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ABSTRACT

The assessment and monitoring of battery health is very crucial for the maintenance and safety of battery-powered 
applications such as Electric vehicles (EVs). To conduct appropriate battery operation in EVs, the battery capacity 
should be estimated accurately.  In this regard, the State of health (SOH) estimation is conducted for evaluating the 
battery aging status. This work proposes a hybrid backpropagation neural network (BPNN) and particle swarm 
optimization (PSO) technique for SOH estimation. A multi-feature input data framework is constructed with 
31-dimensional features for the model training by using 4 battery datasets from NASA i.e. B5, B6, B7 and B18. The 
acquisition of the data samples has been performed with a systematic sampling technique. The presented work is 
conducted with a training testing ratio of 70:30 and validated with the MIT Stanford battery dataset. The experimental 
outcomes demonstrated high SOH estimation accuracy compared with the conventional BPNN model. In the case of 
battery B5, it was observed that RMSE, MSE and MAPE for the BPNN-PSO model are 0.6791, 0.0046, 0.3203 compared 
with the conventional BPNN model i.e. 0.8796, 0.0077, 0.4881 respectively. Furthermore, the significance of capacity 
regeneration in B7 and B18 results in high-performance metrics compared with other battery datasets. The research 
conducted would be beneficial to estimate the battery status regarding battery health i.e. SOH accurately in Battery 
System Management (BMS) based EV application.
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INTRODUCTION

Presently, the increased exploitation of fossil-based 
automotive application has triggered several concerns 
worldwide consisting of increased global temperature, 
global warming and health hazards respectively (Ansari et 
al. 2021a). To overcome these concerns, the application of 
Electric vehicles (EVs) has been greatly researched 
worldwide due to its various benefits such as reliability, 
simplicity, comfort, and improved efficiency (Tu et al. 
2020)the upstream emissions from electricity generation 
cannot be ignored. In this study, a heuristic algorithm was 

designed to optimize regional electric vehicle charging 
schedules with the objective of minimizing greenhouse gas 
emissions from electricity generation. Our study is set in 
the Greater Toronto and Hamilton Area. Emissions from 
the charging demand are estimated by a marginal emission 
model calibrated with historical data for Ontario electricity 
generation. The results illustrate that the optimized plan 
can reduce greenhouse gas emissions by around 97% 
compared to a base case, where vehicles are powered by 
gasoline. Four other charging scenarios (home, out of 
home, after trip, and after 3am. Furthermore, the application 
of lithium-ion battery system in EV application has been 
one of the reasons for its substantial progress. The lithium-
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ion battery system is utilized due to its various benefits 
such as being lightweight, high energy density, and long-
span for charging and discharging (He et al. 2011). 
However, the timely maintenance and examination of 
lithium-ion battery with regard to State of health (SOH) 
should be conducted. This is due to the continuous battery 
degradation which occurs during charging and discharging 
operations. The battery is intended for replacement due to 
safety issues once the 70% or 80% of its initial capacity 
has been used. The battery degradation may result in a 
substantial loss in terms of economic loss and system loss. 
Therefore, it becomes crucial to estimate the SOH of 
lithium-ion battery by developing intelligent models and 
frameworks.

Currently, various SOH estimation techniques have 
been developed which are categorized as model-based and 
data-driven based respectively. The model-based techniques 
comprise of electrochemical model and equivalent circuit 
model (ECM) which is based on developing a mathematical 
model and analyzing the internal battery features. Goebel 
et al. (2008) developed a SOH estimation technique by 
considering the negative linear relationship between 
capacity and internal impedance. The internal impedance 
was calculated by utilizing the electrochemical impedance 
spectrometry (EIS) method. Daigle and Kulkarni (2016) 
constructed a capacity estimation model. The capacity 
estimation was conducted by utilizing battery parameters 
such as internal impedance and diffusion constant 
respectively. The model-based methods deliver sufficient 
information for battery dynamics but suffers from 
computational complexity to solve partial differential 
equations.

Whereas, the data-driven model are based on 
estimating SOH by evaluating the historical data and do 
not requires to solve complex mathematical equations. 
Primarily, methods such as Particle filter (PF), Kalman 
filter (KF) etc. have been employed for SOH estimation of 
lithium-ion battery (Plett 2004; Guha and Patra 2017)power 
fade, capacity fade, and instantaneous available power. The 
estimation mechanism must adapt to changing cell 
characteristics as cells age and therefore provide accurate 
estimates over the lifetime of the pack. In a series of three 
papers, we propose methods, based on extended Kalman 
filtering (EKF. Additionally, other data-driven methods 
such as Support vector machine (SVM), Artificial neural 
network and Deep learning (DL) techniques have been 
introduced to estimation the SOH of the battery (You et al. 
2017; Patil et al. 2015; Ansari et al. 2021b; Qu et al. 2019)
diagnosing battery states, such as state of health (SOH. 
Feng et al. (2019)which reflects the intrinsic characteristics 
of the Li-ion battery, are determined from the charging data 
of fresh cells. Furthermore, the coefficients of the SVMs 
for cells at different SOH are identified once the support 

vectors are determined. The algorithm functions by 
comparing partial charging curves with the stored SVMs. 
Similarity factor is defined after comparison to quantify 
the SOH of the data under evaluation. The operation of the 
algorithm only requires partial charging curves, e.g., 15 
min charging curves, making fast on-board diagnosis of 
battery SOH into reality. The partial charging curves can 
be intercepted from a wide range of voltage section, thereby 
relieving the pain that there is little chance that the driver 
charges the battery pack from a predefined state-of-charge. 
Train, validation, and test are conducted for two commercial 
Li-ion batteries with Li(NiCoMn proposed a SVM based 
SOH estimation technique by utilizing the partial charging 
segment. The proposed experiment was conducted under 
the constant current charging for calibrating the battery 
capacity. Ansari et al. (2021) developed a Cascaded forward 
neural network (CFNN) for to estimate capacity and 
remaining useful life (RUL) of the battery. In recent times, 
You et al. (2017)diagnosing battery states, such as state of 
health (SOH presented a capacity estimation model based 
on battery voltage and current. The discussed data-driven 
methods delivered satisfactory outcomes based on capacity 
estimation, however, appropriate volume of dataset is 
necessary for the model to train effectively. Moreover, the 
model hyperparameter adjustment requires significant 
human intervention and time loss depicting their 
drawbacks.

Therefore, in this paper, Particle swarm optimization 
(PSO) technique based Back propagation neural network 
(BPNN) is utilized for capacity estimation where suitable 
battery parameters such as temperature, capacity, voltage 
and current with appropriate volume of dataset is 
considered for effective model training. Furthermore, the 
PSO technique is employed for suitably selecting the 
BPNN model hyperparameters for satisfactory outcomes. 

DATA EXTRACTION TECHNIQUE

The proposed PSO-BPNN model has been constructed by 
utilizing the NASA battery dataset acquired from NASA 
prognostics Centre of Excellence Data Repository 
(“Prognostics Center of Excellence - Data Repository” 
n.d.). The database consists of 4 battery datasets namely 
B5, B6, B7 and B18 respectively. Each battery dataset 
consists of two operating profiles namely charging and 
discharging. The acquisition of various battery parameters 
such as voltage, current, capacity etc. is acquired under the 
environment of Constant Current Constant Voltage 
(CCCV) principle. The capacity profile of the acquired 
battery datasets has been shown in Figure 1.  The operating 
profiles of the battery datasets i.e. charging and discharging 
was analyzed and charging profile battery parameters i.e. 
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temperature, voltage and current were selected along with 
discharge capacity data. The acquisition of battery 
parameters was considered from charging profile as it is 

based on set pre-set guidelines while the process of battery 
discharging is random.
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FIGURE 1. Capacity degradation curve for B5, B6, B7 and B18

PROPOSED METHODOLOGY

Primarily, the proposed method for SOH estimation of lithium-ion battery has been developed by considering the BPNN 
model and PSO technique. The data extraction to develop the data framework for the PSO-BPNN model training has 
been conducted with systematic sampling technique.

At first, BPNN model is constructed which consists of 3 layers namely input layer, hidden layer and output layer. 
The input layer consists of 4 neurons with input as temperature, capacity, voltage and current. The hidden layer consists 
of suitable hidden neurons which is selected with PSO technique. The estimated capacity is achieved from the output 
layer with 1 neuron. The basic structure of the BPNN model for the proposed SOH estimation technique has been presented 
in Figure 2. 

Secondly, the PSO technique is employed to select the suitable BPNN model hyperparameters such as hidden layer 
neurons and learning rate. The PSO technique was developed by Eberhart and Kennedy in 1995 and is usually applied 
for solving the non-linear function (Kennedy and Eberhart 1995). The construction of the PSO technique is concentrated 
on swarm behavior such as bird flocking and schooling in nature. The objective function of PSO technique is achieved 
by swarm population based on local best and global best. The PSO technique selects the best possible outcomes based 
on the swarm’s optimal position and velocity through the movement in the search space. The swarm position and their 
respective velocity to achieve the optimal results is calculated by the following equations:

V k+1 = W *V k+C1* r1
k (pbestk-xk) + C2 * r2

k (gbestk-xk) (1)
xk+1 = xk + Vk+1 (2)

where, V k+1 and V k relates with updated and current 
velocity, the learning factor is c1,c2. W is weight factor, r1

k 
and  r2

k is the variables ranging between 0 to 1. X k and X 
k+1 depicts the present and updated position. The objective 
function employed to optimize the hidden layer and 
learning rate was mean square error (MSE).

Lastly, the appropriate acquisition of the data samples 
from various battery parameters such as temperature, 

voltage and current is achieved using the systematic 
sampling technique. The systematic sampling technique 
was utilized to obtain 10 samples of temperature, voltage 
and current from each charging cycle. The data samples 
obtained from the systematic sampling is arranged in the 
appropriate format to develop the proposed data framework 
for model training.
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FIGURE 2. BPNN model for the proposed SOH estimation technique

RESULTS AND DISCUSSION

In this proposed work, a PSO optimized BPNN model is 
proposed for SOH estimation of lithium-ion battery. The 
battery data has been acquired from NASA Prognostics 
Centre of Excellence Data Repository and MIT Stanford. 
Four battery datasets from NASA and MIT have been 
selected for the experimental work. The NASA battery 
datasets includes B5, B6, B7 and B18 battery datasets and 
MIT Stanford dataset includes c33, c34, c35 and c36 battery 
datasets. Additionally, various battery parameters such as 
temperature, capacity, voltage and current were extracted 
by systematic sampling technique to develop suitable data 
framework for model training. The training of the model 
was performed by splitting the data in 70:30 ratios i.e. 70% 
for training and 30% for testing. The PSO-BPNN model 
has been validated against conventional BPNN model by 
various performance metrics such as RMSE, MSE and 
MAPE. At first, the proposed method is evaluated by 
considering the NASA battery dataset. The performance 
metrics for different battery dataset has been presented in 

Table 1. It is observed that PSO optimized BPNN model 
outperforms conventional BPNN model. It is evaluated 
that proposed model accuracy was highest with battery B5 
whereas least with battery B7 and B18. This is due to low 
training cycles and capacity regeneration phenomena in 
battery B18.  The RMSE, MSE and MAPE for B5 is 0.6791, 
0.0046, 0.3203 while it is 2.1357, 0.0456, 0.8891 for B18 
respectively. 

Additionally, compared with BPNN model, the 
proposed PSO-BPNN delivers more accurate outcomes. 
The capacity estimation curve for NASA battery datasets 
has been presented in Figure 3. It is seen that capacity 
estimation curve depicts linear characteristics with battery 
B5 whereas it shown significant non-linearity with battery 
B7 and B18. Figure 4 depicts the SOH estimation error for 
various battery datasets depicting the error shown by BPNN 
model and PSO-BPNN model. From the above discussion, 
it is concluded that highest accuracy for PSO-BPNN model 
was shown with battery B5 while the lowest capacity 
estimation accuracy was depicted in battery B7 and B18 
as shown in Figure 5. 

TABLE 1. SOH estimation outcomes for NASA batteries
Battery Model Performance Metrics

RMSE MSE MAPE
B5 BPNN 0.8796 0.0077 0.4881

BPNN-PSO 0.6791 0.0046 0.3203
B6 BPNN 1.5147 0.0229 0.6792

BPNN-PSO 1.6100 0.0259 0.7596
B7 BPNN 2.3890 0.0571 1.2850

BPNN-PSO 1.8256 0.0333 0.7776
B18 BPNN 2.6999 0.0729 1.3877

BPNN-PSO 2.1357 0.0456 0.8891
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FIGURE 3. Capacity estimation curve for B5, B6, B7 and B18

FIGURE 4. SOH estimation error curve for B5, B6, B7 and B18

FIGURE 5. Performance metrics for B5, B6, B7 and B18
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The proposed PSO-BPNN model was validated with 
MIT Stanford battery dataset consisting of four battery 
dataset with similar features (Severson et al. 2019). The 
PSO-BPNN model outperforms the conventional BPNN 
model in all case of battery datasets. Furthermore, the 
proposed model demonstrated highest estimation accuracy 
with C33 dataset while the lowest estimation accuracy was 
shown with C36 battery dataset as shown in Table 2. In 

case of C33, the performance metrics such as RMSE, MSE 
and MAPE with proposed PSO-BPNN model was 0.1597, 
2.5494*10-4, 0.0416 compared with BPNN model which 
was 0.1740, 3.0275*10-4, 0.0888. The capacity estimation 
curve for different MIT battery datasets has been shown 
in Figure 6. It is seen that due to the phenomena of capacity 
regeneration in C36, the estimated capacity curve is highly 
disoriented compared with other battery capacity curves.

TABLE 2. SOH estimation outcomes for MIT batteries
Battery Model Performance Metrics

RMSE MSE MAPE
C33 BPNN 0.1740 3.02*10-4 0.0888

BPNN-PSO 0.1597 2.54*10-4 0.0416

C34 BPNN 0.1982 3.92*10-4 0.1323
BPNN-PSO 0.0711 5.04*10-4 0.0549

C35 BPNN 0.5254 0.0028 0.2459
BPNN-PSO 0.9087 0.0083 0.1459

C36 BPNN 2.8360 0.0804 1.9152
BPNN-PSO 0.7381 0.0054 0.4896

The SOH estimation error for C33, C34, C35 and C36 
has been depicted in Figure 7. The PSO-BPNN model 

attains high accuracy in all cases compared with BPNN 
model.  

FIGURE 6. Capacity estimation curve for C33, C34, C35 and C36



371

FIGURE 7. SOH estimation error curve for C33, C34, C35 and C36

From the above discussion and results, it is concluded 
that PSO-BPNN based model performs with high accuracy 
and estimates capacity degradation of various battery 

datasets accurately. Figure 8 presents the bar graph of 
various performance metrics to depict the performance of 
BPNN and proposed PSO-BPNN model. 

FIGURE 8. Performance metrics for c33, c34, c35 and c36

CONCLUSION

In this work, a PSO optimized BPNN model is proposed 
for SOH estimation of lithium-ion battery. The proposed 

model was built with NASA battery datasets consisting of 
four datasets. In addition, the battery parameters such as 
temperature, capacity, voltage and current profiles were 
extracted by systematic sampling technique to develop a 
data framework for model training. The proposed PSO-
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BPNN model was validated with the conventional BPNN 
model and MIT Stanford battery dataset. It is studied that 
performance metrics such as RMSE, MSE and MAPE 
attained with the proposed model for battery B5 were 
0.6791, 0.0046, 0.3203 as compared to 0.8796, 0.0077, 
0.4881 for the BPNN model. Furthermore, due to the 
phenomena of capacity regeneration in B18 and B7, the 
performance error was higher compared with other battery 
datasets. Additionally, the validation of the proposed PSO-
BPNN model delivered significant outcomes. In the future, 
the proposed model will be validated with other meta-
heuristic optimization techniques. 
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