimen. The validation of the 
proposed protocol was successfully done through the 
differential equations model of elastic beams. The 
contributions of this study are useful for structural 
engineers and those practitioners who are working in the 
theory of beams and stability. The proposed general 
equations are computationally quicker than the traditional 
methods used to solve the model, and are also time efficient. 
These factors can be the reason of wider adaptability of 
the proposed protocol in future. 



209

ACKNOWLEDGEMENT

The authors would like to thank the Mehran University of 
Engineering and Technology and Government College 
University, Pakistan for the support to conduct this 
research. 

DECLARATION OF COMPETING 
INTEREST

None

REFERENCES

Chen, Kangyu, et al. 2021. Shape sensing of Timoshenko 
beam subjected to complex multi-node  loads using 
isogeometric analysis. Measurement 184: 109958.

Cheng, X. L., Han, W. & Huang, H. C. 1997. Finite 
element methods for Timoshenko beam, circular arch 
and Reissner-Mindlin plate problems. J. Comput. 
Appl. Math. 79(2): 215-234.

Cheng, X. L. & Xue, W. M. 2002. Linear finite element 
approximations for the Timoshenko beam and the 
shallow arch problems. J. Comput. Math. 20:15-22.

D. N. Arnold. 1981. Discretization by finite elements of a 
model parameter dependent problem. Numer. Math. 
37 (3): 405-421.

Davis, R., R. D. Henshell, and G. B. Warburton, 1972. 
A Timoshenko beam element. Journal of Sound and 
Vibration 22(4): 475-487.

Friedman, Z. & Kosmatka, J. B. 1993. An improved two-
node Timoshenko beam finite element. Computers & 
Structures 47(3): 473-481.

Ghannadiasl, Amin, and Massood Mofid. 2015. An 
analytical solution for free vibration of elastically 
restrained Timoshenko beam on an arbitrary variable 
Winkler foundation and under axial load. Latin 
American Journal of Solids and Structures 12: 2417-
2438.

Hibbeler, R. C. 2004. Engineering Mechanics: Dynamics. 
Pearson Educación.    

Hibbeler, R. C. 2005. Mechanics of Materials. Pearson 
Educación.

Jelenić, G. and Edita Papa. 2011. Exact solution of 3D 
Timoshenko beam problem using linked interpolation 
of arbitrary order. Archive of Applied Mechanics 
81(2): 171-183.

Li, L. 1990. Discretization of the Timoshenko beam 
problem by the p and h/p versions of the finite 
element method. Numer. Math. 57(1): 413-420.

Loula, A. F. D., Hughes, T. J. R. & Franca, L. P. 1987. 
Petrov-Galerkin formulations of the Timoshenko 
beam problem. Comput. Meth. Appl. Mech. Eng. 
63(2): 115-132.

Malik, Kamran, Shaikh, Abdul Wasim and Shaikh, 
Muhammad Mujtaba. 2021b. An efficient finite  
difference scheme for the numerical solution of 
Timoshenko beam model. Journal Of Mechanics of 
Continua and Mathematical Sciences 16(5): 76-88.

Malik, Kamran, Shaikh, Muhammad Mujtaba and Shaikh, 
Abdul Wasim. 2021a. On exact analytical solutions 
of the Timoshenko beam model under uniform and 
variable loads. Journal Of Mechanics of Continua 
and Mathematical Sciences 16 (5): 66-75.

Mansoori Babak, Ashkan Torabi & Arash Totonch 2020. 
Numerical investigation of the reinforced concrete 
beams using cfrp rebar, steel sheets and GFR. J. 
Mech. Cont & Math. Sci. 15(3): 195-204.

Shaikh, Abdul Wasim, and Xiao-Liang Cheng 2012. 
Two non-standard finite difference schemes for the 
Timoshenko beam. African Journal of Mathematics 
and Computer Science Research 5(6): 107-111.

Timoshenko, S. P. 1921. On the correction for shear of 
the differential equation for transverse Vibrati-ons of 
prismatic bars. The London, Edinburgh, and Dublin 
Philosophical Magazine and Journal of Science 
41(245): 744-746.

Wang, C. M. et al. 2008. Beam bending solutions based 
on nonlocal Timoshenko beam theory. Journal of 
Engineering Mechanics 134(6): 475-481.

Wang, Chien M. 1995. Timoshenko beam-bending 
solutions in terms of Euler-Bernoulli solutions  
Journal of Engineering Mechanics 121(6): 763-765.

Website Link-I. 2023a. https://civilengineering.blog.
Website Link-II. 2023b. https://www.mechanicalbooster.

com/2016/11/types-of-support.html
Website Link-III. 2023c. https://learnaboutstructures.

com/Bernoulli-Euler-Beam-Theory




